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By establishing a comparison result and using the monotone iterative technique, combining with the method of upper and lower
solutions, the existence of solutions for systems of nonlinear fractional differential equations is considered. An example is given to
demonstrate the applicability of our results.

1. Introduction

In recent years the theory of fractional derivatives and
integrals called Fractional Calculus has been steadily gaining
importance for applications. Ordinary and partial differential
equations of fractional order have been widely used for
modeling various processes in physics, chemistry, aerody-
namics of complexmedium, polymer rheology, and control of
dynamical systems (see, e.g., [1–3] and the references therein).
Recently, many researchers paid attention to the existence of
solutions of the initial value problems and boundary value
problems for fractional differential equations, such as [4–
11]. In [4], the existence and uniqueness of solution of the
following initial value problem for fractional equation of
Volterra type with the Riemann-Liouville derivative

𝐷
𝑞
𝑥 (𝑡) = 𝑓(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠) ,

𝑡 ∈ 𝐽0 = (0, 𝑇] , 𝑇 > 0,

𝑡
1−𝑞

𝑥 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑟,

(1)

was discussed by using the method of upper and lower
solutions and its associated monotone iterative method.
In [9], the existence and uniqueness of extremal solutions

of the following system of nonlinear fractional differential
equations

𝐷
𝛼
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , V (𝑡)) , 𝑡 ∈ (0, 𝑇] ,

𝐷
𝛼V (𝑡) = 𝑔 (𝑡, V (𝑡) , 𝑢 (𝑡)) , 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0, 𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑦0

(2)

was discussed by using the same method, too.
Motivated by the above two papers, we consider the

existence of solutions for a system of nonlinear fractional
differential equations subject to initial conditions of the type

𝐷
𝛼
𝑢 (𝑡) = 𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠) , 𝑡 ∈ (0, 𝑇] ,

𝐷
𝛼V (𝑡) = 𝑔(𝑡, V (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠) , 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0, 𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑦0,

(3)

where the parameter 0 < 𝛼 ≤ 1 is the order of the fractional
differential equations, and we assume that 0 < 𝑇 < ∞, 𝑓, 𝑔 ∈

𝐶([0, 𝑇] × R × R,R), 𝑥0, 𝑦0 ∈ R, 𝑥0 ≤ 𝑦0. 𝐷
𝛼 is the standard

Riemann-Liouville fractional derivative of order 0 < 𝛼 ≤ 1

(see [1]). It is worthwhile to indicate that the nonlinear terms
in the systems involve the unknown functions 𝑢(𝑡) and V(𝑡).
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The rest of this paper is organized as follows. In Section 2,
some preliminary knowledge and the existence and unique-
ness of solution for a linear problem for systems of differential
equations are discussed and a differential inequality as a
comparison principle is established. In Section 3, by using the
monotone iterative technique and the method of upper and
lower solutions, we prove the existence of extremal solutions
of systems (3). Finally, an example is given to illustrate our
results.

2. Preliminaries

In this section, we will state some necessary definitions and
preliminary results which will be used in the next section to
attain the existence of solutions for the nonlinear system (3).

First, consider the set 𝐶1−𝛼([0, 𝑇]) = {𝑢 ∈ 𝐶([0, 𝑇]);

𝑡
1−𝛼

𝑢 ∈ 𝐶([0, 𝑇])}. For 𝑢 ∈ 𝐶1−𝛼([0, 𝑇]) we define two
weighted norms:

‖𝑢‖
∗
= max
𝑡∈[0,𝑇]

𝑡
1−𝛼

|𝑢 (𝑡)| , ‖𝑢‖∗ = max
𝑡∈[0,𝑇]

𝑡
1−𝛼

𝑒
−𝜆𝑡

|𝑢 (𝑡)| ,

(4)

with a fixed positive constant 𝜆.
Nowwe enunciate the following existence anduniqueness

results for the initial value problem (IVP) of the linear
fractional differential equations. For the following IVP of
fractional differential equation

𝐷
𝛼
𝑥 = 𝑓 (𝑡, 𝑥) , 𝑥 (𝑡0) = 𝑥

0
= 𝑥 (𝑡) (𝑡 − 𝑡0)

