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Empirical likelihood is a very popularmethod and has beenwidely used in the fields of artificial intelligence (AI) and datamining as
tablets and mobile application and social media dominate the technology landscape. This paper proposes an empirical likelihood
shrinkage method to efficiently estimate unknown parameters and select correct moment conditions simultaneously, when the
model is defined by moment restrictions in which some are possibly misspecified. We show that our method enjoys oracle-like
properties; that is, it consistently selects the correct moment conditions and at the same time its estimator is as efficient as the
empirical likelihood estimator obtained by all correctmoment conditions.Moreover, unlike theGMM, our proposedmethod allows
us to carry out confidence regions for the parameters included in the model without estimating the covariances of the estimators.
For empirical implementation, we provide some data-driven procedures for selecting the tuning parameter of the penalty function.
The simulation results show that the method works remarkably well in terms of correct moment selection and the finite sample
properties of the estimators. Also, a real-life example is carried out to illustrate the new methodology.

1. Introduction

As Xie et al. [1] show, growing attention is being paid to
the fields of artificial intelligence (AI) and data mining as
tablets and mobile application and social media dominate
the technology landscape. Moment conditions often appear
in the study of artificial intelligence (AI) and data mining.
We all know that empirical likelihood is a very practical
tool for the study of moment conditions. When a parametric
likelihood function is not specified for a model, estimating
equations may provide an alternative instrument for statisti-
cal inference. For example, let𝑍

1
, . . . , 𝑍

𝑛
be independent and

identically distributed random vectors from a distribution,
and let 𝜃 ∈ R𝑝 be a vector of unknown parameters.
Suppose that the information of the distribution is available
in the form of an unbiased estimating function 𝑔(𝑧; 𝜃) =

{𝑔
1
(𝑧; 𝜃), . . . , 𝑔

𝑟
(𝑧; 𝜃)}

𝑇 satisfying 𝐸{𝑔(𝑍; 𝜃)} = 0 and 𝑟 ≥

𝑝. When 𝑟 = 𝑝, 𝜃 can be estimated by solving the
estimating equations 0 = 𝑛

−1
∑
𝑟

𝑖=1
𝑔(𝑍

𝑖
; 𝜃). Allowing 𝑟 > 𝑝

provides a useful device to combine available information

for improving estimation efficiency, but directly solving 0 =

𝑛
−1

∑
𝑟

𝑖=1
𝑔(𝑍

𝑖
; 𝜃) may not be feasible.

The generalized method of moments (GMM) and empir-
ical likelihood (EL) are two popular methodologies for
estimating the parameters in the structural equations. As was
introduced by Hansen [2], the GMM estimator 𝜃

𝑛
is defined

as

𝜃
𝐺

= argmin
𝜃∈Θ

[
∑
𝑛

𝑖=1
𝑔(𝑍

𝑖
, 𝜃)

√𝑛
]

𝑇

𝑊
𝑛
[
∑
𝑛

𝑖=1
𝑔 (𝑍

𝑖
, 𝜃)

√𝑛
] , (1)

whereΘ is the parameter space where 𝜃
0
lies and𝑊

𝑛
is a given

𝑞× 𝑞 weight matrix. Unlike the GMM, the EL uses likelihood
to optimally combine information given in the estimating
equations. More specifically, the estimator 𝜃

𝐸
is defined by

maximizing the following empirical likelihood:

𝐿 (𝜃) = sup{

𝑛

∏

𝑖=1

𝑛𝜔
𝑖
: 𝜔

𝑖
≥ 0,

𝑛

∑

𝑖=1

𝜔
𝑖
= 1,

𝑛

∑

𝑖=1

𝜔
𝑖
𝑔 (𝑍

𝑖
; 𝜃) = 0} .

(2)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 391719, 16 pages
http://dx.doi.org/10.1155/2014/391719

http://dx.doi.org/10.1155/2014/391719


2 Abstract and Applied Analysis

The estimator 𝜃
𝐸
is optimal in the sense of Godambe and

Heyde [3]. It is known that maximizing (2) is equivalent to
minimizing the empirical likelihood ratio

𝑙 (𝜃) = − [log {𝐿 (𝜃) − 𝑛 log (𝑛)}] =

𝑛

∑

𝑖=1

log {1 + 𝜆
𝑇

𝜃
𝑔 (𝑍

𝑖
; 𝜃)} ,

(3)

where 𝜆
𝜃
satisfies 𝑛

−1
∑
𝑛

𝑖=1
𝑔(𝑍

𝑖
; 𝜃){1 + 𝜆

𝑇

𝜃
𝑔(𝑍

𝑖
; 𝜃)}

−1
= 0.

Both the GMM and the EL have been successfully used
for parameter estimation and variable selection in general
estimating equations. The statistical properties of the GMM
and the EL estimators rely heavily on the quality of these
moment conditions.The strong and validmoment conditions
can help to reduce finite-sample bias and improve efficiency
of the GMM and the EL estimators. However, when some
moment conditions are misspecified, the GMM and the EL
estimators may be inconsistent. In this paper, we are inter-
ested in estimating some unknown parameter 𝜃

0
identified

by a set, set-1, of some moment restrictions which can be
used to estimate 𝜃

0
consistently. Meanwhile, it is supposed

that there is another set, set-2, of possibly misspecified
moment conditions. When the moment conditions in set-2
(or some of them) are correctly specified, including them into
estimation equations can improve the asymptotic efficiency
of the estimator for 𝜃

0
. However, if they are misspecified,

then using these moment conditions will lead to inconsistent
estimation. Hence, whenever an empirical researcher has a
set of moment conditions and there is no prior information
about their validity, it is important to have some procedures
to select the correctly specifiedmoment conditions in that set
and include them in the estimation equations.

Note that both the GMM estimators and the EL estima-
tors are defined through moment restrictions.They generally
have the same asymptotic distributions, but possibly different
higher order asymptotic properties; see Newey and Smith
[4] and Schennach [5]. As discussed in Newey and Smith
[4], the small sample performance of the GMM is poor in
some applications and the EL has advantages over the GMM
estimators. First, unlike GMM, the asymptotic bias of the
EL estimator does not grow with the number of moment
restrictions. Consequently, with many moment conditions,
the bias of EL will be less than the bias of GMM. The
relatively low asymptotic bias of the EL indicates that it is
an important alternative to the GMM. Second, unlike the
GMM, the EL does not require weight matrix estimation
and is invariant to nonsingular linear transformations of the
moment conditions. The third theoretical advantage of EL is
that after it is bias corrected, it is higher efficient relative to the
GMMbias corrected estimators.The reason is that the biased
corrected EL estimators inherit the higher order property of
maximum likelihood estimators.

Inspired by the idea of Liao [6] and considering the
above advantages of the EL estimators relative to the GMM
estimators, we propose a novel method for moment selection
and parameter estimation simultaneously. The new method
attaches a penalty function to the EL criterion and the
resulting estimator of 𝜃

0
is then called the EL shrinkage

estimator. Our method embeds the moment selection in EL

estimation and once a certainmoment condition is selected, it
will be automatically included into estimating 𝜃

0
. Hence, our

method not only selects the correctmoment conditions in the
set-2 in one step but also deals with themoment selection and
efficient estimation simultaneously. Under some regularity
conditions, we show that the EL shrinkage estimator of 𝜃

0

is root-𝑛 consistent and asymptotically normal. Moreover,
we show that consistent moment selection is automatically
achieved in the penalized EL estimation and the EL shrinkage
estimator of 𝜃

0
is asymptotically oracle-efficient (i.e., as

efficient as the oracle EL estimator based on all valid moment
conditions). Unlike the GMM, our proposed method allows
us to carry out confidence regions for parameters included
in the model without estimating the covariances of the
estimators.

The rest of the paper is organized as follows. In
Section 2, based on the EL and penalty method, the param-
eter estimation and moment condition selection are intro-
duced. The theoretical properties of the EL shrinkage esti-
mators and the empirical likelihood ratio are presented in
Section 3. Section 4 provides simple and data-driven proce-
dures of selecting the tuning parameters. Simulation studies
and a real-life example are given in Section 5. Proofs and the
technical derivations are included in the appendix.

2. Methodology

Suppose that we are interested in estimating some unknown
parameter 𝜃

0
identified by the followingmoment restrictions:

𝐸 [𝑔
𝑞
(𝑍, 𝜃

0
)] = 0, (4)

where 𝑍 is a 𝑑
𝑧
-dimensional random vector, 𝜃

0
is a 𝑑

𝜃
-

dimensional parameter vector, the subscript 𝑞 of 𝑔
𝑞
(⋅, ⋅)

denotes the number ofmoment conditions, and𝑔
𝑞
(⋅, ⋅) : 𝑅

𝑑
𝑧×

𝑅
𝑑
𝜃 → 𝑅

𝑞. The moment conditions in (4) can be used
to estimate 𝜃

0
consistently. Suppose there is another set of

possibly misspecified moment conditions as

𝐸 [𝑔
𝑘
(𝑍, 𝜃

0
)]

?

= 0, (5)

where “ ?=” signifies that equality may hold for some elements
but not others, the subscript 𝑘 of 𝑔

𝑘
(⋅, ⋅) denotes the number

of moment conditions, and 𝑔
𝑘
(⋅, ⋅) : 𝑅

𝑑
𝑧 × 𝑅

𝑑
𝜃 → 𝑅

𝑘. The
goal of this paper is to consistently select the correct moment
conditions in the set-2 and automatically include them into
the empirical likelihood estimation to improve the efficiency
of estimating 𝜃

0
.

To incorporate moment selection into the estimation
procedure, we first introduce a set of auxiliary unknown
parameters 𝛽

0
and reparametrize the moment conditions in

the set-2 as

𝐸 [𝑔
𝑘
(𝑍, 𝜃

0
) − 𝛽

0
] = 0. (6)

From (6), we see that if the 𝑗th (𝑗 = 1, . . . , 𝑘) moment condi-
tion in (5) is correctly specified (or misspecified), then 𝛽

0,𝑗
=

0 (or 𝛽
0,𝑗

̸= 0). Hence, the zero/nonzero components in 𝛽
0
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can be used to identify the correctly specified/misspecified
moment conditions in the set-2 and consistent moment
selection is equivalent to consistent selection of the zero
components in 𝛽

0
. We thus stack the moment conditions in

(4) and (6) to get

𝐸 [𝜌 (𝑍, 𝜃
0
, 𝛽

0
)] ≡ 𝐸 [(

𝑔
𝑞
(𝑧, 𝜃

0
)

𝑔
𝑘
(𝑧, 𝜃

0
) − 𝛽

0

)] = 0. (7)

Let {𝑍
𝑖
}
𝑖≤𝑛

be a sample of 𝑍. The EL shrinkage estimator
(𝜃

S
𝑛
, 𝛽

S
𝑛
) of (𝜃

0
, 𝛽

0
) is defined as

(𝜃
S
𝑛
, 𝛽

S
𝑛
) = arg min

(𝜃,𝛽)∈Θ×B

𝑛

∑

𝑖=1

log {1 + 𝜆
𝑇

𝜃
𝜌 (𝑍

𝑖
, 𝜃, 𝛽)}

+ 𝑛

𝑘

∑

𝑗=1

𝑃
𝜏
𝑛

(𝛽
𝑗
) ,

(8)

where 𝜆
𝜃
satisfies 𝑛−1 ∑𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝜃, 𝛽){1+𝜆

𝑇

𝜃
𝜌(𝑍

𝑖
, 𝜃, 𝛽)}

−1
= 0,

Θ × B is the parameter space where (𝜃
0
, 𝛽

0
) lies, and 𝜏

𝑛
is

the tuning parameter in some general penalty function 𝑃
𝜏
𝑛

(⋅).
The success of ourmethod in simultaneousmoment selection
and efficient estimation relies on the “oracle properties” of the
shrinkage techniques. That is to say, if 𝛽

0,𝑗
= 0, for some

𝑗 ∈ {1, . . . , 𝑘}, our method will estimate 𝛽
0,𝑗

as zero with
probability approaching 1 (w.p.a.1.). When 𝛽

0,𝑗
is estimated as

zero w.p.a.1., the information contained in the 𝑗th moment
condition of (5) is automatically used in estimating 𝜃

0

w.p.a.1. On the other hand, the nonzero components in 𝛽
0

are consistently estimated and their estimators are nonzero
w.p.a.1. Hence, our method can consistently distinguish the
zero and nonzero components in 𝛽

0
and is consistent in

moment selection. Moreover, it estimates 𝜃
0
as if we knew all

potentially correct moment conditions in the set-2.
There are many popular choices for the penalty function

𝑃
𝜏
𝑛

(⋅). For example, the bridge penalty is defined as 𝑃
𝜏
𝑛

(𝛽) =

𝜏
𝑛
|𝛽|

𝛾, where 𝛾 ∈ (0, 1); the adaptive Lasso penalty is defined
as 𝑃

𝜏
𝑛

(𝛽) = 𝜏
𝑛
𝜔̂
𝛽
|𝛽|, where 𝜔̂

𝛽
= |𝛽

𝑛
|
−𝜔

(𝜔 > 0) and 𝛽
𝑛
is

some first-step consistent estimator of 𝛽
0
; and the smoothly

clipped absolute deviation (SCAD) penalty is defined as

𝑃
𝜏
𝑛

(𝛽) = 𝜏
𝑛

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 𝐼 (0 ≤

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ≤ 𝜏

𝑛
) +

𝑎𝜏
𝑛

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 − (𝛽

2
+ 𝜏

2

𝑛
) /2

𝑎 − 1

× 𝐼 (𝜏
𝑛
≤

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ≤ 𝑎𝜏

𝑛
) +

(𝑎 + 1) 𝜏
2

𝑛

2
𝐼 (

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ≥ 𝑎𝜏

𝑛
) ,

(9)

where 𝑎 is some positive real number strictly larger than 2.
The above penalty functions differ in their empirical imple-
mentations, although the related EL shrinkage estimators
may have the same asymptotic properties (see the results in
Section 3). We focus on the SCAD penalty in this paper.

