
Research Article
Multiband CCD Image Compression for Space Camera with
Large Field of View

Jin Li,1,2 Fei Xing,1,2 Ting Sun,1,2 and Zheng You1,2

1 Department of Precision Instruments, The State Key Laboratory of Precision Measurement, Technology and Instruments,
Tsinghua University, Beijing 100084, China

2 Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Beijing 100084, China

Correspondence should be addressed to Fei Xing; 280959286@qq.com

Received 20 February 2014; Accepted 28 May 2014; Published 6 July 2014

Academic Editor: Shiping Lu

Copyright © 2014 Jin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Space multiband CCD camera compression encoder requires low-complexity, high-robustness, and high-performance because of
its captured images information being very precious and also because it is usually working on the satellite where the resources, such
as power, memory, and processing capacity, are limited. However, the traditional compression approaches, such as JPEG2000, 3D
transforms, and PCA, have the high-complexity. The Consultative Committee for Space Data Systems-Image Data Compression
(CCSDS-IDC) algorithm decreases the average PSNR by 2 dB compared with JPEG2000. In this paper, we proposed a low-
complexity compression algorithm based on deep coupling algorithm among posttransform in wavelet domain, compressive
sensing, and distributed source coding. In our algorithm, we integrate three low-complexity and high-performance approaches
in a deeply coupled manner to remove the spatial redundant, spectral redundant, and bit information redundancy. Experimental
results on multiband CCD images show that the proposed algorithm significantly outperforms the traditional approaches.

1. Introduction

Space multiband charge coupled devices (CCD) camera is
now heading for a high spatial resolution, high spectral
resolution, high radiation resolution, large field of view, and
wide coverage development. All these result in the number of
CCDmosaic growing, read-out rate increasing, quantization
bits of AD converter increasing, and average shooting time
increasing, so that the amount of digitization image data
increases sharply. However, the highest data transmission
rates of on-board downlink channel are limited. In addition,
the amount of flash memory based SSR used on the satellite
is also limited. So, it is necessary to compress the on-board
CCD images as well.

Space multiband CCD camera compression encoder
requires low-complexity, high-robustness, and high-
performance because of its captured images information
being very precious, and also because it is usually working on
the satellite where the resources, such as power, memory, and

processing capacity, are limited. Reference [1] does statistics
about the on-board image compression algorithm based on
using the basis compression theory used in compression
system for more than 40 space missions. The statistics result
is shown in Figure 1. More than half of on-board image
compression algorithms are based on a transform approach.
About 80% are based on a prediction method.

The transform-based approach usually has an image
transform stage, such as discrete cosine transform (DCT),
discrete wavelet transform (DWT) [2], and Karhunen-Loeve
transform (KLT) [3]. Then the transform coefficients are
coding by compression algorithms, such as EZW [4], SPIHT,
SPECK, EBCOT [5], and bit plane encoder (BPE). The
typical transform-based algorithms are JPEG2000 [6] and the
Consultative Committee for Space Data Systems-Image Data
Compression (CCSDS-IDC) [7]. In JPEG2000 algorithm,
EBCOT is very efficient to remove the redundancy between
wavelet transforms coefficients, which makes JPEG2000
become the best-performing compression encoder in the
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Figure 1: The statistics result of on-board image compression.

existing image compression algorithms. However, it is too
complex to be implemented in space mission. The CCSDS-
IDC algorithm is composed of DWT and BPE. The BPE,
which is a zero tree encoder makes the most of the structures
of spatiotemporal orientation trees in bit plane. That is,
grandchildren coefficients also become not important when
children coefficients are important. This zero tree charac-
teristic makes the bit plane exit a large amount of zero
areas. Taking full advantage of these zero areas can improve
coding efficiency. CCDS-IDC has progressive coding and
fault-tolerant capability characteristic. But, BPE has low-
complexity and occupies less storage capacity, which is very
suitable for the application of on-board camera. However,
it decreases the average PSNR by 2 dB compared with
JPEG2000. In addition, CCDS-IDC is only suitable for the
2D image, which cannot exploit the spectral redundancy for
3D image.