1−𝛼󵄨󵄨󵄨󵄨󵄨𝑡=𝑡0
,

(5)

where 𝑓 ∈ 𝐶([0, 𝑇] × R), it is equivalent to the following
Volterra integral equation:

𝑥 (𝑡) = 𝑥
0
(𝑡) +

1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (6)

Lemma 1 (see [12]). Let𝑚 ∈ 𝐶1−𝛼([0, 𝑇],R) be locally𝐻 ̈𝑜𝑙𝑑𝑒𝑟

continuous function such that, for any 𝑡1 ∈ (0, 𝑇], one has

𝑚(𝑡1) = 0, 𝑚 (𝑡) ≤ 0 for 𝑡0 ≤ 𝑡 ≤ 𝑡1. (7)

Then it follows that

𝐷
𝛼
𝑚(𝑡1) ≥ 0. (8)

Lemma 2. Let 𝛼 ∈ (0, 1), 𝑀 ∈ R, 𝑁 ∈ R, 𝑘(𝑡, 𝑠) ∈

𝐶((0, 𝑇] × (0, 𝑇],R+), and |𝑘(𝑡, 𝑠)| ≤ 𝐾, 𝜎 ∈ 𝐶1−𝛼((0, 𝑇],R).
In addition, one assumes that
(𝐻1)

𝑇
𝛼
Γ (𝛼)

Γ (2𝛼)
(|𝑀| +

|𝑁| 𝑘𝑇

2𝛼
) < 1, if 0 < 𝛼 ≤

1

2
. (9)

Then the IVP

𝐷
𝛼
𝑥 (𝑡) = 𝜎 (𝑡) − 𝑀𝑥 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑥 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑟

(10)

has unique solution.

Proof. In the case when 1/2 < 𝛼 ≤ 1, we use the norm
‖ ⋅ ‖∗ with positive number 𝜆 satisfying √𝜆 > 𝜌1 ≡

(Γ(2𝛼 − 1)/√2Γ(2(2𝛼 − 1)))((|𝑀| + |𝑁|𝐾𝑇)/𝛼Γ(𝛼))√𝑇2𝛼−1.
The remainder part of the case and the case of 0 < 𝛼 ≤ 1/2

are similar to that of Theorem 1 in paper [4], so we omit the
details.

Lemma 3. Suppose that condition (𝐻1) holds. Let 0 < 𝛼 ≤ 1,
𝑀,𝑁 ∈ R, and 𝜎1, 𝜎2 ∈ 𝐶1−𝛼([0, 𝑇]); then the IVP

𝐷
𝛼
𝑢 (𝑡) = 𝜎1 (𝑡) − 𝑀𝑢 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝐷
𝛼V (𝑡) = 𝜎2 (𝑡) − 𝑀V (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0, 𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑦0

(11)

has unique system of solutions in 𝐶1−𝛼([0, 𝑇]) × 𝐶1−𝛼([0, 𝑇]).

Proof. The proof follows from the fact that the pair (𝑢, V) is a
solution of problem (11) if and only if 𝑢(𝑡) and V(𝑡) have the
form

𝑢 (𝑡) =
𝑝 (𝑡) + 𝑞 (𝑡)

2
, V (𝑡) =

𝑝 (𝑡) − 𝑞 (𝑡)

2
, 𝑡 ∈ [0, 𝑇] ,

(12)

where 𝑝 and 𝑞 solve the problems

𝐷
𝛼
𝑝 (𝑡) = (𝜎1 + 𝜎2) (𝑡) − 𝑀𝑝 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑝 (𝑠) 𝑑𝑠,

𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑝 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0 + 𝑦0,

(13)

𝐷
𝛼
𝑞 (𝑡) = (𝜎1 − 𝜎2) (𝑡) − 𝑀𝑞 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑞 (𝑠) 𝑑𝑠,

𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑞 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0 − 𝑦0.

(14)

By Lemma 2, we know that both problems (13) and (14) have
unique solution in 𝐶1−𝛼([0, 𝑇]). Consequently, 𝑢 and V are
uniquely determined, too. This completes the proof of the
lemma.