3. Asymptotic Theory

This section establishes the oracle property of the adaptive
empirical likelihood (EL) shrinkage estimator. We state our
theorems here, but their proofs are relegated to the appendix.

Let S
𝛽

≡ {𝑗 : 𝛽
0,𝑗

̸= 0, 𝑗 = 1, . . . , 𝑘} and S
𝛽,𝑛

≡

{𝑗 : 𝛽
𝑛,𝑗

̸= 0, 𝑗 = 1, . . . , 𝑘} be the index set of the nonzero
components in 𝛽

0
and 𝛽

𝑛
, respectively. For ease of notation,

we sort the elements in 𝛽
0
in the following way: 𝛽

󸀠

0
=

(𝛽
󸀠

0,−
, 𝛽

󸀠

0,+
), where 𝛽

0,−
= 0 and 𝛽

0,+
̸= 0. Let 𝑘

0
denote

the number of valid moment conditions in the set-2. By
definition, we know that 𝛽

0,−
and 𝛽

0,+
are 𝑘

0
and 𝑘 − 𝑘

0

dimensional vectors, respectively. We define 𝛼
󸀠
= (𝜃

󸀠
, 𝛽

󸀠
) and

𝑚(𝛼) ≡ 𝐸 [𝜌 (𝑍, 𝜃, 𝛽)]

≡ 𝐸(
𝑔
𝑞
(𝑍, 𝜃)

𝑔
𝑘
(𝑍, 𝜃) − 𝛽

) ≡ (
𝐺
𝑞
(𝜃)

𝐺
𝑘
(𝜃) − 𝛽

)

(10)

for any (𝜃, 𝛽) ∈ Θ × B. We use ‖ ⋅ ‖ to denote the Euclidean
norm in the Euclidean space.

We first present and discuss the sufficient conditions for
consistency of 𝛼̂

𝑛
.

Assumption 1. (i) 𝐸[𝑔
𝑙
(𝑧, 𝜃

0
)𝑔

𝑇

𝑙
(𝑧, 𝜃

0
)] is positive definite for

𝑙 = 𝑞, 𝑘;
(ii) 𝜕𝑔

𝑙
(𝑧, 𝜃)/𝜕𝜃 and 𝜕

2
𝑔
𝑙
(𝑧, 𝜃)/𝜕𝜃𝜕𝜃

𝑇 are continuous in a
neighborhood of the true value 𝜃

0
for 𝑙 = 𝑞, 𝑘;

(iii) ‖𝜕𝑔
𝑙
(𝑧, 𝜃)/𝜕𝜃‖, ‖𝜕2𝑔

𝑙
(𝑧, 𝜃)/𝜕𝜃𝜕𝜃

𝑇
‖, and ‖𝑔

𝑙
(𝑧, 𝜃)‖

3 are
bounded by some integrable function 𝐻(𝑧) in this neigh-
borhood of the true value 𝜃

0
for 𝑙 = 𝑞, 𝑘, and the rank of

𝐸[𝜕𝑔
𝑞+𝑘

(𝑧, 𝜃)/𝜕𝜃] is 𝑝;
(iv) 𝐸{sup

(𝜃,𝛽)∈Θ×B(‖𝜌(𝑍
𝑖
, 𝜃, 𝛽)‖(𝑞 + 𝑘)

−1/2
)
𝜅
} < ∞ for

some 𝜅 > 10/3 when 𝑛 is large.

Assumption 1 is similar to those of Qin and Lawless [7].
We emphasize that the dimensionality 𝑞 + 𝑘 cannot exceed
𝑛 because the convex hull of {𝑔

𝑞+𝑘
(𝑍

𝑖
, 𝜃

0
)}
𝑛

𝑖=1
is at most at a

subset in R𝑛.

Assumption 2. (i) 𝐺
𝑘
(𝜃) is continuous in 𝜃 and for any 𝜀 > 0

there exists some 𝛿
𝜀
such that

inf
{𝜃∈Θ:||𝜃−𝜃

0
||≥𝜀}

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑞
(𝑍, 𝜃)

󵄩󵄩󵄩󵄩󵄩
> 𝛿

𝜀
; (11)

(ii) the following uniform law of large numbers (ULLN)
holds:

sup
𝜃∈Θ

[𝑛
−1

𝑛

∑

𝑖=1

{𝑔
𝑙
(𝑍

𝑖
, 𝜃) − 𝐸 [𝑔

𝑙
(𝑍

𝑖
, 𝜃)]}] = 𝑜

𝑝
(1) (12)

for 𝑙 = 𝑞, 𝑘;
(iii) 𝑊

0
= (1/2)𝐸[𝜌(𝑍, 𝜃, 𝛽)𝜌

𝑇
(𝑍, 𝜃, 𝛽)] is positive defi-

nite;𝑊
𝑛
is a symmetric and realmatrix and its eigenvalues are

bounded from below and above by some fixed finite positive
constants for all 𝑛;

(iv) the penalty function 𝑃
𝜏
𝑛

(⋅) is nonnegative and
𝑃
𝜏
𝑛

(𝛽
0,𝑗

) = 𝑜
𝑝
(1) for 𝑗 = 1, . . . , 𝑘.

Condition (11) in Assumption 2(i) is the identifiable
uniqueness condition for 𝜃

0
. By definition, 𝛽

0
= 𝐺

𝑘
(𝜃
0
); thus,

𝛽
0
is locally uniquely identified under (11) and the continuity

of𝐺
𝑘
(𝜃). Assumptions 2(ii) and (iii) are two conditionswhose
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application range is very wide because it does not specify
the data structure, the properties of the moment functions,
and the form of the weight matrix 𝑊

𝑛
. It is clear that when

𝑊
𝑛
is an identity matrix this assumption holds automatically.

We choose 𝑊
𝑛

= (1/2𝑛)∑
𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝜃, 𝛽)𝜌

𝑇
(𝑍

𝑖
, 𝜃, 𝛽) usually.

Assumption 1(iv) implies that the shrinkage effect of the
penalty function on the moment selection coefficients (i.e.
𝛽
0,+
) converges in probability to zero as 𝑛 → ∞. It states that

the nonzero parameters cannot converge to zero too fast.This
is reasonable because otherwise the noise is too strong. This
condition includes the case that 𝑃

𝜏
𝑛

(𝛽
0,𝑗

) = 0 for 𝑗 = 1, . . . , 𝑘

as a special example.

Assumption 3. (i)The following functional central limit theo-
rem (FCLT) holds:

sup
𝜃∈Θ

[𝑛
−1/2

𝑛

∑

𝑖=1

{𝑔
𝑙
(𝑍

𝑖
, 𝜃) − 𝐸 [𝑔

𝑙
(𝑍

𝑖
, 𝜃)]}] = 𝑂

𝑃
(1) , (13)

for 𝑙 = 𝑞, 𝑘;
(ii)𝐺

𝑙
(𝜃) is continuously differentiable in some neighbor-

hood of 𝜃
0
for 𝑙 = 𝑞, 𝑘;

(iii) 𝜕𝐺
𝑙
(𝜃
0
)/𝜕𝜃

󸀠 has full column rank;
(iv) the penalty function 𝑃

𝜏
𝑛

(⋅) satisfies 𝑃
𝜏
𝑛

(0) = 0 and is
continuously twice differentiable at 𝛽

0,𝑗
for any 𝑗 ∈ S

𝛽
with

max
𝑗∈S
𝛽

󵄨󵄨󵄨󵄨󵄨
𝑃
󸀠󸀠

𝜏
𝑛

(𝛽
0,𝑗

)
󵄨󵄨󵄨󵄨󵄨
= 𝑜

𝑝
(1) . (14)

Assumption 3(i) can be verified by applying Donsker’s
theorem in specific models. Assumption 3(ii) imposes a
local differentiability condition on the expectation of the
moment function 𝑔

𝑙
(𝑍, 𝜃), 𝑙 = 𝑞, 𝑘. Assumption 3(iii) is

a local identification condition for 𝜃
0
. If this assumption

fails, the resulting estimator 𝛼̂
𝑛
may not be √𝑛-consistent.

Assumption 3(iv) imposes some local smoothness conditions
on the penalty function 𝑃

𝜏
𝑛

(⋅). Intuitively, this condition
implies that attaching a penalty function to the empirical
likelihood criterion function does not cause any local
identification problem for the unknown parameter (𝜃

0
, 𝛽

0
).

It can be verified that the bridge, adaptive Lasso, and SCAD
penalty functions satisfy Assumption 3(iv).

Theorem 4. Under Assumptions 1, 2, and 3, as 𝑛 → ∞

and with probability tending to 1, the EL shrinkage estimator
defined in (8) satisfies

(a) 𝛼̂
𝑛

→ 𝛼
0
and

(b) ‖𝛼̂
𝑛
− 𝛼

0
‖ = 𝑂

𝑝
(𝛿
𝑛
),

where 𝛿
𝑛
= max{𝑏

𝑛
, 𝑛

−1/2
} and 𝑏

𝑛
= max

𝑗∈S
𝛽

|𝑃
󸀠

𝜏
𝑛

(𝛽
0,𝑗

)|.

It is clear from Theorem 4 that, by choosing a proper 𝜏
𝑛
,

there exists a consistent EL shrinkage estimator 𝛼̂
𝑛
whose

convergence rate is of the order 𝛿
𝑛
. We now show that this

estimator must possess the sparsity property 𝛽
S
𝑛,𝑗

= 0 for all
𝑗 ∈ S𝑐

𝛽
, which is stated inTheorem 6.

Assumption 5. (i) The tuning parameter 𝜏
𝑛
satisfies

√𝑛max
𝑗∈S
𝛽

󵄨󵄨󵄨󵄨󵄨
𝑃
󸀠

𝜏
𝑛

(𝛽
0,𝑗

)
󵄨󵄨󵄨󵄨󵄨
= 𝑜

𝑝
(1) ; (15)

(ii) for any 𝑗 ∈ S𝑐

𝛽
and any random sequence {𝛽

𝑗,𝑛
}
𝑛
with

𝛽
𝑗,𝑛

̸= 0 a.e. for all 𝑛 and 𝛽
𝑗,𝑛

= 𝑂
𝑝
(𝑛
−1/2

), there is

lim inf
𝑛→∞

[

[

󵄨󵄨󵄨󵄨󵄨
𝑃
󸀠

𝜏
𝑛

(𝛽
𝑗,𝑛

)
󵄨󵄨󵄨󵄨󵄨

𝑟
𝑛
𝜏
𝑛

]

]

> 0 a.e., (16)

where 𝑟
𝑛
is some nonnegative sequence such that 𝑛1/2𝜏

𝑛
𝑟
𝑛

→

∞.