The prediction-based approaches are widely used by 3D
image (like multispectral, hyperspectral image) compression.
For now, to cover 1D, 2D, and 3D, coefficients prediction
algorithms include hundreds of predictors. For the on-
board application, themain predictionmethodswereDPCM,
adaptive DPCM, CCSDS-LDC, CCSDS-MHD, JPEG-LS, and
LUT [8]. The prediction-based approaches are very simple
and realized easily in hardware. However, its compression
performance is limited and it has low anti-BER (bit error
rate). For now, on-board image compression based on predic-
tion only is unusual. Generally, compression algorithm uses
them in combination with other compression approaches,
such as CCSDS-IDC, which use DPCM encoding the DC
coefficients.

Recently, two low-complexity compression approaches
are already appearing which are distributed source coding
(DSC) [9] and compressive sampling (CS) [10]. They have
common characteristics, which can shift algorithm complex-
ity from encoder to decoder. Different from 3D transform-
basedmultispectral image compressor which uses the depen-
dency of information source to improve the compression
performance, DSC uses the dependency of the decoder to
improve the compression performance. For CS, it is a new
sampling theory, which breaks out of the Nyquist sampling
theory. CS can reconstruct the original signal from a small
number of measured signals. Many DSC-based compression

schemes are proposed at present. Pan et al. propose a
low-complexity DCT-based DSC compression method for
hyperspectral images. Cheung et al. propose a wavelet-based
predictive Slepian-Wolf coding for hyperspectral images.
A number of CS-based compression approaches have also
been proposed for now. Deng et al. proposed wavelet-based
CS compression method. Meriño et al. proposed robust
compression using compressive sensing. These compression
schemes can be easily implemented from both software and
hardware which made this algorithm more practical to on-
board applications. However, DSC and CS also only combine
the DSC with traditional approaches for now.

For now, Peyré and Mallat [11] propose a new low-
complexity compression approach based on posttransform
(PT). PT is a transform to wavelet coefficients block. This
approach can remove the redundancy between wavelets’
coefficients, which can improve compression performance.
In addition, because it processes a 16-coefficient block and
only carries out dot product operation, it does not require
large amount of memories and could simply implement on
hardware. To adapt on-board application, Delaunay et al. in
[12] proposed a compression scheme using BPE from the
CCSDS recommendation to code posttransform coefficients.
However, the posttransforms destroy the zero-tree structure.
The basis vectors must be ordered and sorted with respect
to the energy contribution. This causes it to have an additive
complexity and a low compression performance.

In this paper, we proposed a low-complexity compres-
sion algorithm based on deep coupling algorithm among
posttransform in wavelet domain, compressive sensing, and
distributed source coding. In our algorithm, we integrate
three low-complexity and high-performance approaches in
a deeply coupled manner to remove the spatial redundancy,
spectral redundancy, and bit information redundancy.

The latter part of this paper is organized as follows.
In Section 2, we present a low-complexity compression
algorithm based deep coupling approach. In Section 3, the
experimental results are demonstrated. Section 4 concludes
the proposed method.

2. Proposed Scheme

To weigh the computational complexity and compression
performance, in this paper, we proposed a low-complexity
compression algorithm based on deep coupling algorithm
for multiband CCD images. We integrate posttransform
in wavelet domain, compressive sensing, and distributed
source coding in a deeply coupled manner to remove the
spatial redundant, spectral redundant, and bit information
redundancy.

2.1. Proposed Algorithm Architecture. Figure 2 shows the
proposed deep coupling architecture. The key band 𝑋key
is processed by deep coupling between the posttransform
and CS. This key band is used to reconstruct the other
bands in decoder. Other bands 𝑋

𝑖
are processed by deep

coupling between the posttransform, CS, and DSC. First,
𝑋
𝑖
is performed by wavelet transform and posttransform.
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Figure 2: Proposed deep coupling coding architecture for multiband CCD images.
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Figure 3: Proposed deep coupling coding between PT and CS.

Then, the posttransform coefficients are sampled by the CS
measurement matrix to obtain the resultant CS measure-
ments. Finally, the resultant CS measurements are encoded
by a Slepian-Wolf (SW) encoder. In our scheme, we choose
QC-LDPC code as the powerful error-correcting code to
realize the DSC strategy. The QC-LDPC-based SW coder is
implemented to encode the resultant CS measurements bits
to generate the check bits.The check bits are only entered into
the compressed bit streams.