Lemma 4. Let 0 < 𝛼 ≤ 1, 𝑀 > 0, 𝑁 ∈ R, 𝑤 ∈ 𝐶1−𝛼([0, 𝑇])

and let 𝑤(𝑡) be locally Hölder continuous function such that

𝐷
𝛼
𝑤 (𝑡) + 𝑀𝑤 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑤 (𝑠) 𝑑𝑠 ≥ 0, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑤 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑤0 ≥ 0.

(15)

Then 𝑤(𝑡) ≥ 0 for all 𝑡 ∈ (0, 𝑇].
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Proof. Assume that the assertion is not true. Then from
𝑡
1−𝛼

𝑤(𝑡)|𝑡=0 = 𝑤0 ≥ 0, there exist points 𝑡0, 𝑡
󸀠

0
∈ (0, 𝑇] such

that 𝑤(𝑡0) = 0, 𝑤(𝑡󸀠
0
) < 0, and 𝑤(𝑡) ≥ 0, for 𝑡 ∈ (0, 𝑡0], and

𝑤(𝑡) < 0, for 𝑡 ∈ (𝑡0, 𝑡
󸀠

0
]. Assume that 𝑡1 is the first minimal

point of 𝑤(𝑡) on [𝑡0, 𝑡
󸀠

0
]. We divide the reminder of the proof

into two separate cases.
Case 1. Let𝑀 > 0,𝑁 < 0. It follows from Lemma 1 that

𝐷
𝛼
(−𝑤 (𝑡0)) ≥ 0. (16)

Hence, we have

𝐷
𝛼
𝑤 (𝑡0) ≤ 0. (17)

However,

𝐷
𝛼
𝑤 (𝑡0) + 𝑀𝑤 (𝑡0) + 𝑁∫

𝑡0

0

𝑘 (𝑡0, 𝑠) 𝑤 (𝑠) 𝑑𝑠 ≥ 0. (18)

So, we have

𝐷
𝛼
𝑤 (𝑡0) ≥ −𝑀𝑤(𝑡0) − 𝑁∫

𝑡0

0

𝑘 (𝑡0, 𝑠) 𝑤 (𝑠) 𝑑𝑠 > 0, (19)

which is a contradiction. So the assertion holds in this case.
Case 2. Let 𝑀 > 0, 𝑁 > 0. From the condition 𝐷

𝛼
𝑤(𝑡) +

𝑀𝑤(𝑡) + 𝑁∫
𝑡

0
𝑘(𝑡, 𝑠)𝑤(𝑠)𝑑𝑠 ≥ 0, we have

𝐷
𝛼
𝑤 (𝑡) ≥ 0, (20)

for all 𝑡 ∈ (𝑡0, 𝑡
󸀠

0
]. Hence

∫

𝑡

𝑡0

𝐷
𝛼
𝑤 (𝑠) 𝑑𝑠 ≥ 0, ∀𝑡 ∈ (𝑡0, 𝑡

󸀠

0
] . (21)

That is,

𝐼
1−𝛼

𝑤 (𝑡) − 𝐼
1−𝛼

𝑤 (𝑡0) ≥ 0, ∀𝑡 ∈ (𝑡0, 𝑡
󸀠

0
] . (22)

On the other hand, for 𝑡 ∈ (𝑡0, 𝑡
󸀠

0
],

𝐼
1−𝛼

𝑤 (𝑡) − 𝐼
1−𝛼

𝑤 (𝑡0)

=
1

Γ (1 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝑤 (𝑠) 𝑑𝑠

−
1

Γ (1 − 𝛼)
∫

𝑡0

0

(𝑡0 − 𝑠)
−𝛼
𝑤 (𝑠) 𝑑𝑠

=
1

Γ (1 − 𝛼)
∫

𝑡0

0

((𝑡 − 𝑠)
−𝛼

− (𝑡0 − 𝑠)
−𝛼
)𝑤 (𝑠) 𝑑𝑠

+
1

Γ (1 − 𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
−𝛼
𝑤 (𝑠) 𝑑𝑠

< 0,

(23)

which contradicts with (22), so the assertion holds.