Assumption 5(i) indicates that the convergence rate of
|𝑃

󸀠

𝜏
𝑛

(𝛽
0,𝑗

)| for all 𝑗 ∈ S
𝛽
is faster than √𝑛. Under this

assumption, Theorem 4 implies that

√𝑛 (𝛼̂
𝑛
− 𝛼

0
) = 𝑂

𝑝
(1) ; (17)

that is, the convergence rate of 𝛼̂
𝑛
is √𝑛. Assumption 5(ii)

is a generalized version of condition (3.5) in Fan and Li
[8]. Intuitively, Assumption 5(ii) implies that the shrinkage
estimator 𝛽

𝑛,𝑗
of 𝛽

0,𝑗
𝑗 ∈ S𝑐

𝛽
is the minimizer of 𝑃

𝜏
𝑛

(⋅) w.p.a.1.
From Assumptions 2(iv) and 3(iv), we know that 𝑃

𝜏
𝑛

(⋅) is
locally minimized at 0. Hence, Assumption 5(ii) is the key
condition needed for showing consistent moment selection.
It can be verified that the bridge, adaptive Lasso, and SCAD
penalty functions satisfy Assumption 5.

Theorem 6. Under Assumptions 1, 2, 3, and 5, one has

lim
𝑛→∞

Pr (𝛽
𝑛,𝑗

= 0) = 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑗 ∈ S
𝑐

𝛽
. (18)

From the consistency of𝛽
𝑛
andTheorem 6, we can imme-

diately get

lim
𝑛→∞

Pr (S
𝛽
= S

𝛽,𝑛
) = 1, (19)

that is, the consistent moment selection. We next provide the
conditions needed for deriving the limiting distribution of the
EL shrinkage estimator.

Assumption 7. (i) There exists a symmetric, nonrandom, and
positive definite matrix 𝑊

0
such that

𝑊
𝑛
󳨀→

𝑝
𝑊
0
; (20)

(ii) the following central limit theorem (CLT) holds:

𝑛
−1/2

𝑛

∑

𝑖=1

{𝑔
𝑞+𝑘

(𝑍
𝑖
, 𝜃

0
) − 𝐸 [𝑔

𝑞+𝑘
(𝑍

𝑖
, 𝜃

0
)]} 󳨀→

𝑑
Ψ (𝜃

0
) , (21)

where Ψ(𝜃
0
) is some Gaussian random vector.

Assumption 7(i) is a regularity condition. Assumption
7(ii) can be verified by applying CLTs in models with specific
moment functions and data structure.
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Next we will consider the oracle properties of the EL
shrinkage estimation. The oracle properties state that the EL
shrinkage estimation can consistently identify all potentially
valid moment conditions in set-2 and its estimator of 𝜃

0
is as

efficient as the oracle EL estimator based on all valid moment
conditions. As the consistent moment selection is directly
implied by Theorems 4 and 6, the oracle properties follow if
we can show that the asymptotic variance-covariance matrix
of 𝛽

𝑛
coincides with that of the oracle EL estimator.

Let 𝑔
𝑑
𝛽−

(𝑍, 𝜃) and 𝑔
𝑑
𝛽+

(𝑍, 𝜃) denote the potentially valid
andmisspecifiedmoment functions in set-2, respectively. We
define

𝑔
𝑞+𝑑
𝛽−

(𝑍, 𝜃) ≡ (
𝑔
𝑞
(𝑍, 𝜃)

𝑔
𝑑
𝛽−

(𝑍, 𝜃)
) . (22)

If we had prior information about the validity of the moment
conditions in set-2, then there would be 𝑞 + 𝑘

0
moment

conditions to estimate 𝜃
0
. We can stack these moment

conditions as

𝑚
𝑒
(𝜃

0
) = 𝐸 [𝑔

𝑞+𝑑
𝛽−

(𝑍, 𝜃
0
)] = 0. (23)

From the moment conditions in (23), we can compute
the asymptotic variance-covariance matrix of the optimally
oracle EL estimator as

Σ
∗

= ([
𝜕𝑚

𝑒
(𝜃)

𝜕𝜃
󸀠

0

]

𝑇

𝑉
−1

𝑒,𝑜
[
𝜕𝑚

𝑒
(𝜃)

𝜕𝜃
󸀠

0

])

−1

, (24)

where 𝑉
𝑒,𝑜

is the leading (𝑞 + 𝑘
0
) × (𝑞 + 𝑘

0
) submatrix of

𝐸[Ψ(𝜃
0
)Ψ

𝑇
(𝜃
0
)].

In the EL shrinkage estimation, if we choose a weight
matrix 𝑊

∗

𝑛
such that

𝑊
∗

𝑛
󳨀→

𝑝
𝑊
0
= {𝐸 [Ψ (𝜃

0
) Ψ

𝑇
(𝜃

0
)]}

−1

, (25)

then an interesting question is whether the resulting empir-
ical likelihood (EL) shrinkage estimator 𝜃

𝑛
of 𝜃

0
could be as

efficient as the optimally weighted oracle EL estimator. The
answer to the above question is affirmative, as illustrated in
the following theorem.

Theorem 8 (Oracle Property). Under Assumptions 1–5, one
has

lim
𝑛→∞

Pr (S
𝛽
= S

𝛽,𝑛
) = 1. (26)

Furthermore, if the weight matrix 𝑊
𝑛
satisfies (25) and

Assumption 7 holds, then one has

√𝑛 (𝜃
S
𝑛

− 𝜃
0
) 󳨀→

𝑑
𝑁(0, Σ

∗
) , (27)

where Σ
∗ is defined in (24).

The empirical likelihood method is capable of find-
ing estimators, constructing confidence regions, and test-
ing hypotheses. The following theorem, a generalization of
the Wilks theorem, allows us to carry out inference for
parameters included in the model without estimating their
estimators’ covariance for our proposed method.

Theorem 9. Suppose Assumptions 1–7 hold. The empirical
likelihood ratio statistic for testing 𝐻

0
: 𝜃 = 𝜃

0
is

𝑊
𝐸
(𝜃

0
) = 2ℓ

𝐸
(𝜃

0
) − 2ℓ

𝐸
(𝜃

S
𝑛
) , (28)

where ℓ
𝐸
(𝜃) is given by ℓ

𝐸
(𝜃) = ∑

𝑛

𝑖=1
log[1 + 𝜆

𝑇
𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃)].

Under Assumptions 1–7,𝑊
𝐸
(𝜃
0
) → 𝜒

2

𝑝
as 𝑛 → ∞, where𝐻

0

is true.

Theorem 9 allows us to use the EL ratio statistic for
testing or obtaining confidence limits for parameters in a
completely analogous way to that for parametric likelihood.
The asymptotic confidence region of level 1 − 𝛿 for 𝜃

0
is

{𝜃
0
| 𝑊

𝐸
(𝜃

0
) ≤ 𝜒

2

𝑝
(𝛿)} , (29)

where 𝜒
2

𝑝
(𝛿) is the (1 − 𝛿) quantile of the chi-square distri-

bution with 𝑝 degrees of freedom.

4. Adaptive Selection of Tuning Parameter

From the results of the previous sections, we see that the
tuning parameter 𝜆

𝑛
plays an important role in deriving the

oracle properties of the EL shrinkage estimator. Assumptions
2(iv), 3(iv), and 5(i)-(ii) are sufficient conditions imposed
on 𝜆

𝑛
for the oracle properties to hold. However, these

conditions do not provide a straightforward mechanism for
choosing the tuning parameter 𝜆

𝑛
in finite samples. For

practical implementation of the shrinkage techniques, it is
important to have some procedures of selecting 𝜆

𝑛
such that

the EL shrinkage estimator not only enjoys the oracle proper-
ties asymptotically but also has good finite-sample properties.

To choose the penalty parameter 𝜆, some data-driven
approaches for selecting tuning parameters need to be pro-
posed. In the following, we will propose empirical likeli-
hood based AIC-type criterion (EmAIC), BIC-type crite-
rion (EmBIC), and Hannan-Quinn information criterion-
(HQIC-) type criterion (EmHQIC).They are defined, respec-
tively, as

EmAIC (𝜆) = GEL
𝑛
(𝜆) − 2

󵄨󵄨󵄨󵄨󵄨
S
𝑐

𝛽,𝜆

󵄨󵄨󵄨󵄨󵄨
, (30)

EmBIC (𝜆) = GEL
𝑛
(𝜆) − {log (𝑛)}

󵄨󵄨󵄨󵄨󵄨
S
𝑐

𝛽,𝜆

󵄨󵄨󵄨󵄨󵄨
, (31)

EmHQIC (𝜆) = GEL
𝑛
(𝜆) − 𝑄 {log log (𝑛)}

󵄨󵄨󵄨󵄨󵄨
S
𝑐

𝛽,𝜆

󵄨󵄨󵄨󵄨󵄨
, (32)

where S
𝛽,𝜆

is the index set of nonzero elements in 𝛽
𝜆,𝑛
,

S𝑐

𝛽,𝜆
is the complement set of S

𝛽,𝜆
, and |S𝑐

𝛽,𝜆
| denotes the

cardinality of the index set of S𝑐

𝛽,𝜆
and it stands for the

number of moment conditions selected by the EL shrinkage
method given 𝜆, 𝑄 > 2. GEL

𝑛
(𝜆) is the generalized empirical

likelihood (GEL) statistic proposed inHong et al. [9], which is
defined as GEL

𝑛
(𝜆) = −2min

𝛼S
𝛽,𝜆

max
𝜋
∑
𝑛

𝑖=1
][𝜋󸀠𝜌(𝑍

𝑖
, 𝛼S
𝛽,𝜆

)],
where ](⋅) is some concave function and its domain contains
0, 𝜋 is some 𝑞 + 𝑘 dimensional vector, and 𝛼S

𝛽,𝜆

= (𝜃, 𝛽S
𝛽,𝜆

, 0)

is transferred from 𝛼 by setting the elements of𝛽whose index
belongs to S𝑐

𝛽,𝜆
to be zero.
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5. Numerical Studies

In this section, we first carry out simulations to demonstrate
the performance of our method for finite data sets. We then
apply our method to one real dataset. We compare our pro-
posed method with the adaptive EL shrinkage method and
the GMM shrinkage method. We find that both the adaptive
EL and GMM shrinkage methods can consistently select
the correct moment conditions in set-2 and automatically
include them into the estimation to improve the efficiency of
estimating 𝜃

0
. However, the adaptive EL shrinkage is more

efficient relative to the adaptive GMM estimators because of
the advantages of EL relative to GMM.

5.1. Simulation Example

Example 1. In this simulation study, the data are generated
from the following linear model:

𝑌
𝑖
= 𝜃

10
+ 𝜃

20
𝑋
𝑖
+ 𝑢

𝑖
, (33)

where

𝑢
𝑖
∼ 𝑁(0, 𝜎

2

𝑢
) , 𝑋

𝑖
∼ 𝑁(0, 𝜎

2

𝑥
) ,

𝐸 [𝑋
𝑖
𝑢
𝑖
] ̸= 0,

(34)

for all 𝑖. The available IVs are (𝑍
1,𝑖

, 𝑍
2,𝑖

), where 𝑍
1,𝑖
is a scale

random variable and 𝑍
2,𝑖

= (𝑍
21,𝑖

, 𝑍
22,𝑖

) is a random vector.
There are two elements in 𝑍

21,𝑖
which denote the potentially

valid IVs and there are eight elements in 𝑍
22,𝑖

which are
misspecified IVs.