In decoding, the check bits and side information are
combined in a new code word to correct errors. So the result
measurements of 𝑋

𝑖
can be recovered. The side information

can be 𝑋󸀠
𝑖
which can be obtained by the prediction approach

from the 𝑋
𝑖−1

and 𝑋
𝑖−2

, which are reconstructed from the
𝑋
𝑖−1

and 𝑋
𝑖−2

. The reconstructed result measurements can
be recovered by a recovery algorithm based on orthogonal
matching pursuit (OMP) to obtain the reconstructed post-
transformed coefficients.The reconstructed posttransformed

coefficients are reversely transformed to obtain reconstructed
wavelet coefficients. Finally, the reconstructed wavelet coeffi-
cients are reversely transformed to obtain the𝑋

𝑖
.

2.2. Deep Coupling between PT and CS. Figure 3 shows the
proposed deep coupling between the posttransform and
CS. An image is decomposed by two-dimension DWT into
three-level high-frequency subbands and one low-frequency
subband. Each high-frequency subband is performed by
posttransform. In our algorithm, the dictionary has two
bases, which work at high bit rate and low bit rate. We
use 𝑙
−𝑝

norm-based, the best posttransform. Three levels
of high posttransformed subbands are sampled by 3 CS
measurements’ matrices Φ

1
, Φ
2
, and Φ

3
. The resultant CS

measurements are quantized and entropy coding. The com-
pressed streambits can be obtained and then are grouped into
packets and are sent to the decoder via signal channels. The
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sizemeasurementsmatrix can be evaluated by an information
evaluation. And the base used is selected by a bit evaluation.

In this paper, to obtain a low-complexity yet an efficient
posttransform, we use a very simple dictionary which is
composed of the Hadamard basis and DCT basis; that is,
𝑁
𝑏
= 2. Under the low bit rate, the bit rate 𝑅 can be expressed

as

𝑅 ≈ 𝛾
0
𝑀, 𝛾

0
= 7, (1)

where 𝑀 is the number of nonzero posttransformed coeffi-
cients. Under the high bit rate, the bit rate 𝑅 can be expressed
as

𝑅 ≈ ℎ (𝑥) − log
2
𝑞, 𝐻 (𝑋) = −

𝑁

∑

𝑖=1

𝑝
𝑖
log
2
𝑝
𝑖
, (2)

where𝐻(𝑥) is the entropy of image 𝑥 and 𝑞 is a quantizer step.
According to (6) and (7), we proposed a new approach based
on 𝑙
𝑝
norm for the best posttransform basis selection.

Under the low bit rate, the best posttransform basis
selection can be expressed as

𝑓
𝑏∗
= arg min
𝑓
𝑏
,𝑏∈[0,𝑁𝑏]

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑏󵄩󵄩󵄩󵄩󵄩0

s.t. 󵄩󵄩󵄩󵄩󵄩𝑓
𝑏󵄩󵄩󵄩󵄩󵄩0

=

16

∑

𝑚=1

𝐼
𝑚
,

𝐼
𝑚
= {

1, ⌊
󵄨󵄨󵄨󵄨𝑎𝑏 [𝑚]

󵄨󵄨󵄨󵄨⌋ ̸= 0,

0, ⌊
󵄨󵄨󵄨󵄨𝑎𝑏 [𝑚]

󵄨󵄨󵄨󵄨⌋ = 0,

(3)

where 𝑎
𝑏
[𝑚] is a posttransformed coefficient.