Lemma 5. Let 0 < 𝛼 ≤ 1, 𝑀 ≥ 0, 𝑁 > 0, and 𝑘(𝑡, 𝑠) ∈

𝐶((0, 𝑇]× (0, 𝑇],R+), 𝑢, V ∈ 𝐶1−𝛼([0, 𝑇]). Moreover 𝑢(𝑡), V(𝑡)
are locally Hölder continuous functions such that

𝐷
𝛼
𝑢 (𝑡) ≥ −𝑀𝑢 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝐷
𝛼V (𝑡) ≥ −𝑀V (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0 ≥ 0,

𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑦0 ≥ 0.

(24)

Then for all 𝑡 ∈ (0, 𝑇], we have 𝑢(𝑡) ≥ 0, V(𝑡) ≥ 0.

Proof. Let 𝑝(𝑡) = 𝑢(𝑡) + V(𝑡), ∀𝑡 ∈ (0, 𝑇]. By (24) we have

𝐷
𝛼
𝑝 (𝑡) ≥ −𝑀𝑝 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑝 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑝 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

≥ 0.

(25)

Hence

𝑝 (𝑡) ≥ 0. (26)

That is,

𝑢 (𝑡) ≥ −V (𝑡) . (27)

In fact, by (24) and (27), we have that

𝐷
𝛼
𝑢 (𝑡) ≥ −𝑀𝑢 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

≥ 0,

𝐷
𝛼V (𝑡) ≥ −𝑀V (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
≥ 0.

(28)

From Lemma 4, we obtain 𝑢(𝑡) ≥ 0, V(𝑡) ≥ 0, ∀𝑡 ∈ (0, 𝑇].
This completes the proof of the lemma.

3. Main Results

In this section, we prove the existence of extremal solutions
of nonlinear system (3).We list the following assumptions for
convenience.
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(𝐻2) The function 𝑘(𝑡, 𝑠) ∈ 𝐶((0, 𝑇] × (0, 𝑇],R+). There
exist 𝑢0, V0 ∈ 𝐶1−𝛼([0, 𝑇]), which are locally Hölder
continuous functions, and 𝑢0 ≤ V0, such that

𝐷
𝛼
𝑢0 (𝑡) ≤ 𝑓(𝑡, 𝑢0 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠) , 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢0 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

≤ 𝑥0,

𝐷
𝛼V0 (𝑡) ≥ 𝑔(𝑡, V0 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢0 (𝑠) 𝑑𝑠) , 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼V0 (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
≥ 𝑦0.

(29)

(𝐻3) There exist𝑀 ≥ 0,𝑁 ≥ 0, such that

𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠) − 𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠)

≥ −𝑀(𝑢 (𝑡) − 𝑢 (𝑡)) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) (V (𝑠) − V (𝑠)) 𝑑𝑠,

𝑔 (𝑡, V (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠) − 𝑔(𝑡, V (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠)

≥ −𝑀(V (𝑡) − V (𝑡)) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) (𝑢 (𝑠) − 𝑢 (𝑠)) 𝑑𝑠,

(30)

where 𝑢0(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢(𝑡) ≤ V0(𝑡), 𝑢0(𝑡) ≤

V(𝑡) ≤ V(𝑡) ≤ V0(𝑡), and 𝑔(𝑡, V(𝑡), ∫
𝑡

0
𝑘(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠)

− 𝑓(𝑡, 𝑢(𝑡), ∫
𝑡

0
𝑘(𝑡, 𝑠)V(𝑠)𝑑𝑠) ≥ 𝑀(𝑢(𝑡) − V(𝑡)) +

𝑁∫
𝑡

0
𝑘(𝑡, 𝑠)(V(𝑠) − 𝑢(𝑠))𝑑𝑠, with 𝑢0(𝑡) ≤ 𝑢(𝑡) ≤ V(𝑡) ≤

V0(𝑡).