In (33), we take (𝜃
10
, 𝜃

20
) = (0.8, 0.8). The random vari-

ables 𝑋
𝑖
, 𝑍

1,𝑖
, 𝑍

21,𝑖
, 𝑍

∗

22,𝑖
, and 𝑢

𝑖
are generated from the

following joint normal distribution:

(𝑋
𝑖
, 𝑍

1,𝑖
, 𝑍

21,𝑖
, 𝑢

𝑖
, 𝑍

∗

22,𝑖
)
󸀠

∼ 𝑁 (0, Σ) , (35)

where the diagonal elements of Σ are 1, 𝐸(𝑋
𝑖
𝑍
1,𝑖

) = 𝜎
𝑧1𝑥

,

𝐸(𝑋
𝑖
𝑍
21,𝑖

) = (𝜎
𝑧
2
𝑥
, 𝜎

𝑧
2
𝑥
), 𝐸(𝑋

𝑖
𝑢
𝑖
) = 0.4, and all other

elements in Σ are zero. 𝑍
22,𝑖

is generated by the following
equation:

𝑍
22,𝑖

= 𝑍
∗

22,𝑖
+ 0.5𝑢

𝑖
∗ 𝑙, (36)

where 𝑙 is a 1 × 8 vector of ones. The correlation 𝜎
𝑧
𝑗
𝑥
of 𝑋

𝑖

and 𝑍
𝑗,𝑖

(𝑗 = 1, 2) measures the signal strength of the IV 𝑍
𝑗,𝑖

about the endogenous variable 𝑋
𝑖
. There is one specification

of (𝜎
𝑧
1
𝑥
, 𝜎

𝑧
2
𝑥
) used in the simulation; that is, (𝜎

𝑧
1
𝑥
, 𝜎

𝑧
2
𝑥
) =

(0.4, 0.4).
We assume the econometrician knows that 𝑍

1,𝑖
is a valid

IV, while being unsure about validity of the IVs in𝑍
2,𝑖
. Hence,

the moment conditions in set-1 are

𝐸 [(𝑌
𝑖
− 𝜃

10
− 𝜃

20
𝑋
𝑖
)] = 0,

𝐸 [(𝑌
𝑖
− 𝜃

10
− 𝜃

20
𝑋
𝑖
) 𝑍

1,𝑖
] = 0,

(37)

while the moment conditions in set-2 are

𝐸 [(𝑌
𝑖
− 𝜃

10
− 𝜃

20
𝑋
𝑖
) 𝑍

󸀠

2,𝑖
]
?

= 0. (38)

Table 1: The selection probabilities of adaptive EL shrinkage
estimation.

The selection
probabilities Case The correct Underselected Overselected

P-LA 𝑛 = 100 0.46 0.53 0.01
𝑛 = 500 0.64 0.36 0.00

P-LB 𝑛 = 100 0.61 0.30 0.09
𝑛 = 500 0.89 0.11 0.00

1.P-LA and P-LB contain the selection probabilities of the correct, underse-
lected, and overselected sets of moment conditions in EL (GMM) shrinkage
estimation using the tuning parameters from EmAIC (GMM-AIC) and
EmBIC (GMM-BIC), respectively.

Table 2: The selection probabilities of adaptive GMM shrinkage
estimation.

The selection
probabilities Case The correct Underselected Overselected

P-LA 𝑛 = 100 0.44 0.55 0.01
𝑛 = 500 0.62 0.38 0.00

P-LB 𝑛 = 100 0.58 0.31 0.11
𝑛 = 500 0.86 0.14 0.00

1.P-LA and P-LB contain the selection probabilities of the correct, underse-
lected, and overselected sets of moment conditions in EL (GMM) shrinkage
estimation using the tuning parameters from EmAIC (GMM-AIC) and
EmBIC (GMM-BIC), respectively.

The SCAD penalty is used in the empirical likelihood
shrinkage estimation, where the first-step estimators of the
moment selection coefficients are from the empirical likeli-
hood estimation using themoment conditions in (37) and the
reparametrized moment conditions in (38).

For the specification of (𝜎
𝑧
1
𝑥
, 𝜎

𝑧
2
𝑥
), we use the simulated

samples with sample sizes 𝑛 = 100 and 𝑛 = 500,
respectively, in our simulation study, and for each sample size,
2000 simulated samples are drawn from the data generating
mechanism. With each simulated sample, we calculate four
different types of estimators, which include the oracle esti-
mator, empirical likelihood estimator, empirical likelihood
shrinkage estimator using 𝜆

𝑛
selected by EmAIC, and EL

shrinkage estimator using 𝜆
𝑛
selected by EmBIC. The oracle

estimator is an EL estimator based on themoment conditions
in set-1 and all valid moment conditions in set-2. The EL
estimator is an EL estimator based only on the moment
conditions in the set-1. Given the specification of (𝜎

𝑧
1
𝑥
, 𝜎

𝑧
2
𝑥
)

and the sample size 𝑛, we can get 2000 estimators of (𝜃
1,0

, 𝜃
2,0

)

for each type of estimator using the 2000 simulated samples.
Hence, we can estimate the finite samplemarginal densities of
different estimators for (𝜃

1,0
, 𝜃

2,0
) and the simulation results

are presented in Figures 1 and 2. Tables 1 and 2 contain the
selection probabilities of the correct, underselected, and over-
selected sets of moment conditions in EL (GMM) shrinkage
estimation using the tuning parameters fromEmAIC (GMM-
AIC) and EmBIC (GMM-BIC), respectively.

There are several remarks we can make based on the
simulation results presented in Figures 1 and 2. First, when
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Figure 1: Finite sample densities of EL and EL shrinkage estimators for 𝜃
2,0

in the cases of example (1). The SCAD penalty is used in the
EL shrinkage estimation and the first-step estimators of moment selection coefficients are the EL estimators; (2) oracle estimators are the EL
estimators using themoment conditions in set-1 and all correctmoment conditions in set-2; (3) EL estimators only use themoment conditions
in set-1; (4) SEL-A refers to the EL shrinkage estimators using tuning parameters selected by minimizing EmAIC; (5) SEL-B refers to the EL
shrinkage estimators using tuning parameters selected by minimizing EmBIC.
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Figure 2: Finite sample densities of EL and EL shrinkage estimators for 𝜃
1,0

in the cases of example (1). The SCAD penalty is used in the
EL shrinkage estimation and the first-step estimators of moment selection coefficients are the EL estimators; (2) oracle estimators are the EL
estimators using themoment conditions in set-1 and all correctmoment conditions in set-2; (3) EL estimators only use themoment conditions
in set-1; (4) SEL-A refers to the EL shrinkage estimators using tuning parameters selected by minimizing EmAIC; (5) SEL-B refers to the EL
shrinkage estimators using tuning parameters selected by minimizing EmBIC.
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Table 3: EL and GMM shrinkage estimators of the moment selection coefficients1.

Method IV edu edu2 edu 𝑓 Age edu ∗ age 𝜔
∗

𝑖,𝑡
𝜔
𝑖,𝑡

𝛽
0

𝛽
1,0

𝛽
2,0

𝛽
3,0

𝛽
4,0

𝛽
5,0

𝛽
6,0

𝛽
7,0

ada-EL

EL2 −0.0016 −0.0145 −0.0022 0.0049 −0.0123 −0.0008 −0.0441
(0.0071) (0.0518) (0.0057) (0.1145) (0.4698) (0.0074) (0.0996)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0306

SEL2,4 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0097)
EL3 −0.0030 0.0251 −0.0023 0.0357 0.0385 −0.0015 0.0496

(0.0094) (0.0553) (0.0065) (0.2165) (0.6342) (0.0091) (0.1143)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0273

SEL3,5 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0081)

ada-GMM

GMM2
−0.0019 −0.0145 −0.0021 0.0048 −0.0123 −0.0007 −0.0442
(0.0073) (0.0518) (0.0057) (0.1145) (0.4696) (0.0071) (0.0995)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0306

SGMM2,4 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0097)
GMM3

−0.0034 0.0253 −0.0025 0.0357 0.0382 −0.0018 0.0496
(0.0095) (0.0558) (0.0063) (0.2166) (0.6348) (0.0094) (0.1142)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0273

SGMM3,5 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0076)
For detailed instructions see Remark 3.

the signal strength of the moment conditions in set-1 is
𝐸[𝑋

𝑖
𝑍
1,𝑖

] = 0.4, the EL shrinkage method selects all
valid moment conditions in set-2 with high probability and
selects the overselected sets of moment conditions with low
probability. Second, when the sample size 𝑛 is increased
from 100 to 500, the probability of selecting the set of
valid moment conditions in set-2 increases greatly and the
probability of selecting the overselected or underselected sets
ofmoment conditions decreases sharply.Third, if we compare
the EL shrinkage estimators based on different data-driven
procedures of selecting the tuning parameter, we see that
the EL shrinkage estimation using the tuning parameters
from EmAIC has lower probability of selecting inconsistent
sets of moment conditions. But it has nontrivial probability
of selecting underselected sets of moment conditions, even
when the sample size is increased from 100 to 500. On
the other hand, the EL shrinkage estimation using the
tuning parameters from EmBIC has lower probability of
selecting the overselected sets of moment conditions and
higher probability of selecting the set of correct moment
conditions, but its probability of selecting the overselected
sets of moment conditions is higher. Fourth, the finite sample
densities of the EL shrinkage estimators behave much better
than those of the EL estimators in all scenarios of this
simulation study. Comparing the EL shrinkage estimator
with the EL estimator, the most obvious improvement is the
reduction of the variance, as we can see from the finite sample
densities depicted in Figures 1 and 2. Also note that when
the sample size is increased, the finite sample densities of
the EL shrinkage estimators are approaching those of the
oracle EL estimators. Finally, when the moment conditions
in (37) are 𝐸[𝑋

𝑖
𝑍
1,𝑖

] = 0.4, the densities of the EL shrinkage
estimators 𝜃

1,𝑛
of 𝜃

1,0
are almost the same as those of the

oracle estimators and the EL estimators. This is because the

moment conditions in set-2 only contain the information
about 𝜃

2,0
. Hence, when 𝜃

2,0
could be reliably estimated

using the set-1 moment conditions, the extra valid moment
conditions in set-2 do not help to reduce the variances of the
estimators of 𝜃

1,0
.

5.2. Real Data Example

Example 2. We apply the EL shrinkage method to study the
following labor supply equation in the life-cycle labor supply
model [6, 10, 11]:

Δ log (ℎ
𝑖,𝑡
) = 𝛼

𝑡
+ Δ log (𝜔

𝑖,𝑡
) 𝛿

0
+ 𝜀

𝑖,𝑡
, (39)

where ℎ
𝑖,𝑡
is the annual hours working for money, 𝜔

𝑖,𝑡
is the

hourlywage rate of individual 𝑖 at period 𝑡,𝛼
𝑡
is a time varying

constant, 𝜀
𝑖,𝑡
is the time varying error term, and 𝛿

0
measures

the intertemporal substitution elasticity of labor supply with
respect to the evolutionary wage changes and the theoretical
prediction for its sign is positive.

Due to the measurement errors in 𝜔
𝑖,𝑡
, the OLS estimator

of (39) may be inconsistent. MaCurdy [10] proposes to use
a set of family background variables to construct the set-1
moment conditions; we only use the parents’ economic status
as the credibly valid IV and include the rest of them into set-2.
We also include the alternative measure of wage 𝜔

∗

𝑖,𝑡
and the

wage 𝜔
𝑖,𝑡
itself into set-2. Our sample is constructed from the

Michigan Panel Study of Income Dynamics (PSID) dataset
from year 1970 to year 1981.

We next apply the EL shrinkage estimation to the labor
supply equation (39).The estimators of the moment selection
coefficients are included in Table 3. As a comparison, we
also include the EL estimators of the moment selection
coefficients in different specifications of 𝛼

𝑡
in Table 3. In the
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Table 4: EL and GMM shrinkage estimation of the labor supply equation1.

