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We investigate the large time behavior of the global weak entropy solutions to the symmetric Keyfitz-Kranzer system with linear
damping. It is proved that as 𝑡 → ∞ the entropy solutions tend to zero in the 𝐿𝑝 norm.

1. Introduction

In this paper, we consider the Cauchy problem to the sym-
metric system of Keyfitz-Kranzer type with linear damping

𝑢𝑡 + (𝑢𝜙 (𝑟))
𝑥
+ 𝑎𝑢 = 0,

V𝑡 + (V𝜙 (𝑟))
𝑥
+ 𝑏V = 0,

(1)

with initial data

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , V (𝑥, 0) = 𝑢0 (𝑥) . (2)

This system models the propagation models of propagation
of forward longitudinal and transverse waves of elastic string
which moves in a plane; see [1, 2]. General source term for
the system (1) was considered in [3].The damping term in the
system (1) represents external forces proportional to velocity,
and this term can produce loss of total energy of system.
Consider the scalar case; for example,

𝑢𝑡 + 𝑎𝑢𝑥 + 𝑏𝑢 = 0, 𝑢 (𝑥, 0) = 𝑢0 (𝑥) . (3)

From the integral representation of (3), it is easy to find the
following solution:

𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥 − 𝑎𝑡) 𝑒
−𝑏𝑡

. (4)

In this case, the solution of (3) tends to zero when 𝑡 → ∞.
In Figure 1, we show the graph of solution for the advection
equation with initial data

𝑢 (𝑥, 0) = {
(1 − 𝑥

2
) , if 𝑥 ∈ (−1, 1) ,

0, otherwise.
(5)

For more general case, the behavior of solutions and its
computation can be more complicated; for example, we
consider Burger’s equation with a particular initial data and
linear damping; this equation models the component of the
velocity in one-dimensional flow

𝑢𝑡 + (
1

2
𝑢
2
)

𝑥

+ 𝑢 = 0 (6)

with intial data

𝑢 (𝑥, 0) = {
𝐴 (1 − 𝑥

2
) , if 𝑥 ∈ (−1, 1) ,

0, otherwise,
(7)

where𝐴 is a constant. By an application to the characteristics
method, we have that solutions emanating from 𝑥0 are given
by

𝑋(𝑡, 𝑥0) = 𝑥0 + 𝐴 (1 − 𝑥
2

0
) (1 − 𝑒

−𝑡
) ,

𝑢 (𝑋, 𝑡) = 𝑢0 (𝑥) 𝑒
−𝑡
.

(8)
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Figure 1: Graph of solution 𝑢𝑡 + 𝑢𝑥 + 𝑢 = 0, 𝐴 = 1.
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Figure 2: Characteristics for 𝑢 = 0, 𝐴 = 1.

In general, in systems with source term, the characteristics
are nonlinear functions and they could have asymptotic
behavior; for example, the characteristics solutions for (6), (7)
are asymptotic to the lines

lim
𝑡→∞

𝑋(𝑡, 𝑥0) = 𝑥0 + 𝐴 (1 − 𝑥
2

0
) . (9)

It is easy to see that the shock occurs when 𝑥0+𝐴(1−𝑥0)
2
> 1.

In Figures 2, 3, and 4, we show the characteristics solutions for
several values of 𝐴.

We are looking for conditions under which the terms 𝑎, 𝑏
have a dissipative effect in the solutions of (1).

Let 𝑟(𝑥, 𝑡) = √𝑢(𝑥, 𝑡)
2
+ V(𝑥, 𝑡)2, and we are going to

show the following main theorem.

Theorem 1. If the initial data (𝑢0(𝑥), V0(𝑥)) ∈ 𝐿
∞
(R) ∩

𝐿
2
(R), then the Cauchy problems (1) and (2) have a weak

entropy solutions satisfying

‖𝑢‖𝐿∞(Ω) + ‖V‖𝐿∞(Ω) < 𝑀. (10)
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Figure 3: Linear damping 𝐴 = 1/2.
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Figure 4: Linear damping 𝐴 = 2.