Theorem 6. Suppose that conditions (𝐻1)–(𝐻3) hold. Then,
there exists an (𝑢∗, V∗) ∈ [𝑢0, V0]×[𝑢0, V0]which is an extremal
solution of the nonlinear problem (3). Moreover, there exist
monotone iterative sequences {𝑢𝑛}, {V𝑛} ⊂ [𝑢0, V0], such that
{𝑢𝑛} → 𝑢

∗
, {V𝑛} → V∗ (𝑛 → ∞) uniformly on 𝑡 ∈ (0, 𝑇],

and

𝑢0 ≤ 𝑢1 ≤ ⋅ ⋅ ⋅ ≤ 𝑢𝑛 ≤ 𝑢
∗
≤ V∗ ≤ ⋅ ⋅ ⋅ ≤ V𝑛 ≤ ⋅ ⋅ ⋅ ≤ V1 ≤ V0.

(31)

Proof. First, for any 𝑢𝑛−1, V𝑛−1 ∈ 𝐶1−𝛼([0, 𝑇]), 𝑛 ≥ 1, we
consider the IVP of the linear system

𝐷
𝛼
𝑢𝑛 (𝑡) = 𝑓(𝑡, 𝑢𝑛−1 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑛−1 (𝑠) 𝑑𝑠)

+𝑀𝑢𝑛−1 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑛−1 (𝑠) 𝑑𝑠

−𝑀𝑢𝑛 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑛 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝐷
𝛼V𝑛 (𝑡) = 𝑔(𝑡, V𝑛−1 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑛−1 (𝑠) 𝑑𝑠)

+𝑀V𝑛−1 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑛−1 (𝑠) 𝑑𝑠

− 𝑀V𝑛 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑛 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢𝑛 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0, 𝑡
1−𝛼V𝑛 (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑦0.

(32)

From Lemma 3, we know that (32) has unique system of
solutions in 𝐶1−𝛼([0, 𝑇]) × 𝐶1−𝛼([0, 𝑇]).

Next, we show that {𝑢𝑛(𝑡)}, {V𝑛(𝑡)} satisfy the property

𝑢𝑛−1 ≤ 𝑢𝑛 ≤ V𝑛 ≤ V𝑛−1, 𝑛 = 1, 2, . . . . (33)

Let 𝑝(𝑡) = 𝑢1(𝑡) − 𝑢0(𝑡), 𝑞(𝑡) = V0(𝑡) − V1(𝑡). From (32)
and (𝐻2), we have that

𝐷
𝛼
𝑝 (𝑡) = 𝐷

𝛼
𝑢1 (𝑡) − 𝐷

𝛼
𝑢0 (𝑡)

≥ 𝑓(𝑡, 𝑢0 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠) +𝑀𝑢0 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠 −𝑀𝑢1 (𝑡)

− 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V1 (𝑠) 𝑑𝑠

− 𝑓(𝑡, 𝑢0 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠)

= −𝑀𝑝 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑞 (𝑠) 𝑑𝑠,

𝐷
𝛼
𝑞 (𝑡) = 𝐷

𝛼V0 (𝑡) − 𝐷
𝛼V1 (𝑡)

≥ 𝑔(𝑡, V0 (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢0 (𝑠) 𝑑𝑠)

− 𝑔(𝑡, V0 (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢0 (𝑠) 𝑑𝑠) −𝑀V0 (𝑡)

− 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠 +𝑀V1 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢1 (𝑠) 𝑑𝑠

= −𝑀𝑞 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑝 (𝑠) 𝑑𝑠,

𝑡
1−𝛼

𝑝 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

≥ 𝑥0 − 𝑥0 = 0, 𝑡
1−𝛼

𝑞 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

≥ 𝑦0 − 𝑦0 = 0.

(34)

Thus, by Lemma 5, we have that 𝑝(𝑡) ≥ 0, 𝑞(𝑡) ≥ 0, ∀𝑡 ∈

(0, 𝑇].
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Let 𝑤(𝑡) = V1(𝑡) − 𝑢1(𝑡). By condition (32) and (𝐻3), we
obtain

𝐷
𝛼
𝑤 (𝑡) = 𝐷

𝛼V1 (𝑡) − 𝐷
𝛼
𝑢1 (𝑡)

= 𝑔(𝑡, V0 (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢0 (𝑠) 𝑑𝑠) +𝑀V0 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢0 (𝑠) 𝑑𝑠 −𝑀V1 (𝑡)

− 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢1 (𝑠) 𝑑𝑠

− 𝑓(𝑡, 𝑢0 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠) −𝑀𝑢0 (𝑡)

− 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠 +𝑀𝑢1 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V1 (𝑠) 𝑑𝑠

≥ −𝑀𝑤 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑤 (𝑠) 𝑑𝑠,

𝑡
1−𝛼

𝑤 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑦0 − 𝑥0 ≥ 0.