Method IV EL3 EL3 SEL4 SEL4 P-EL5 P-EL5

(1) (2) (3) (4) (5) (6)

Adaptive-EL

𝑎 −0.0157 −0.0226 −0.0117 −0.0226 −0.0165 −0.0187
(0.0253) (0.0238) (0.0052) (0.0196) (0.0195) (0.0191)

𝛿
0

0.3243 0.2685 0.0697 0.1832 0.1395 0.1726
(1.227) (1.145) (0.1469) (0.1923) (0.1455) (0.1397)

𝑑
𝑡
?
2 No Yes No Yes No Yes

Adaptive-GMM

𝑎 −0.0157 −0.0223 −0.0116 −0.0228 −0.0165 −0.0192
(0.025) (0.0238) (0.0049) (0.0199) (0.0196) (0.0191)

𝛿
0

0.3240 0.2679 0.0697 0.1827 0.1398 0.1721
(1.223) (1.141) (0.1469) (0.1918) (0.1455) (0.1393)

𝑑
𝑡
?
2 No Yes No Yes No Yes

For detailed instructions see Remark 4.

first two rows of Table 3, the constant term𝛼
𝑡
in (39) is treated

to be time variant, while in its last two rows, 𝛼
𝑡
is taken to be

a time invariant constant. From Table 3, we see that the EL
estimators of the moment selection coefficients are nonzero
and it is hard to determine which moment conditions are
valid (misspecified) based on these estimators. On the other
hand, the EL shrinkage estimation gives the same moment
selection result in the different specifications of 𝛼

𝑡
. The

moment conditions constructed from the IVs by MaCurdy
[10] and Altonji [11] are picked up by our shrinkage method,
while the moment condition constructed using the imputed
wage 𝜔

𝑖,𝑡
is not selected, which implies that Δ log(𝜔

𝑖,𝑡
) is an

endogenous variable in the labor supply equation (39).
The results of the EL shrinkage estimation of the labor

supply equation (39) are contained in Table 4. As a compar-
ison, we also include the EL estimators of 𝛿

0
based on the

moment condition in set-1 and the postmoment selection
EL (PEL) estimators of 𝛿

0
in Table 4. Columns (1)-(2) of

Table 4 present the EL estimators of 𝛿
0
based on the following

IV: parent’s economic status when individual was young,
which provides the moment condition in set-1. Compared
with other estimators inTable 4, the EL estimators in columns
(1)-(2) are larger in magnitude and have larger standard
errors. On the other hand, the EL shrinkage estimators in
columns (3)-(4) have much smaller standard errors, because
some moment conditions in set-2 are selected and automati-
cally included into estimation by the EL shrinkage method.

From Table 4, we see that, compared with the EL esti-
mators, the EL shrinkage estimators of 𝛽

7,0
are closer to

zero, which implies that part of the information in the
moment condition constructed by 𝜔

𝑖,𝑡
is indeed used in the

EL shrinkage estimation. Based on the above reasoning, we
can deduce that the shrinkage effect of the penalty function
on the estimators of 𝛽

7,0
may introduce some bias to the

estimator of 𝛿
0
. To get rid of this bias, we conduct another

EL estimation based on the moment condition in set-1 and
the moment conditions in set-2 selected by our method.
These PEL estimators are included in columns (5)-(6) of
Table 4. We can see that the PEL estimators are slightly larger
in magnitude than the EL shrinkage estimators and their
standard errors are almost the same.

Remark 3. We now give detailed instructions about some
marks in Table 3.

(1) Standard errors are in parentheses and 𝑛 = 3487.
(2) EL (GMM) estimation with the time dummy vari-

ables.
(3) EL (GMM) estimation without time dummy vari-

ables.
(4) EL (GMM) shrinkage estimation with time dummy

variables, where the penalty function is the SCAD
and the tuning parameter equals 0.000374 (selected
by EmAIC (GMM-AIC), EmBIC (GMM-BIC), and
EmHQIC (GMM-HQ)).

(5) EL (GMM) shrinkage estimation without time dum-
my variables, where the penalty function is the SCAD
and the tuning parameters equals 0.000948 (selected
by EmAIC (GMM-AIC), EmBIC (GMM-BIC), and
EmHQIC (GMM-HQ)).

Remark 4. We now give detailed instructions about some
marks in Table 4.

(1) Standard errors are in parentheses and sample size 𝑛 =

3487.
(2) 𝑑

𝑡
refers to the set of time dummy variables for the

years from 1971 to 1981.
(3) EL (GMM) is the EL (GMM) estimation only using

the moment conditions in set-1.
(4) SEL (SGMM) denotes the EL (GMM) shrinkage esti-

mation based on the SCAD penalty. In column (3)
the tuning parameter equals 0.000949 and in column
(4) the tuning parameter equals 0.000374. EmAIC
(GMM-AIC), EmBIC (GMM-BIC), and EmHQIC
(GMM-HQ) produce the same number of the tuning
parameter in each case.

(5) PEL (P-GMM) denotes the EL (GMM) estimation
based on the moment conditions selected by the EL
(GMM) shrinkage estimation.The results in columns
(5) and (6) are based on the moment conditions
selected in (3) and (4), respectively.
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Appendix

Proofs. We first introduce some notations and definitions.
Let ℓ(𝜃, 𝛽, 𝜆) = 𝑛

−1
∑
𝑛

𝑖=1
log{1 + 𝜆

𝑇
𝜌(𝑍

𝑖
, 𝜃, 𝛽)} and 𝜌(𝜃) =

𝑛
−1

∑
𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝜃, 𝛽). Let V

𝑛
(𝑔) = (1/√𝑛)∑

𝑛

𝑖=1
[𝑔(𝑍

𝑖
) −

𝐸[𝑔(𝑍
𝑖
)]] denote the empirical process indexed by some

function 𝑔. Suppose that {𝑋
𝑛
} is a sequence of random

vectors; then for a given sequence of nonnegative constants
𝛿
𝑛
, we write𝑋

𝑛
= 𝑂

𝑝
(𝛿
𝑛
) tomean that, for any constant 𝜀 > 0,

there is a finite constant 𝐶
𝜀
such that Pr(‖𝑋

𝑛
‖ > 𝐶

𝜀
𝛿
𝑛
) < 𝜀

eventually; we write 𝑋
𝑛

= 𝑜
𝑝
(𝛿
𝑛
) to mean that, for any

constants 𝜀
1
, 𝜀
2
> 0, there is Pr(‖𝑋

𝑛
‖ > 𝜀

1
𝛿
𝑛
) < 𝜀

2
eventually.

In this appendix, we prove two lemmas which are useful
for deriving the asymptotic properties of the EL shrinkage
estimator. Define

𝑉
𝑛
(𝜃, 𝛽) ≡ [𝑛

−1

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃, 𝛽)]

𝑇

𝑊
𝑛
[𝑛

−1

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃, 𝛽)] ,

(A.1)

𝑉
0,𝑛

(𝜃, 𝛽) ≡ {𝐸[𝜌 (𝑍, 𝜃, 𝛽)]
𝑇

}𝑊
𝑛
{𝐸 [𝜌 (𝑍, 𝜃, 𝛽)]} , (A.2)

where 𝑊
𝑛
= (1/2𝑛)∑

𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝜃, 𝛽)𝜌

𝑇
(𝑍

𝑖
, 𝜃, 𝛽).

Lemma 5. Under Assumption 1(iii), one has

1

2
𝑉
0,𝑛

(𝜃, 𝛽) − 𝑅
𝑛
≤ 𝑉

𝑛
(𝜃, 𝛽) ≤ 2𝑉

0,𝑛
(𝜃, 𝛽) + 2𝑅

𝑛
(A.3)

for all (𝜃, 𝛽) ∈ Θ × B, where

𝑅
𝑛
≡ sup

(𝜃,𝛽)∈Θ×B

𝑛
−1

{V
𝑛
[𝜌 (𝑍, 𝜃, 𝛽)]}

𝑇

𝑊
𝑛
{V
𝑛
[𝜌 (𝑍, 𝜃, 𝛽)]} .

(A.4)

Proof. By Assumption 2(iii), we deduce that

[
2∑

𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝜃, 𝛽)

𝑛
− 𝐸 [𝜌(𝑍, 𝜃, 𝛽)]]

𝑇

× 𝑊
𝑛
[
2∑

𝑛

𝑖=1
𝜌 (𝑍

𝑖
, 𝜃, 𝛽)

𝑛
− 𝐸 [𝜌 (𝑍, 𝜃, 𝛽)]] ≥ 0,

(A.5)

for all (𝜃, 𝛽) ∈ Θ × B, which implies that

[𝑛
−1

𝑛

∑

𝑖=1

𝜌(𝑍
𝑖
, 𝜃, 𝛽)]

𝑇

𝑊
𝑛
[𝑛

−1

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃, 𝛽)]

≥
1

2
𝑉
0,𝑛

(𝜃, 𝛽) − 𝑅
𝑛
.

(A.6)

Note that Assumption 2(iii) also implies

[
∑
𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝜃, 𝛽)

𝑛
− 2𝐸 [𝜌(𝑍, 𝜃, 𝛽)]]

𝑇

×𝑊
𝑛
[
∑
𝑛

𝑖=1
𝜌 (𝑍

𝑖
, 𝜃, 𝛽)

𝑛
− 2𝐸 [𝜌 (𝑍, 𝜃, 𝛽)]] ≥ 0

(A.7)

for all (𝜃, 𝛽) ∈ Θ × B, which implies that

[𝑛
−1

𝑛

∑

𝑖=1

𝜌(𝑍
𝑖
, 𝜃, 𝛽)]

𝑇

𝑊
𝑛
[𝑛

−1

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃, 𝛽)]

≥ 2𝑉
0,𝑛

(𝜃, 𝛽) + 2𝑅
𝑛
.

(A.8)

From the inequalities in (A.6) and (A.8), we immediately get
the claimed results in (A.3).

Lemma 6. Under Assumptions 2(iii) and 3(ii)-(iii), one has

[𝑐
1
+ 𝑜 (1)]

󵄩󵄩󵄩󵄩𝛼 − 𝛼
0

󵄩󵄩󵄩󵄩

2

≤ 𝑉
0,𝑛

(𝜃, 𝛽)

≤ [𝑐
2
+ 𝑜 (1)]

󵄩󵄩󵄩󵄩𝛼 − 𝛼
0

󵄩󵄩󵄩󵄩

2

,

(A.9)

for all 𝛼 in shrinking neighborhoods of 𝛼
0
, where 𝑐

1
, 𝑐

2
are

generic positive finite constants.

Proof. Denote

𝑔
𝑞
(𝑍, 𝜃) = [𝑔

𝑞,1
(𝑍, 𝜃) , . . . , 𝑔

𝑞,𝑞
(𝑍, 𝜃)] ,

𝑔
𝑘
(𝑍, 𝜃) = [𝑔

𝑘,1
(𝑍, 𝜃) , . . . , 𝑔

𝑘,𝑘
(𝑍, 𝜃)] .

(A.10)

First note that by Assumption 3(ii)

𝑚(𝛼) = (
𝐺
𝑞
(𝜃)

𝐺
𝑘
(𝜃) − 𝛽

) = (

𝜕𝐺
𝑞
(𝜃)

𝜕𝜃𝑇
0

𝜕𝐺
𝑘
(𝜃)

𝜕𝜃𝑇
−𝐼

𝑘

)(
𝜃 − 𝜃

0

𝛽 − 𝛽
0

)

≡

𝜕𝑚
𝑒
(𝜃)

𝜕𝛼𝑇
(
𝜃 − 𝜃

0

𝛽 − 𝛽
0

) ,

(A.11)

where

𝜕𝐺
𝑞
(𝜃)

𝜕𝜃𝑇
= [

[

(

𝜕𝐸[𝑔
𝑞,1

(𝑍, 𝜃
1
)]

𝜕𝜃𝑇
)

𝑇

, . . . ,

(

𝜕𝐸 [𝑔
𝑞,𝑞

(𝑍, 𝜃
1
)]

𝜕𝜃𝑇
)

𝑇

]

]

,

𝜕𝐺
𝑘
(𝜃)

𝜕𝜃𝑇
= [

[

(
𝜕𝐸[𝑔

𝑘,1
(𝑍, 𝜃

1
)]

𝜕𝜃𝑇
)

𝑇

, . . . ,

(
𝜕𝐸[𝑔

𝑘,𝑘
(𝑍, 𝜃

1
)]

𝜕𝜃𝑇
)

𝑇

]

]

,

(A.12)

𝜃 (𝑗 = 1, . . . , 𝑞 + 𝑘) lies between 𝜃 and 𝜃
0
and 𝐼

𝑘
is 𝑘 × 𝑘

identity matrix. As 𝜃 is in the shrinking neighborhood of 𝜃
0

and 𝜕𝐺
𝑙
(𝜃)/𝜕𝜃

𝑇, (𝑙 = 𝑞, 𝑘) is continuous in 𝜃; we deduce that

𝜕𝐺
𝑙
(𝜃)

𝜕𝜃𝑇
=

𝜕𝐺
𝑙
(𝜃

0
)

𝜕𝜃𝑇
+ 𝑜 (1) for 𝑙 = 𝑞, 𝑘. (A.13)
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By (A.11), (A.13), and Cauchy-Schwarz inequality, we have

𝑚(𝛼) =
𝑚 (𝛼

0
)

𝜕𝛼𝑇
(𝛼 − 𝛼

0
) + 𝑜 (

󵄩󵄩󵄩󵄩𝛼 − 𝛼
0

󵄩󵄩󵄩󵄩) .
(A.14)

Using Assumption 2(iii), the result in (A.14), and Cauchy-
Schwarz inequality, we get

𝑉
0,𝑛

(𝜃, 𝛽) = (𝛼 − 𝛼
0
)
𝑇

[
𝑚(𝛼

0
)

𝜕𝛼𝑇
]

𝑇

𝑊
𝑛
[
𝑚 (𝛼

0
)

𝜕𝛼𝑇
] (𝛼 − 𝛼

0
)

+𝑜 (
󵄩󵄩󵄩󵄩𝛼 − 𝛼

0

󵄩󵄩󵄩󵄩

2

) .