Under the high bit rate, the best posttransform basis
selection can be expressed as

𝑓
𝑏∗
= arg min
𝑓
𝑏
,𝑏∈[0,𝑁𝑏]

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑏󵄩󵄩󵄩󵄩󵄩1

s.t. 󵄩󵄩󵄩󵄩󵄩𝑓
𝑏󵄩󵄩󵄩󵄩󵄩1

= (

15

∑

𝑚=0

󵄨󵄨󵄨󵄨𝑎𝑏 [𝑚]
󵄨󵄨󵄨󵄨) . (4)

Given the different subbands which include varying
degrees of image information, the CS sensing matrices have
different sizes. Four CS sensing matrices are denoted as ΦLL,
ΦLH,ΦHL, andΦHH.The sensing process can be expressed as

[
[
[

[

𝑌LL
𝑌LH
𝑌HL
𝑌HH

]
]
]

]

=

[
[
[

[

ΦLL
ΦLH

ΦHL
ΦHH

]
]
]

]

[
[
[

[

𝑋LL
𝑋LH
𝑋HL
𝑋HH

]
]
]

]

, (5)

where𝑌LL,𝑌LH,𝑌HL, and𝑌HH are CSmeasured result samples
from posttransformed low subband and high subbands and
𝑋LL, 𝑋LH, 𝑋HL, and 𝑋HH are posttransformed coefficients in
low subband and high subbands, respectively.

CS sensing matrices’ size is determined by bit rate.
Since the best transform select 𝑓𝑏∗ is reflecting the image
information, the bit rate can be evaluated by 𝑓𝑏∗. The bit rate
can be expressed as

𝑟
𝑖
=

𝐼
𝑖

∑
10

𝑖=1
𝐼
𝑖

× 𝑅,

𝐼
𝑖
=

𝐽𝑖

∑

𝑗=1

𝑓
𝑏∗

𝑗,𝑖
,

(6)

where 𝑟
𝑖
denotes 𝑖th subband allocated bit rate,𝑅denotes total

bit rate, 𝐼
𝑖
denotes 𝑖th subband of the amount of information,

𝐽
𝑗
denotes the number of 𝑖th subbands of the posttransform

blocks, and 𝑓
𝑏∗

𝑗,𝑖
is 𝑖th subband of 𝑗th best posttransform

selection.
The base used in dictionary selection is determined by

CS result measurements. In result measurements, we use a
prediction approach to compute the amount of information
of CS result measurements. The prediction can be expressed
as

𝑓
󸀠
(𝑘, 𝑞)

=

{{{{{{{

{{{{{{{

{

min (𝑓 (𝑘, 𝑞 − 1) , 𝑓 (𝑘 − 1, 𝑞)) , 𝑓 (𝑘 − 1, 𝑞 − 1)
≥ max (𝑓 (𝑘, 𝑞 − 1) , 𝑓 (𝑘 − 1, 𝑞))

max (𝑓 (𝑘, 𝑞 − 1) , 𝑓 (𝑘 − 1, 𝑞)) , 𝑓 (𝑘 − 1, 𝑞 − 1)
≤ min (𝑓 (𝑘, 𝑞 − 1) , 𝑓 (𝑘 − 1, 𝑞))

(𝑓 (𝑘, 𝑞 − 1)+𝑓 (𝑘 − 1, 𝑞))−𝑓 (𝑘 − 1, 𝑞 − 1) , others.
(7)

Each CS result measurement 𝑙
−1

norm can be expressed as

𝑌
∗
= ‖Δ‖1, s.t. Δ = 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑘, 𝑞) − 𝑓

󸀠
(𝑘, 𝑞)

󵄨󵄨󵄨󵄨󵄨
. (8)

When 𝑌∗ is considered as 𝑓𝑏∗, from (1), the base used in
dictionary selection can be determined.

2.3. Deep Coupling among PT, CS, and DSC. Figure 4 shows
the proposed deep coupling among the posttransform, CS,
and DSC.

The subset of the bands 𝑋
𝑖−1

and 𝑋
𝑖−2

, which have been
encoded, is used to compute the linear predictor coefficients
𝛼 and 𝛽. The band 𝑋

𝑖
is decomposed by DWT and post-

transform to obtain the posttransformed coefficients. The
posttransformed coefficients combined with the coefficients
𝛼 and𝛽 to obtain the prediction posttransformed coefficients’
band 𝑋

󸀠

𝑖
. The posttransformed coefficients 𝑋

𝑖
and 𝑋

󸀠

𝑖
are

sampled by CS measurements’ matrix to obtain the result
measurements 𝑌

𝑖
and 𝑌

󸀠

𝑖
. 𝑌
𝑖
and 𝑌

󸀠

𝑖
are used to compute

the crossover probability 𝑝
𝑖
. The crossover probability deter-

mines the check matrix and the posttransform base used.
The crossover probability and the best transform select 𝑓𝑏∗
decided mutually the measurements’ matrix size.