(35)

By Lemma 4, we obtain𝑤(𝑡) ≥ 0, ∀𝑡 ∈ (0, 𝑇]. Hence, we have
the relation 𝑢0 ≤ 𝑢1 ≤ V1 ≤ V0.

Now, we assume that 𝑢𝑘−1 ≤ 𝑢𝑘 ≤ V𝑘 ≤ V𝑘−1, for some
𝑘 ≥ 1, and we prove that (33) is true for 𝑘 + 1, too. Let 𝑝(𝑡) =
𝑢𝑘+1(𝑡)−𝑢𝑘(𝑡), 𝑞(𝑡) = V𝑘(𝑡)−V𝑘+1(𝑡),𝑤(𝑡) = V𝑘+1(𝑡)−𝑢𝑘+1(𝑡).
By (32) and (𝐻3), we have that

𝐷
𝛼
𝑝 (𝑡) = 𝐷

𝛼
𝑢𝑘+1 (𝑡) − 𝐷

𝛼
𝑢𝑘 (𝑡)

= 𝑓(𝑡, 𝑢𝑘 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑘 (𝑠) 𝑑𝑠) +𝑀𝑢𝑘 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑘 (𝑠) 𝑑𝑠 −𝑀𝑢𝑘+1 (𝑡)

− 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑘+1 (𝑠) 𝑑𝑠

− 𝑓(𝑡, 𝑢𝑘−1 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑘−1 (𝑠) 𝑑𝑠)

−𝑀𝑢𝑘−1 (𝑡) − 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑘−1 (𝑠) 𝑑𝑠 +𝑀𝑢𝑘 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) V𝑘 (𝑠) 𝑑𝑠

≥ −𝑀𝑝 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑞 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝐷
𝛼
𝑞 (𝑡) = 𝐷

𝛼V𝑘 (𝑡) − 𝐷
𝛼V𝑘+1 (𝑡)

= 𝑔(𝑡, V𝑘−1 (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑘−1 (𝑠) 𝑑𝑠) +𝑀V𝑘−1 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑘−1 (𝑠) 𝑑𝑠 − 𝑀V𝑘 (𝑡)

− 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑘 (𝑠) 𝑑𝑠

− 𝑔(𝑡, V𝑘 (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑘 (𝑠) 𝑑𝑠) −𝑀V𝑘 (𝑡)

− 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑘 (𝑠) 𝑑𝑠 + 𝑀V𝑘+1 (𝑡)

+ 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢𝑘+1 (𝑠) 𝑑𝑠

≥ −𝑀𝑞 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑝 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑝 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 0, 𝑡
1−𝛼

𝑞 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 0,

𝐷
𝛼
𝑤 (𝑡) ≥ −𝑀𝑤 (𝑡) + 𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑤 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑤 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

≥ 0.

(36)

By Lemmas 4 and 5, we have that 𝑢𝑘 ≤ 𝑢𝑘+1 ≤ V𝑘+1 ≤ V𝑘.
From the above, by induction, it is easy to prove that

𝑢0 ≤ 𝑢1 ≤ ⋅ ⋅ ⋅ ≤ 𝑢𝑛 ≤ ⋅ ⋅ ⋅ ≤ V𝑛 ≤ ⋅ ⋅ ⋅ ≤ V1 ≤ V0. (37)

We see that {𝑢𝑛} is monotone nondecreasing and is
bounded fromabove and {V𝑛} ismonotone nonincreasing and
is bounded from below; hence,

lim
𝑛→∞

𝑢𝑛 (𝑡) = 𝑢
∗
, lim

𝑛→∞
V𝑛 (𝑡) = V∗, (38)

uniformly on compact subsets of (0, 𝑇], and the limit func-
tions 𝑢∗, V∗ satisfy (3). Moreover, 𝑢∗, V∗ ∈ [𝑢0, V0]. Taking
the limits in (32), we know that (𝑢

∗
, V∗) is a system of

solutions of (3) in [𝑢0, V0] × [𝑢0, V0]. Moreover, (31) is true.
Finally, we prove that (3) has an extremal solution.