(A.15)

As 𝜕𝐺
𝑞
(𝜃
0
)/𝜕𝜃

𝑇 has full column rank and is strictly pos-
itive definite, 𝑚(𝛼

0
)/𝜕𝛼

𝑇 has full rank and [𝑚(𝛼
0
)/𝜕𝛼

𝑇
]
𝑇

𝑊
𝑛
[𝑚(𝜃

0
)/𝜕𝛼

𝑇
] is strictly positive definite. Let 𝛾

1,𝑛
and

𝛾
2,𝑛

(𝛾
1,𝑛

, 𝛾
2,𝑛

> 0) denote the smallest and largest eigenvalues
of [𝑚(𝛼

0
)/𝜕𝛼

𝑇
]
𝑇

𝑊
𝑛
[𝑚(𝛼

0
)/𝜕𝛼

𝑇
]; then by Assumptions 2(iii)

and 3(iii), we have

0 < 𝑐
1
≤ 𝛾

1,𝑛
≤ 𝛾

2,𝑛
≤ 𝑐

2
< ∞ (A.16)

which together with (A.15) implies that

(𝛼 − 𝛼
0
)
𝑇

[
𝑚 (𝛼

0
)

𝜕𝛼𝑇
]

𝑇

𝑊
𝑛
[
𝑚 (𝛼

0
)

𝜕𝛼𝑇
]

× (𝛼 − 𝛼
0
) + 𝑜 (

󵄩󵄩󵄩󵄩𝛼 − 𝛼
0

󵄩󵄩󵄩󵄩

2

)

≤ 𝛾
2,𝑛

󵄩󵄩󵄩󵄩𝛼 − 𝛼
0

󵄩󵄩󵄩󵄩

2

+ 𝑜 (
󵄩󵄩󵄩󵄩𝛼 − 𝛼

0

󵄩󵄩󵄩󵄩

2

)

≤ [𝑐
2
+ 𝑜 (1)]

󵄩󵄩󵄩󵄩𝛼 − 𝛼
0

󵄩󵄩󵄩󵄩

2

.

(A.17)

The right inequality in (A.9) is implied by (A.17). The left
inequality in (A.9) can be similarly derived. This finishes the
proof.

Lemma 7. Under Assumption 1, for any 𝜉 with (1/𝜅+ 1/10) ≤

𝜉 ≤ 2/5 and as 𝑛 → ∞, max
1≤𝑖≤𝑛

sup
(𝜃,𝛽)∈Θ×B|𝜆

𝑇
𝜌(𝑍

𝑖
,

𝜃, 𝛽)| = 𝑜
𝑝
(1) for all 𝜆 ∈ Λ

𝑛
= {𝜆 : ‖𝜆‖ ≤ 𝑛

−𝜉
}, and

Λ
𝑛

⊆ Λ̂
𝑛
(𝜃) = {𝜆 : 𝜆

𝑇
𝜌(𝑍

𝑖
, 𝜃, 𝛽) > −1, 𝑖 = 1, . . . , 𝑛} for

all (𝜃, 𝛽) ∈ Θ × B.

Proof. Following Owen [12], Assumption 2(vi) implies that

max
1≤𝑖≤𝑛

sup
(𝜃,𝛽)∈Θ×B

󵄩󵄩󵄩󵄩𝜌 (𝑍
𝑖
, 𝜃, 𝛽)

󵄩󵄩󵄩󵄩 = 𝑜
𝑝
(𝑛

1/5
) ,

1

𝜅
+

1

10
≤ 𝜉,

max
1≤𝑖≤𝑛

sup
(𝜃,𝛽)∈Θ×B

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑇
𝜌 (𝑍

𝑖
, 𝜃, 𝛽)

󵄨󵄨󵄨󵄨󵄨

≤ 𝑛
−𝜉max
1≤𝑖≤𝑛

sup
(𝜃,𝛽)∈Θ×B

󵄨󵄨󵄨󵄨𝜌 (𝑍
𝑖
, 𝜃, 𝛽)

󵄨󵄨󵄨󵄨

= 𝑜
𝑝
(𝑛

−𝜉+1/𝜅
(𝑞 + 𝑘)

1/2

) .

(A.18)

Lemma8. Let ℓ(𝜃, 𝛽, 𝜆) = 𝑛
−1

∑
𝑛

𝑖=1
log{1+𝜆

𝑇
𝜌(𝑍

𝑖
, 𝜃, 𝛽)}; one

has

ℓ (𝜃, 𝛽, 𝜆) = [
1

√𝑛

𝑛

∑

𝑖=1

𝜌(𝑍
𝑖
, 𝜃, 𝛽)]

𝑇

× 𝑊
𝑛
[

1

√𝑛

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃, 𝛽)] + 𝑜

𝑝
(
1

𝑛
) ,

(A.19)

where 𝑊
𝑛
= (1/2𝑛)∑

𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝜃, 𝛽)𝜌

𝑇
(𝑍

𝑖
, 𝜃, 𝛽).

The detailed theoretical reasons of this lemma can be
found in Following Hjort et al. [13], so we neglect it here.

Proof of Theorem 4. (a) By the definition of 𝛼̂
𝑛
, one has

ℓ (𝜃
𝑛
, 𝛽

𝑛
, 𝜆) +

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
𝑛
) ≤ ℓ (𝜃

0
, 𝛽

0
, 𝜆) +

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
0,𝑗

) .

(A.20)

Applying Lemma 7, one can deduce that

𝑉
𝑛
(𝜃

𝑛
, 𝛽

𝑛
) +

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
𝑛
) + 𝑜

𝑝
(
1

𝑛
)

≤ 𝑉
𝑛
(𝜃

0
, 𝛽

0
) +

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
0,𝑗

) + 𝑜
𝑝
(
1

𝑛
) ;

(A.21)

that is,

𝑉
𝑛
(𝜃

𝑛
, 𝛽

𝑛
) +

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
𝑛
) ≤ 𝑉

𝑛
(𝜃

0
, 𝛽

0
) +

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
0,𝑗

) .

(A.22)

Applying Lemma 5 and Assumption 2(iv), one can deduce
from (A.1) that

𝑉
0,𝑛

(𝜃
𝑛
, 𝛽

𝑛
) ≤ 2

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
0,𝑗

) + 4𝑅
𝑛
, (A.23)

where 𝑅
𝑛
is defined in Lemma 5.

From Assumption 2(ii) and the definition of 𝜌(𝑍, 𝜃, 𝛽),
one gets

sup
(𝜃,𝛽)∈Θ×B

V
𝑛
[𝜌 (𝑍, 𝜃, 𝛽)]

√𝑛

= sup
𝜃∈Θ

𝑛
−1

𝑛

∑

𝑖=1

{𝑔
𝑞+𝑘

(𝑍
𝑖
, 𝜃) − 𝐸 [𝑔

𝑞+𝑘
(𝑍

𝑖
, 𝜃)]} = 𝑜

𝑝
(1) .

(A.24)

By the triangle inequality, ULLN in (A.24), and Assumptions
2(iii)-(iv), one has

𝑅
𝑛
= 𝑜

𝑝
(1) ,

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
0,𝑗

) = 𝑜
𝑝
(1) . (A.25)
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From Assumption 2(iii) and results in (A.23) and (A.25), one
can deduce that

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑞
(𝜃

𝑛
)
󵄩󵄩󵄩󵄩󵄩
= 𝑜

𝑝
(1) ,

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘
(𝜃

𝑛
) − 𝛽

𝑛

󵄩󵄩󵄩󵄩󵄩
= 𝑜

𝑝
(1) . (A.26)

Now, the first result in (A.26) and Assumption 1(i) imply
that 𝜃

𝑛
→

𝑝
𝜃
0
. From the second result in (A.26), the triangle

inequality, consistency of 𝜃
𝑛
, and Assumption 2(i), one has

𝑜
𝑝
(1) =

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘
(𝜃

𝑛
) − 𝛽

𝑛

󵄩󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘
(𝜃

𝑛
) − 𝐺

𝑘
(𝜃

0
)
󵄩󵄩󵄩󵄩󵄩
−

󵄩󵄩󵄩󵄩󵄩
𝛽
𝑛
− 𝛽

0

󵄩󵄩󵄩󵄩󵄩

=
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝛽
𝑛
− 𝛽

0

󵄩󵄩󵄩󵄩󵄩
+ 𝑜

𝑝
(1)

󵄨󵄨󵄨󵄨󵄨
,

(A.27)

which implies that 𝛽
𝑛
→

𝑝
𝛽
0
. So one gets the result that as

𝑛 → ∞ and with probability tending to 1, the EL shrinkage
estimator defined in (6) satisfies 𝛼̂

𝑛
→ 𝛼

0
.

(b) Using the inequalities in (A.3) and (A.22) and
Lemma 7, one gets

1

2
𝑉
0,𝑛

(𝜃
𝑛
, 𝛽

𝑛
) +

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
𝑛,𝑗

) ≤

𝑘

∑

𝑗=1

𝑝
𝜏
𝑛

(𝛽
0,𝑗

) + 2𝑅
𝑛
, (A.28)

where 𝑅
𝑛
is defined in Lemma 5. By Assumptions 2(iv) and

3(iv) and the inequality in (A.28), one has

𝑉
0,𝑛

(𝜃
𝑛
, 𝛽

𝑛
) + 2 ∑

𝑗∈S
𝛽

[𝑝
𝜏
𝑛

(𝛽
𝑛,𝑗

) − 𝑝
𝜏
𝑛

(𝛽
0,𝑗

)] ≤ 4𝑅
𝑛
. (A.29)

Next, by Assumption 3(iv), Taylor expansion, the triangle
inequality, and Cauchy-Schwarz inequality, one gets
󵄨󵄨󵄨󵄨󵄨
𝑝
𝜏
𝑛

(𝛽
0,𝑗

) − 𝑝
𝜏
𝑛

(𝛽
𝑛,𝑗

)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑗∈S
𝛽

[𝑝
󸀠

𝜏
𝑛

(𝛽
0,𝑗

) (𝛽
𝑛,𝑗

− 𝛽
0,𝑗

) +
1

2
𝑝
󸀠󸀠

𝜏
𝑛

(𝛽
𝑗
) (𝛽

𝑛,𝑗
− 𝛽

0,𝑗
)
2

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
𝑗∈S
𝛽

󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

𝜏
𝑛

(𝛽
0,𝑗

)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝛼̂𝑛 − 𝛼
0

󵄩󵄩󵄩󵄩

+ max
𝑗∈S
𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠󸀠

𝜏
𝑛

(𝛽
0,𝑗

)

2
+ 𝑜

𝑝
(1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝛼̂𝑛 − 𝛼
0

󵄩󵄩󵄩󵄩

2

,

(A.30)

where 𝛽
𝑗
lies between 𝛽

0,𝑗
and 𝛽

𝑛,𝑗
for 𝑗 ∈ S

𝛽
. From

Lemma 6, one obtains

𝑉
0,𝑛

(𝜃
𝑛
, 𝛽

𝑛
) ≥ [𝑐

1
+ 𝑜

𝑝
(1)]

󵄩󵄩󵄩󵄩𝛼̂𝑛 − 𝛼
0

󵄩󵄩󵄩󵄩

2

, (A.31)

where 𝑐
1

> 0 is a finite constant. The inequality in
(A.31), together with Assumption 3(iv), and the inequalities
in (A.29) and (A.30) imply that

[𝑐
1
+ 𝑜

𝑝
(1)]

󵄩󵄩󵄩󵄩𝛼̂𝑛 − 𝛼
0

󵄩󵄩󵄩󵄩

2

− 2max
𝑗∈S
𝛽

󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

𝜏
𝑛

(𝛽
0,𝑗

)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝛼̂𝑛 − 𝛼
0

󵄩󵄩󵄩󵄩 ≤ 4𝑅
𝑛
.