To ensure that the𝑋󸀠
𝑖
and𝑋

𝑖
are similar as far as possible,

we use a second-order filter to compute the prediction
coefficients 𝛼 and 𝛽. This can be expressed as

𝑥
󸀠
= 𝛼 (V − 𝑚V) + 𝛽 (𝑤 − 𝑚𝑤) + 𝑚𝑥, (9)

where V is the pixels colocated with the current pixel in band
𝑋
𝑖−1

,𝑤 is the pixels colocated with the current pixel in bands
𝑋
𝑖−2

, and𝑚V and𝑚𝑤 are the expectation value of the random
variables V and 𝑤, respectively. This can be expressed as

𝑚V = 𝐸 {V} , 𝑚
𝑤
= 𝐸 {𝑤} . (10)
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Figure 4: Proposed deep coupling coding among PT, CS, and DSC.
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Figure 5: Definitions of context windows: (a) and (b) two previous bands, (c) current band.

Under theminimummean square error criteria, the statistical
optimal prediction can be computed by solving a Wiener-
Hopf equation as

[
𝛿
2

V 𝛿
𝑤V

𝛿
𝑤V 𝛿
2

𝑤

] [
𝛼

𝛽
] = [

𝛿
𝑥V
𝛿
𝑥𝑤

] . (11)

Define the context windows of the current band and the
previous band as shown in Figure 5; the statistical parameters
can be approximated as

𝛿
2

V = 𝐸 {V
2
} − 𝑚

2

V =
1

𝑀2
(𝑀

𝑀

∑

𝑖=1

V2
𝑖
− (

𝑀

∑

𝑖=1

V
𝑖
)

2

) ,

𝛿
𝑤𝑥
= 𝐸 {𝑤𝑥} − 𝑚𝑤𝑚𝑥

=
1

𝑀2
(𝑀

𝑀

∑

𝑖=1

𝑤
𝑖
𝑥
𝑖
−

𝑀

∑

𝑖=1

𝑤
𝑖

𝑀

∑

𝑖=1

𝑥
𝑖
) ,

(12)

where 𝑀 is the context window size. Other parameters can
be likewise calculated.

The theoretical limit of Slepian-Wolf bit rate is 𝑅 ⩾ 𝐻(𝑋 |

𝑌); bit rate determinates the parity-check matrix of QC-
LDPC. The conditional entropy 𝐻(𝑋 | 𝑌) can be expressed
as

𝐻(𝑋 | 𝑌) = 𝐻 (𝑝) = −𝑝log
2
(𝑝) − (1 − 𝑝) log

2
(1 − 𝑝) ,

(13)

where𝑝 is the crossover probability.The crossover probability
can be computed as

𝑃
𝑖
= 𝐸 (𝑃

𝑛
) =

1

𝑀
∑

𝑛

𝑃
𝑛
≈
1

𝑀
∑

𝑛

𝑇
𝑛
,

𝑇
𝑛
= {

1, if 𝑌
𝑖,𝑗

̸= 𝑋
𝑖,𝑗
,

0, if 𝑌
𝑖,𝑗
= 𝑋
𝑖,𝑗
.

(14)

To improve efficiency, we use subsample to evaluate the
crossover probability. In addition, we use the QC-LDPC code
to implement the SW encoder. For fast and efficient coding,
in [13], cyclic matrix A uses a 𝑏 × 𝑏 permutation matrix as
follows:

𝑃 =

[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

1 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]

]

. (15)

Consider that 𝑃𝑗 is a permutation matrix; it is obtained by
unit matrix 𝑃𝑗 that shifts 𝑖 times right. 𝑖 is a positive integer.
𝑃
∞ is a zero matrix. A parity-check matrix is expressed as