Assume that (𝑢, V) ∈ [𝑢0, V0] × [𝑢0, V0] is any solutions of (3).
That is,

𝐷
𝛼
𝑢 (𝑡) = 𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠) , 𝑡 ∈ (0, 𝑇] ,

𝐷
𝛼V (𝑡) = 𝑔(𝑡, V (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠) , 𝑡 ∈ (0, 𝑇] ,

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑥0, 𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑦0.

(39)

By (32), (39), (𝐻3), and Lemma 5, it is easy to prove that

𝑢𝑛 ≤ 𝑢, V ≤ V𝑛, 𝑛 = 1, 2, . . . . (40)
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By taking the limits in (40) as 𝑛 → ∞, we have that 𝑢∗ ≤

𝑢, V ≤ V∗. That is, (𝑢∗, V∗) is an extremal solution of (3) in
[𝑢0, V0] × [𝑢0, V0]. This completes the proof.

4. An Example

Example 1. Consider the following problem:

𝐷
𝛼
𝑢 (𝑡) = 𝑀𝑡

2
[𝑡 − 𝑢 (𝑡)] − 𝑁∫

𝑡

0

(𝑡 + 𝑠) V (𝑠) 𝑑𝑠,

𝐷
𝛼V (𝑡) = 𝑀𝑡

2
[𝑡 − V (𝑡)] − 𝑁∫

𝑡

0

(𝑡 + 𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 0, 𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 0,

(41)

where 𝑡 ∈ [0, 1], 𝐷
𝛼 is the standard Riemann-Liouville

fractional derivative of order 0 < 𝛼 ≤ 1, and 𝑀, 𝑁 are
constants satisfying 𝑀 > (5/6)𝑁. In view of Lemma 3, the
nonlinear system (41) has unique solution if 1/2 < 𝛼 ≤ 1,
and in case of 0 < 𝛼 ≤ 1/2, an additional assumption
(Γ(𝛼)/Γ(2𝛼))(|𝑀| + |𝑁|/𝛼) < 1 is added so that (𝐻1) holds.
Note that in a special case, let𝑀 = 𝛼

𝐾,𝑁 = 𝛼
𝐾+1, where𝐾 >

0 is a sufficiently large real number; (𝐻1) holds automatically.
Obviously,

𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠)

= 𝑀𝑡
2
[𝑡 − 𝑢 (𝑡)] − 𝑁∫

𝑡

0

(𝑡 + 𝑠) V (𝑠) 𝑑𝑠,

𝑔 (𝑡, V (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠)

= 𝑀𝑡
2
[𝑡 − V (𝑡)] − 𝑁∫

𝑡

0

(𝑡 + 𝑠) 𝑢 (𝑠) 𝑑𝑠.

(42)

Take 𝑢0(𝑡) = 0, V0(𝑡) = 𝑡; then

𝐷
𝛼
𝑢0 (𝑡) = 0 ≤ (𝑀 −

5

6
𝑁) 𝑡
3

= 𝑓(𝑡, 𝑢0 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) V0 (𝑠) 𝑑𝑠) ,

(43)

𝐷
𝛼V0 (𝑡) =

𝑡
1−𝛼

Γ (2 − 𝛼)
≥ 0

= 𝑔(𝑡, V0 (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢0 (𝑠) 𝑑𝑠) ,

(44)

𝑡
1−𝛼

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑡
1−𝛼V (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=0
= 0. (45)

So condition (𝐻2) of Theorem 6 holds. Moreover, it is easy
to verify that condition (𝐻3) holds; thus, all conditions of
Theorem 6 are satisfied. Consequently, the nonlinear system
(41) has an extremal solution (𝑢

∗
, V∗) ∈ [0, 𝑡] × [0, 𝑡].
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