(A.32)

By Assumption 3(i), one has 𝑅
𝑛
= 𝑂

𝑝
(𝑛
−1

). When the sample
size 𝑛 is large enough, by definition, the probability that 𝑐

1
+

𝑜
𝑝
(1) ≤ 𝑐

1
/2 is strictly smaller than any given small number

𝜔/2, together with the inequality in (A.32), implies that

Pr(
󵄩󵄩󵄩󵄩𝛼̂𝑛 − 𝛼

0

󵄩󵄩󵄩󵄩

𝛿
𝑛

> 𝑀)

≤ inf
𝛼∈A:‖𝛼−𝛼0‖>𝑀𝛿

𝑛

󵄩󵄩󵄩󵄩𝛼 − 𝛼
0

󵄩󵄩󵄩󵄩

≤ 2𝑐
1
(𝑏

𝑛
+ √𝑏2

𝑛
+

2𝑅
𝑛

𝑐
1

) +
𝜔

2

≤ Pr(𝑀 <

2𝑐
1
(𝑏

𝑛
+ √𝑏2

𝑛
+ 2𝑅

𝑛
/𝑐
1
)

𝛿
𝑛

) +
𝜔

2
,

(A.33)

where 𝛿
𝑛

= max{𝑏
𝑛
, 𝑛

−1/2
}. By definition, 2𝑐

1
(𝑏
𝑛

+

√𝑏2
𝑛
+ 2𝑅

𝑛
/𝑐
1
)/𝛿

𝑛
= 𝑂

𝑝
(1). Hence, one can choose some large

enough number 𝑀
𝜔
such that

Pr(𝑀 <

2𝑐
1
(𝑏

𝑛
+ √𝑏2

𝑛
+ 2𝑅

𝑛
/𝑐
1
)

𝛿
𝑛

) <
𝜔

2
. (A.34)

This and the results in (A.33) immediately imply that

Pr(
󵄩󵄩󵄩󵄩𝛼̂𝑛 − 𝛼

0

󵄩󵄩󵄩󵄩

𝛿
𝑛

> 𝑀) < 𝜔 (A.35)

eventually, which gives us ‖𝛼̂
𝑛
− 𝛼

0
‖ = 𝑂

𝑝
(𝛿
𝑛
).

Proof of Theorem 6. We know that

ℓ (𝜃, 𝛽, 𝜆) = [𝑛
−1

𝑛

∑

𝑖=1

𝜌(𝑍
𝑖
, 𝜃, 𝛽)]

𝑇

×𝑊
𝑛
[𝑛

−1

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃, 𝛽)] + 𝑜

𝑝
(
1

𝑛
) .

(A.36)

On the event {𝛽
𝑛,𝑗

̸= 0} for some 𝑗 ∈ S𝑐

𝛽
, we have the following

KKT optimality condition:

2[𝑛
−1/2

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃

𝑛
, 𝛽

𝑛
)]

𝑇

𝑊
𝑛
[𝑛

−1/2

𝑛

∑

𝑖=1

𝜕𝜌 (𝑍
𝑖
, 𝜃

𝑛
, 𝛽

𝑛
)

𝜕𝛽
𝑗

] ,

+ 𝑛𝑝
󸀠

𝜏
𝑛

(𝛽
𝑛,𝑗

) = 0

(A.37)

which implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑊
𝑛
(𝑞 + 𝑗) [𝑛

−1/2

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝜃

𝑛
, 𝛽

𝑛
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

√𝑛
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

𝜏
𝑛

(𝛽
𝑛,𝑗

)
󵄨󵄨󵄨󵄨󵄨

2
,

(A.38)

where𝑊
𝑛
(𝑞+𝑗) denotes the (𝑞+𝑗)th row of the weightmatrix

𝑊
𝑛
.
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By Assumption 3(ii) and the consistency of 𝜃
𝑛
, there is

𝑛
−1/2

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝛼̂

𝑛
)

= V
𝑛
[𝜌 (𝑍, 𝛼̂

𝑛
)] + 𝑛

1/2
𝑚(𝛼̂

𝑛
)

= V
𝑛
[𝜌 (𝑍, 𝛼̂

𝑛
)] +

𝜕𝑚 (𝜃
𝑛
)

𝜕𝛼𝑇
[𝑛

1/2
(𝛼̂

𝑛
− 𝛼

0
)] ,

(A.39)

where 𝜕𝑚(𝜃)/𝜕𝛼
𝑇 is defined in (A.11) and 𝜃

𝑛
= (𝜃

1,𝑛
, . . . ,

𝜃
𝑞+𝑘,𝑛

) and 𝜃
𝑗,𝑛

(𝑗 = 1, . . . , 𝑞 + 𝑘) lie between 𝜃
0
and 𝜃

𝑛
.

From Assumption 3(i), we have V
𝑛
[𝜌(𝑍, 𝛼̂

𝑛
)] = 𝑂

𝑝
(1). By

Theorem 4 and Assumption 5(i), we have 𝑛
1/2

(𝛼̂
𝑛

− 𝛼
0
) =

𝑂
𝑝
(1). By the triangle inequality, Assumption 3(ii), and the

consistency of 𝜃
𝑛
, we deduce that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑚 (𝜃
𝑛
)

𝜕𝛼𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑚 (𝜃
𝑛
)

𝜕𝛼𝑇
−

𝜕𝑚 (𝜃
0
)

𝜕𝛼𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑚 (𝜃
0
)

𝜕𝛼𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 𝑂
𝑝
(1) .

(A.40)

Hence, we have 𝑛
−1/2

∑
𝑛

𝑖=1
𝜌(𝑍

𝑖
, 𝛼̂

𝑛
) = 𝑂

𝑝
(1)which combined

with Assumption 2(iii) implies that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑊
𝑛
(𝑞 + 𝑗) [𝑛

−1/2

𝑛

∑

𝑖=1

𝜌 (𝑍
𝑖
, 𝛼̂

𝑛
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂
𝑝
(1) . (A.41)

ByTheorem 6 and Assumption 5(i), we have 𝑛
1/2

𝛽
𝑛,𝑗

= 𝑂
𝑝
(1)

for all 𝑗 ∈ S𝑐

𝛽
. Hence, conditional on the event {𝛽

𝑛,𝑗
̸= 0} for

some 𝑗 ∈ S𝑐

𝛽
, we can invoke Assumption 5(ii) to deduce that

𝑛
1/2 󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝜏
𝑛

(𝛽
𝑛,𝑗

)
󵄨󵄨󵄨󵄨󵄨

2
=

𝑛
1/2

𝑟
𝑛
𝜏
𝑛

2

󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

𝜏
𝑛

(𝛽
𝑛,𝑗

)
󵄨󵄨󵄨󵄨󵄨

𝑟
𝑛
𝜆
𝑛

󳨀→
𝑝
∞, (A.42)

for 𝑗 ∈ S𝑐

𝛽
. Now, using (A.38), (A.41), and (A.42), we deduce

that Pr(𝛽
𝑛,𝑗

= 0) → 1 as 𝑛 → ∞ for any 𝑗 ∈ S𝑐

𝛽
.

Proof of Theorem 8. Let 𝑔
𝑑
𝛽−

(𝑍, 𝜃) and 𝑔
𝑑
𝛽+

(𝑍, 𝜃) denote the
potentially valid andmisspecifiedmoment functions in set-2,
respectively. We define

𝑔
𝑞+𝑑
𝛽−

(𝑍, 𝜃) ≡ (
𝑔
𝑞
(𝑍, 𝜃)

𝑔
𝑑
𝛽−

(𝑍, 𝜃)
) ,

𝜕𝑚 (𝜃
0
)

𝜕𝛼
𝑇

S

= (

𝜕𝐸[𝑔
𝑞+𝑑
𝛽−

(𝑍, 𝜃
0
)]

𝜕𝜃𝑇
0

𝜕𝐸 [𝑔
𝑑
𝛽+

(𝑍, 𝜃
0
)]

𝜕𝜃𝑇
−𝐼

𝑘−𝑘
0

),

(A.43)

where 𝐼
𝑘−𝑘
0

denotes a (𝑘 − 𝑘
0
) × (𝑘 − 𝑘

0
) identity matrix. If we

define

𝑀S = [
𝜕𝑚 (𝜃

0
)

𝜕𝛼
𝑇

S

]

𝑇

𝑊
0
[
𝜕𝑚 (𝜃

0
)

𝜕𝛼
𝑇

S

] , (A.44)

then under Assumptions 2(iii) and 3(iii), we know that𝑀S is
nonsingular matrix.

Recall that 𝛼
𝑇

0,S = (𝜃
𝑇

0
, 𝛽

𝑇

0,+
) and accordingly 𝛼̂

𝑇

𝑛,S =

(𝜃
𝑇

𝑛
, 𝛽

𝑇

𝑛,+
). For any compact subset 𝐾 in 𝑅

𝑑
𝜃
+𝑑
𝑘−𝑘
0 , we denote

any element 𝑢S ∈ 𝐾 as 𝑢
𝑇

S = (𝑢
𝑇

𝜃
, 𝑢

𝑇

𝛽,+
), where 𝑢

𝜃
are the first

𝑑
𝜃
elements in 𝑢S and 𝑢

𝛽,+
are the last 𝑑

𝑘−𝑘
0

elements in 𝑢S.
Denote

𝑉
2,𝑛

(𝑢S) = [𝑛
−1/2

𝑛

∑

𝑖=1

𝜌
S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
)]

𝑇

× 𝑊
𝑛
[𝑛

−1/2

𝑛

∑

𝑖=1

𝜌
S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
)]

− [𝑛
−1/2

𝑛

∑

𝑖=1

𝜌 (𝑍, 𝛼
0
)]

𝑇

× 𝑊
𝑛
[𝑛

−1/2

𝑛

∑

𝑖=1

𝜌 (𝑍, 𝛼
0
)]

+ 𝑛∑

𝑗∈S

[𝑝
𝜏
𝑛

(𝛽
0,𝑗

+

𝑢
𝛽
+,𝑗

√𝑛
) − 𝑝

𝜏
𝑛

(𝛽
0,𝑗

)]

≡ 𝑉
∗

2,𝑛
(𝑢S)

+ 𝑛∑

𝑗∈S

[𝑝
𝜏
𝑛

(𝛽
0,𝑗

+

𝑢
𝛽
+,𝑗

√𝑛
) − 𝑝

𝜏
𝑛

(𝛽
0,𝑗

)] ,

(A.45)

where 𝜌
S
(𝑍, 𝛼

0,S + 𝑢S/√𝑛) ≡ 𝜌(𝑍
𝑖
, 𝜃

0
+ 𝑢

𝜃
/√𝑛, 𝛽

0,+
+

𝑢
𝜃
0,+

/√𝑛, 𝛽
0,−

). From Theorem 6, we know that 𝛽
0,−

= 0

w.p.a.1. Thus, √𝑛(𝛼̂
𝑛,S − 𝛼

0,S) is the minimizer of 𝑉
2,𝑛

(𝑢S)

w.p.a.1.
If we define

F
𝑛
≡ (𝑓

𝑛

𝑢S
= 𝜌

S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
) − 𝜌 (𝑍, 𝛼

0
) : 𝑢S ∈ 𝐾) ,

(A.46)

then byAssumptions 3(i) we know thatF
𝑛
is a Donsker class.