𝑃 =

[
[
[

[

𝑃
𝑎11 𝑃
𝑎12 ⋅ ⋅ ⋅ 𝑃

𝑎1(𝑘−1) 𝑃
𝑎1𝑘

𝑃
𝑎21 𝑃
𝑎22 ⋅ ⋅ ⋅ 𝑃

𝑎2(𝑘−2) 𝑃
𝑎2𝑘

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑃
𝑎𝑗1 𝑃
𝑎𝑗2 ⋅ ⋅ ⋅ 𝑃

𝑎𝑗(𝑘−1) 𝑃
𝑎𝑗𝑘

]
]
]

]

, (16)



6 Journal of Applied Mathematics

(a) Original band 1 (b) Original band 2 (c) Original band 3 (d) Original band 4

(e) Reconstructed band 1 (f) Reconstructed band 2 (g) Reconstructed band 3 (h) Reconstructed band 4

Figure 6: Encoding multiband images at 2.0 bpp.

where 𝑎
𝑖𝑙
∈ {0, 1, . . . , 𝑞 − 1,∞}. The bit rate is 𝑅 ≥ 1 − 𝑗/𝑘.

In this paper, the designed parity-check matrix is expressed
as follows:

𝑃 =

[
[
[
[
[

[

𝐼 𝐼 𝐼 ⋅ ⋅ ⋅ 𝐼 ⋅ ⋅ ⋅ 𝐼

0 𝐼 𝑃 ⋅ ⋅ ⋅ 𝑃
(𝑗−2)

⋅ ⋅ ⋅ 𝑃
(𝑘−2)

0 0 𝐼 ⋅ ⋅ ⋅ 𝑃
2(𝑗−3)

⋅ ⋅ ⋅ 𝑃
2(𝑘−3)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 0 𝐼 ⋅ ⋅ ⋅ 𝑃
(𝑗−1)(𝑘−𝑗)

]
]
]
]
]

]

. (17)

The bit rate can be determined by 𝑗 and 𝑘. And the parity-
check matrix can also be determined, and then coding is
implemented. Since the elements of proposed parity-check
matrix are 0 or 1 only and can be computed by simple
additions and shifts, QC-LDPC encoder is suitable for the
hard implementation.

3. Experimental Results

As usually done in the literature, we use the Quickbird multi-
band remote sensing images. Each group remote sensing
images are used to evaluate our deep coupling compression
scheme. The size of each group is 512 × 512 × 4, and the
bit depth of pixel is 8 bpp (bits per pixel). The compression
rate is set to 1 bpp. All algorithms are implemented in
MATLAB and run on PCs with 1.87GHz E8400 CPU and
1GB memory. The following diagrams illustrate the results.
Figure 6 demonstrated the four original and reconstructed
bands. From the displayed images, the original image and
reconstructed image have almost no difference because the
proposed compression algorithm has a high signal-to-noise
ratio.

To objectively evaluate the performance of proposed deep
coupling-based compression scheme, extensive experiments
were carried out on a number of multispectral data at
various coding bit rates. In the first experimental part, we

compare the compression results obtained with the proposed
coder against those achieved with AT-3DSPIHT [14], 3D-
DWT [15], 3D-PCA [16], 3D-SPECK [17], and SA-DCT [18]
implemented independently. The quality assessment of the
decoded images is based on rate-distortion results measured
by means of the overall SNR given by

PSNR = 10 log
10
(

𝑃

MSE
) (dB) , (18)

where 𝑃 andMSE denote the power of the original image and
the mean squared error, respectively.The PSNR comparisons
were demonstrated in Figure 7. Due to the full usage of post-
transform, CS, and DSC, the proposed deep coupling-based
compression scheme achieves the best compression perfor-
mance and 0.3∼1.3 dB PSNR gain on average against the other
five compression codecs in norm bit rate 2.0∼0.25 bpp. Over-
all, the proposed scheme shows excellent lossy compression
performance and delivers better compression results than
that of commonly used coders.

4. Conclusion

In this paper, we proposed a low-complexity compression
algorithm based on deep coupling algorithm among post-
transform in wavelet domain, compressive sensing, and
distributed source coding. In our algorithm, we integrate
three low-complexity and high-performance approaches in
a deeply coupled manner to remove the spatial redundant,
spectral redundant, and bit information redundancy. Exper-
imental results on multiband CCD images show that the
proposed algorithm significantly outperforms the traditional
approaches.
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Figure 7: The test result of multiband images.
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