Moreover, 𝑟(𝑢, V) converges to zero in 𝐿𝑝 with exponential time
decay; that is,

‖𝑟 (𝑥, 𝑡)‖𝐿𝑝(R) ≤ 𝐾𝑒
−𝑀𝑡

‖𝑟 (𝑥, 0)‖𝐿𝑝(R) . (11)

2. Preliminaries

We start with some preliminaries about the general systems
of conservation laws; see [4] chapter 5. Let 𝑓 : Ω → R𝑛 be a
smooth vector field. Consider Cauchy problem for the system

𝑢𝑡 + 𝑓 (𝑢)𝑥 = 𝑔 (𝑢) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) .

(12)

When 𝑔(𝑢) = 0, the system (12) is called homogeneous
system of conservation laws, if 𝑔(𝑢) ̸= 0, the system
(12) is called inhomogeneous system or balance system of
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conservation laws. We will work also with the parabolic
perturbation to the system (12); namely,

𝑢𝑡 + 𝑓 (𝑢)𝑥 = 𝜖𝑢𝑥𝑥 + g (𝑢) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) .

(13)

Denote by𝐴(𝑢) = 𝐷𝑓(𝑢) the Jacobianmatrix of partial deriv-
atives of 𝑓.

Definition 2. Thesystem (12) is strictly hyperbolic if, for every
𝑢 ∈ Ω, thematrix𝐴(𝑢) has 𝑛 real distinct eigenvalues 𝜆1(𝑢) <
⋅ ⋅ ⋅ < 𝜆𝑛(𝑢).

Let 𝑟𝑖(𝑢) be the corresponding eigenvector to 𝜆𝑖(𝑢).Then,
one can see the following.

Definition 3. One says that the 𝑖th characteristic field is
genuinely nonlinear if

∇𝜆𝑖 (𝑢) ⋅ 𝑟𝑖 (0) ̸= 0. (14)

If instead

∇𝜆𝑖 (𝑢) ⋅ 𝑟𝑖 (0) = 0, (15)

we say that the 𝑖th characteristic field is linearly degenerate.

For the following definitions, see [5, 6].

Definition 4. A 𝑘-Riemann invariant is a smooth function
𝑤𝑘 : R

𝑛
→ R, such that

∇𝑤𝑘 (𝑢) ⋅ 𝑟𝑘 (𝑢) = 0. (16)

Definition 5. A pair of function 𝜂, 𝑞 : R𝑛 → R is called a
entropy-entropy flux pair if it satisfies

∇𝜂 (𝑢)𝐴 (𝑢) = ∇𝑞 (𝑢) , (17)

if 𝜂(𝑢) is a convex function, then the pair (𝜂, 𝑞) is called
convex entropy-entropy flux pair.

Definition 6. A bounded measurable function 𝑢(𝑥, 𝑡) is an
entropy (or admissible) solution for the Cauchy problem (12)
if it satisfies the following inequality:

𝜂 (𝑢)𝑡 + 𝑞 (𝑢)𝑥 + ∇𝜂 (𝑢) 𝑔 (𝑢) ≤ 0, (18)

in the distributional sense, where (𝜂, 𝑞) is any convex entropy-
entropy flux pair.

We consider the general system of Keyfitz-Kranzer type

𝑢𝑡 + (𝑢𝜙 (𝑢, V))
𝑥
= 0,

V𝑡 + (V𝜙 (𝑢, 𝑢))
𝑥
= 0,

(19)

to get some general observations about this type of system.
Let 𝐹(𝑢, V) = (𝑢𝜙(𝑢, V), V𝜙(𝑢, V)) in (19), and we have that

the eigenvalues and eigenvector of the Jacobianmatrix𝐷𝑓 are
given by

𝜆1 (𝑢, V) = 𝜙 (𝑢, V) , 𝑟1 = (1, −
𝜙𝑢

𝜙V
) , (20)

𝜆2 (𝑢, V) = 𝜙 (𝑢, V) + (𝑢, V) ⋅ ∇𝜙 (𝑢, V) , 𝑟2 = (1,
V
𝑢
) .