As 𝐾 is compact, so there exists some constant 𝐶
𝑘
, such that

sup
𝑢S∈𝐾

‖𝑛
−1/2

𝑢S‖ ≤ 𝑛
−1/2

𝐶
𝑘
= 𝑜(1). Now we can use Lemma

2.17 in Pakes and Pollard [14] to deduce that

V
𝑛
(𝜌

S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
) − 𝜌 (𝑍, 𝛼

0
)) = 𝑜

𝑝
(1) , (A.47)

uniformly over 𝑢S ∈ 𝐾.
By Assumption 3(ii) and the compactness of 𝐾, we have

√𝑛(𝐸[𝜌
S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
)] − 𝐸 [𝜌 (𝑍, 𝛼

0
)])

=
𝜕𝑚 (𝜃

0
)

𝜕𝛼
𝑇

S

𝑢S + 𝑜 (1) ,

(A.48)
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uniformly over 𝑢S ∈ 𝐾. Thus, (A.47) and (A.48) imply that,
uniformly over 𝑢S ∈ 𝐾, there is

𝑛
−1/2

𝑛

∑

𝑖=1

𝜌
S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
)

= V
𝑛
(𝜌

S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
) − 𝜌 (𝑍, 𝛼

0
))

+ V
𝑛
[𝜌 (𝑍, 𝛼

0
)]

+ √𝑛(𝐸[𝜌
S
(𝑍, 𝛼

0,S +
𝑢S

√𝑛
)] − 𝐸 [𝜌 (𝑍, 𝛼

0
)])

= V
𝑛
[𝜌 (𝑍, 𝛼

0
)] + [

𝜕𝑚 (𝜃
0
)

𝜕𝛼
󸀠

S

] 𝑢S + 𝑜
𝑝
(1) .

(A.49)

Now, we can use the result in (A.49), Assumptions 3(i) and
7(i), and the compactness of 𝐾 to deduce that

𝑉
∗

2,𝑛
(𝑢S) = 𝑢

𝑇

S[
𝜕𝑚 (𝜃

0
)

𝜕𝛼
󸀠

S

]

𝑇

× 𝑊
0
[
𝜕𝑚 (𝜃

0
)

𝜕𝛼
𝑇

S

] 𝑢S

+ 2𝑢
𝑇

S[
𝜕𝑚 (𝜃

0
)

𝜕𝛼
𝑇

S

]

𝑇

× 𝑊
0
{V
𝑛
[𝜌 (𝑍, 𝛼

0
)]} + 𝑜

𝑝
(1) ,

(A.50)

uniformly over 𝑢S ∈ 𝐾. If 𝑗 ∈ S, then by Assumptions 3(iv)
and 5(i) and the compactness of 𝐾 we have

𝑛 [𝑝
𝜏
𝑛

(𝛽
0,𝑗

+

𝑢
𝛽
+
,𝑗

√𝑛
) − 𝑝

𝜏
𝑛

(𝛽
0,𝑗

)]

= √𝑛𝑝
󸀠

𝜏
𝑛

(𝛽
0,𝑗

) 𝑢
𝛽
+
,𝑗
+ [𝑝

󸀠󸀠

𝜏
𝑛

(𝛽
0,𝑗

) + 𝑜
𝑝
(1)] 𝑢

2

𝛽
+
,𝑗

󳨀→ 0

(A.51)

uniformly over 𝑢
𝛽
+
,𝑗
.

Using Assumption 7(ii), the results in (A.50), and (A.51),
we get

𝑉
2,𝑛

(𝑢S) 󳨀→
𝑑
𝑉
2
(𝑢S) = 𝑢

𝑇

S𝑀S𝑢S

+2𝑢
𝑇

S[
𝜕𝑚 (𝜃

0
)

𝜕𝛼
𝑇

S

]

𝑇

𝑊
0
Ψ (𝜃

0
) ,

(A.52)

uniformly over 𝑢S ∈ 𝐾. It is clear that 𝑉
2
(𝑢S) is uniquely

minimized at

𝑢
∗

S = −𝑀
−1

S [
𝜕𝑚 (𝜃

0
)

𝜕𝛼
𝑇

S

]

𝑇

𝑊
0
Ψ (𝜃

0
) . (A.53)

ByTheorem 4 and Assumption 5(i), there is

√𝑛 (𝛼̂
𝑛,S − 𝛼

0,S) = 𝑂
𝑝
(1) . (A.54)

Now, the uniform weak convergence in (A.52), the unique
minimization in (A.53), and the asymptotic tightness of 𝛼̂

𝑛,S

in (A.54) enable us to invoke the ACMT to deduce that

√𝑛 (𝛼̂
𝑛,S − 𝛼

0,S) 󳨀→
𝑑
𝑁(0,𝑀

−1

S ΣS𝑀
−1

S ) . (A.55)

The first result is implied byTheorems 4 and 6, so we only
need to show the second claim. First note that if

𝑊
𝑛
󳨀→

𝑝
𝑊
0
= {𝐸 [Ψ (𝜃

0
) Ψ

𝑇
(𝜃

0
)]}

−1

, (A.56)

then the centered limiting distribution in (A.55) will be
simplified to

√𝑛 (𝛼̂
𝑛,S − 𝛼

0,S) 󳨀→
𝑑
𝑁(0,𝑀

−1

11
) . (A.57)

Denote Ω
𝜃
0

to be the first 𝑑
𝜃
0

× 𝑑
𝜃
0

submatrix of 𝑀
−1

S and
𝜕𝐺

𝛽
+

(𝜃
0
)/𝜕𝜃

𝑇
= 𝜕𝐸[𝑔

𝑑
𝛽+

(𝑍, 𝜃
0
)]/𝜕𝜃

𝑇. Note that

𝑀S = (

𝜕𝐸[𝑔
𝑞+𝑑
𝛽−

(𝑍, 𝜃
0
)]

𝜕𝜃𝑇
0

𝜕𝐸 [𝑔
𝑑
𝛽+

(𝑍, 𝜃
0
)]

𝜕𝜃𝑇
−𝐼

𝑑
𝛽
+

0

×𝑑
𝛽
+

0

)

𝑇

× 𝑊
0
(

𝜕𝐸[𝑔
𝑞+𝑑
𝛽−

(𝑍, 𝜃
0
)]

𝜕𝜃𝑇
0

𝜕𝐸 [𝑔
𝑑
𝛽+

(𝑍, 𝜃
0
)]

𝜕𝜃𝑇
−𝐼

𝑑
𝛽
+

0

×𝑑
𝛽
+

0

)

= (

Σ
11

S Σ
12

S

Σ
21

S 𝑊
22

) ,

(A.58)

where

Σ
11

S = [
𝜕𝑚

𝑒
(𝜃

0
)

𝜕𝜃𝑇
]

𝑇

𝑊
11

[
𝜕𝑚

𝑒
(𝜃

0
)

𝜕𝜃𝑇
]

+ [
𝜕𝑚

𝑒
(𝜃

0
)

𝜕𝜃𝑇
]

𝑇

𝑊
12

[

𝜕𝐺
𝛽
+

(𝜃
0
)

𝜕𝜃𝑇
]

+ [

𝜕𝐺
𝛽
+

(𝜃
0
)

𝜕𝜃𝑇
]

𝑇

𝑊
21

[
𝜕𝑚

𝑒
(𝜃

0
)

𝜕𝜃𝑇
]

+ [

𝜕𝐺
𝛽
+

(𝜃
0
)

𝜕𝜃𝑇
]

𝑇

𝑊
22

[

𝜕𝐺
𝛽
+

(𝜃
0
)

𝜕𝜃𝑇
] ,

Σ
12

S = −[
𝜕𝑚

𝑒
(𝜃

0
)

𝜕𝜃𝑇
]

𝑇

𝑊
12

− [

𝜕𝐺
𝛽
+

(𝜃
0
)

𝜕𝜃𝑇
]

𝑇

𝑊
22

= (Σ
21

S )
𝑇

.

(A.59)

From (A.37), it is easy to get

Ω
−1

𝜃
0

= Σ
11

S 𝑊
−1

22
Σ
21

S

= [
𝜕𝑚

𝑒
(𝜃
0
)

𝜕𝜃𝑇
]

𝑇

𝑉
−1

𝑒,0
[
𝜕𝑚

𝑒
(𝜃

0
)

𝜕𝜃𝑇
] = (Σ

∗
)
−1

,

(A.60)
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where the last equality is due to the fact that (𝑊
11

−

𝑊
12
𝑊

−1

22
𝑊
21
)
−1

= 𝑉
𝑒,0
. Now, using results in (A.34) and

(A.38) and theContinuousMappingTheorem (CMT),we can
deduce that

√𝑛 (𝜃
S
𝑛

− 𝜃
0
) 󳨀→

𝑑
𝑁(0, Σ

∗
) , (A.61)

which establishes the semiparametric efficiency of the GMM
shrinkage estimator 𝜃

S
𝑛
.

Proof of Theorem 9. We denote 𝑆
−1

22.1
= (𝐸(𝜕𝑔

𝑞+𝑘
0

/

𝜕𝜃)
𝑇

𝐸(𝑔𝑔
𝑇
)𝐸(𝜕𝑔

𝑞+𝑘
0

/𝜕𝜃))
−1, 𝑆

11
= −𝐸(𝑔

𝑞+𝑘
0

𝑔
𝑇

𝑞+𝑘
0

), 𝑆
22

=

𝐸(𝜕𝑔
𝑞+𝑘
0

/𝜕𝜃), 𝑆
21

= 𝐸(𝜕𝑔
𝑞+𝑘
0

/𝜕𝜃)
𝑇, and ℓ

𝐸
(𝜃) = ∑

𝑛

𝑖=1
log[1+

𝜆
𝑇
𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃)]. The log-empirical likelihood ratio test

statistic is

𝑊
𝐸
(𝜃

0
) = 2{∑

𝑖

log [1 + 𝜆
𝑇
𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃

0
)]

−∑

𝑖

log [1 + 𝜆
𝑇
𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃

S
𝑛
)]} .

(A.62)

Note that

ℓ
𝐸
(𝜃

S
𝑛
) =

𝑛

∑

𝑖=1

log {1 + 𝜆
𝑇
𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃

S
𝑛
)}

= −
𝑛

2
𝑄
𝑇

1𝑛
(𝜃

0
, 0) 𝐴𝑄

1𝑛
(𝜃

0
, 0) + 𝑜

𝑝
(1) ,

(A.63)

where

𝑄
1𝑛

(𝜃) =
1

𝑛
∑

𝑖

1

1 + 𝜆𝑇𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃)

𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃) ,

𝑄
2𝑛

(𝜃) =
1

𝑛
∑

𝑖

1

1 + 𝜆𝑇𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃)

(

𝜕𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃)

𝜕𝜃
)

𝑇

𝜆,

𝐴 = 𝑆
−1

11
{𝐼 + 𝑆

12
𝑆
−1

22.1
𝑆
21
𝑆
−1

11
} .

(A.64)

Also under 𝐻
0
,

1

𝑛
∑

𝑖

1

1 + 𝜆𝑇𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃

0
)
𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃

0
)

= 0 󳨐⇒ 𝜆
0
= −𝑆

−1

11
𝑄
1𝑛

(𝜃
0
, 0) + 𝑜

𝑝
(1) ,

∑

𝑖

log [1 + 𝜆
𝑇

0
𝑔
𝑞+𝑘
0

(𝑍
𝑖
, 𝜃

0
)]

= −
𝑛

2
𝑄
𝑇

1𝑛
(𝜃

0
, 0) 𝑆

−1

11
𝑄
1𝑛

(𝜃
0
, 0) + 𝑂

𝑃
(1) .

(A.65)

Thus,

𝑊
𝐸
(𝜃

0
) = 𝑛𝑄

𝑇

1𝑛
(𝜃

0
, 0) (𝐴 − 𝑆

−1

11
)𝑄

1𝑛
(𝜃

0
, 0) + 𝑜

𝑝
(1)

= [(−𝑆
−1/2

11
)√𝑛𝑄

1𝑛
(𝜃
0
, 0)]

𝑇

× [(−𝑆
−1/2

11
) 𝑆

12
𝑆
−1

22.1
𝑆
21

(−𝑆
−1/2

11
)]

× [(−𝑆
−1/2

11
)√𝑛𝑄

1𝑛
(𝜃

0
, 0)] + 𝑜

𝑝
(1) .

(A.66)

Note that (−𝑆
−1/2

11
)√𝑛𝑄

1𝑛
(𝜃
0
, 0) converges to a

standard multivariate normal distribution and that
(−𝑆

−1/2

11
)𝑆
12
𝑆
−1

22.1
𝑆
21
(−𝑆

−1/2

11
) is symmetric and idempotent,

with trace equal to 𝑝. Hence, the empirical likelihood ratio
statistic 𝑊

𝐸
(𝜃
0
) converges to 𝜒

2

𝑝
.
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