(21)

From (20) and (21), we have that∇𝜙⋅𝑟1 = 0 and∇𝑍(𝑢, V)⋅𝑟2 =
0, where 𝑍(𝑢, V) = 𝑢/V, and then the Riemann invariants are
given by

𝑊(𝑢, V) = 𝜙 (𝑟) ,

𝑍 (𝑢, V) =
𝑢

V
.

(22)

Lemma7. Thesystem (1) is always linear degenerate in the first
characteristic field. If

(𝑢, V) ∇𝜙 (𝑢, V) ̸= 0, (23)

then the system (1) is strictly hyperbolic and nonlinear degen-
erate in the second characteristic field. Moreover,

∇𝜆2 (𝑢, V) ⋅ 𝑟2 =
2 (𝑢, V) ∇𝜙 (𝑢, V) + (𝑢, V)𝐻 (𝜙) (𝑢, V)𝑇

𝑢
,

(24)

where𝐻 represents the Hessian matrix.

Lemma 8. Let 𝜂(𝑢, V) ∈ C1
(R+) be a Lipschitz function in

a neighborhood of the origin, and let 𝑞(𝑢, V) = 𝜓(𝑢, V) +

𝜂(𝑢, V)𝜙(𝑢, V) be a function, such that 𝜓 satisfies

∇𝜓 (𝑢, V) = ((𝑢, V) ⋅ ∇𝜂 (𝑢, V) − 𝜂 (𝑢, V)) ∇𝜙 (𝑢, V) . (25)

Then, the pair

(𝑛 (𝑢, V) , 𝑞 (𝑢, V)) (26)

is a entropy-entropy flux pair for the system (1). Moreover, if
𝜂(𝑢, V) is a convex function, then the pair (26) is a convex
entropy-entropy flux pair.

3. Global Existence of Weak Entropy Solutions
and Asymptotic Behavior

We consider the parabolic regularization of the system (1).
Namely,

𝑢𝑡 + (𝑢𝜙 (𝑟))
𝑥
+ 𝑎𝑢 = 𝜖𝑢𝑥𝑥,

V𝑡 + (V𝜙 (𝑟))
𝑥
+ 𝑏V = 𝜖V𝑥𝑥,

(27)

with initial data

𝑢
𝜖
(𝑥, 0) = 𝑢

𝜖

0
∗ 𝑗𝜖, V𝜖 (𝑥, 0) = V𝜖

0
∗ 𝑗𝜖, (28)
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where 𝑗𝜖 is a mollifier. In this case, 𝜙(𝑢, V) = 𝜙(𝑟), with 𝑟 =

√𝑢
2
+ V2. By (20), the eigenvectors and eigenvalues are given

by

𝜆1 (𝑢, V) = 𝜙 (𝑟) , 𝑟1 = (1, −
𝑢

V
) ,

𝜆2 (𝑢, V) = 𝜙 (𝑟) + 𝑟𝜙
󸀠
(𝑟) , 𝑟2 = (1,

V
𝑢
) .

(29)

The following conditions will be necessary in our next
discussion:

(𝐶1) 𝑟𝜙(𝑟) → 0, as 𝑟 → 0, 𝑟𝜙󸀠(𝑟) ̸= 0;
(𝐶2) 𝑎 > 𝑏.

The condition (𝐶1) guarantees the strict hyperbolicity to the
system (27) according to Lemma 7, while condition (𝐶2)
ensures the existence of a positive invariant region. Now, we
consider the following subset of R:

Σ = {(𝑢, V) : 𝜙 (𝑟) ≤ 𝐶0, 0 < 𝐶1 ≤
𝑢

V
≤ 𝐶2} . (30)

We affirm that Σ is an invariant region. Let ℎ(𝑢, V) = (𝑎𝑢, 𝑏V),
if (𝑢, V) ∈ 𝛾1, where 𝛾1 is the level curve of𝑊 = 𝜙(𝑟). We have
that

(∇𝑊 ⋅ ℎ) (𝑢, V) = (𝑎 + 𝑏) 𝑟𝜙
󸀠
(𝑟) > 0, (31)

and if 𝑢, V ∈ 𝛾2, where 𝛾2 is the level curve of 𝑍 = 𝑢/V, we
have that

(∇𝑍 ⋅ ℎ) (𝑢, V) = (𝑎 − 𝑏) (
𝑢

V
) > 0. (32)

ByTheorem 14.7 of [5], Σ is an invariant region for the system
(27). It is easy to verify that (𝑎𝑢, 𝑏V) satisfies the condition
𝐻1 ⋅ ⋅ ⋅ 𝐻5 in [3]; thus, we have the following Lemma.

Proposition 9. If (𝑢0, V0) ∈ Σ and the 𝐶 condition holds, then
the Cauchy problems (27), (28) have a global weak entropy
solution.

Now, for the global behavior of solutions, using ideas of
the author in [7], we construct the following entropy-entropy
flux pairs as follows:

𝑛 (𝑟) = 𝑟
𝑚
, 𝑚 ≥ 2. (33)

From (25), we have

𝑞 (𝑟) = (𝑚 − 1) ∫

𝑟

0

𝑠
𝑚
𝜙
󸀠
(𝑠) 𝑑𝑠 + 𝑟

𝑚
𝜙 (𝑟) . (34)

Integrating by parts, we have that

𝑞 (𝑟) = 𝑚𝜙 (𝑟) − 𝑚 (𝑚 − 1) ∫

𝑟

0

𝑠
𝑚−1

𝜙 (𝑠) 𝑑𝑠. (35)

Let𝑀 = sup
(𝑢,V)∈[0,‖𝑢‖

𝐿
∞ ]×[0,‖V‖

𝐿
∞ ]
{𝜙(𝑟)}. Then, we have that

󵄨󵄨󵄨󵄨
𝑞 (𝑟)

󵄨󵄨󵄨󵄨
≤ 2𝑚𝑀𝑟

𝑚
. (36)

Multiplying (1) by ∇𝜂, we have that

𝜂 (𝑟)𝑡 + 𝑞 (𝑟)𝑥 ≤ −3𝑚𝑀𝑟
𝑚
. (37)

Now, we choose ℎ(𝑥) ∈ 𝐶
2
(R) as a function, such as |ℎ󸀠(𝑥)| ≤

1, |ℎ󸀠󸀠(𝑥)| ≤ 1, and ℎ(𝑥) = |𝑥| for |𝑥| ≥ 1 and set 𝑘(𝑥) =

𝑒
−ℎ(𝑥). Then, 𝑘󸀠(𝑥) ≤ 𝑘(𝑥). Multiplying by 𝑘(𝑥) in (37) and
integrating over 𝑥, we have

𝑑

𝑑𝑡
∫

∞

−∞

𝜂 (𝑟) 𝑔 (𝑥) ≤ ∫

∞

−∞

𝑞 (𝑟) 𝑘
󸀠
(𝑥) + −3𝑚𝑀∫

∞

−∞

𝑟
𝑚
𝑑𝑥.

(38)

By the inequality (36), we have

𝑑

𝑑𝑡
∫

∞

−∞

𝜂 (𝑟) 𝑘 (𝑥) 𝑑𝑥 ≤ −𝑚𝑀∫

∞

−∞

𝑟
𝑚
𝑘 (𝑥) 𝑑𝑥. (39)

If 𝜓(𝑡) = ∫
∞

−∞
𝜂(𝑟)𝑘(𝑥)𝑑𝑥, we have

𝑑

𝑑𝑡
𝜓 (𝑡) ≤ −𝑚𝑀𝜓 (𝑡) . (40)

By Gronwall’s inequality, we have

𝜓 (𝑡) ≤ 𝑒
−𝑚𝑀𝑡

𝜓 (0) . (41)

Thus, we have

(∫

∞

−∞

𝑟
𝑚
(𝑡) 𝑘 (𝑥) 𝑑𝑥)

1/𝑚

≤ 𝑒
−𝑀𝑡

(∫

∞

−∞

𝑟
𝑚
(0) 𝑘 (𝑥) 𝑑𝑥)

1/𝑚

.

(42)

Passing to limit𝑚 → ∞, in (42), we have the inequality (10).
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