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A new approach to generate chaotic phenomenon, called chaos entanglement, is introduced in this paper. The basic principle is to
entangle two or multiple stable linear subsystems by entanglement functions to form an artificial chaotic system such that each of
them evolves in a chaotic manner.TheHopf bifurcation of a new chaotic systemwith chaos entanglement function is studied. More
precisely, we study the stability and bifurcations of equilibrium in the new chaotic system. Besides, we controlled the system to any
fixed point to eliminate the chaotic vibration by means of sliding mode method. And the numerical simulations were presented to
confirm the effectiveness of the controller.

1. Introduction

The discovery of the eminent Lorenz system [1] has led to
an extensive study of chaotic behaviors in nonlinear systems
due to many possible applications in science and technology.
In the last three decades, many new three-dimension chaotic
systems have been proposed, such as Rossler system [2], Chen
andUeta system [3], Lü andChen system [4], Liu et al. system
[5], and generalized Lorenz system family [6]. Later, many
Lorenz-like or Lorenz-based chaotic systems were proposed
and investigated. Some classical 3D autonomous chaotic
systems have three particular fixed points: one saddle and
two unstable saddle-foci [7]. The other 3D chaotic systems
have two unstable saddle-foci [8, 9]. Yang and Chen [10]
found another 3D chaotic system with three fixed points: one
saddle and two stable equilibriums. Recently, Qi et al. [11]
constructed a new three-dimensional chaotic system which
has complex dynamics with some interesting characteristics.
Yang and Chen [12] analyzed the complex dynamics of
the unified Lorenz-type system with six parameters, which
contain common chaotic systems as its particular cases.

As a representative of the nonlinear robust control theory,
variable structure control theory has been widely researched
throughout the world and also had an increasing number of
industrial applications. Chen et al. [13] studied the nonlinear

dynamics behavior of hydroturbine governing system. In
order to eliminate the chaotic vibration, the author used
sliding mode method and controlled the system to any fixed
point and any periodic orbit. The results show that using
sliding mode method can make the system track target orbit
strictly and smoothly with short transition time. Chen et al.
[14] proposed a no-chattering sliding mode control strategy
for a class of fractional-order chaotic systems. The designed
control scheme guarantees the asymptotical stability of an
uncertain fractional-order chaotic system. Lee et al. [15]
present a sliding mode controller with integral compensation
for a magnetic suspension balance beam system. The control
scheme comprises an integral controller which is designed for
achieving zero steady-state error under step disturbances and
a sliding mode controller which is designed for enhancing
robustness under plant uncertainties. Wang et al. [16] present
two methods to design a single-input/single-output integral
variable structure system. To ensure the robustness of the
system control, Chen et al. [17] stabilized the chaotic orbits to
arbitrary chosen fixed points and periodic orbits by means of
slidingmodemethod, andMatlab simulationswere presented
to confirm the validity of the controller.

Over the past one decade, as we have seen, researchers
have paid great attention to generate chaos and analyze
its dynamics, because more and more chaotic phenomena

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 371509, 13 pages
http://dx.doi.org/10.1155/2014/371509

http://dx.doi.org/10.1155/2014/371509


2 Journal of Applied Mathematics

have been found in many research fields, and chaos has
powerful applications in secure communication, information
processing, nonlinear circuits, biological systems, chemical
reactions, and so forth. Thus, the requirement for creat-
ing new chaotic systems is dramatically increasing. A new
approach to generate chaotic phenomenon, called chaos
entanglement, is introduced in this paper.The basic principle
is to entangle two or multiple stable linear subsystems by
entanglement functions to form an artificial chaotic system
such that each of them evolves in a chaotic manner. In this
paper, we mainly consider a new chaotic system constructed
by Zhang et al. [18]. Zhang proposed a new approach to gen-
erate chaotic phenomenon, called chaos entanglement. And
he constructed a three-dimensional continuous autonomous
chaotic system. However, the basic dynamical properties of
the system and the relationship between the Hopf bifurcation
and the system parameters have not been clarified yet.

This paper is organized as follows. We first described
the new chaotic system in Section 2. In Section 3 we present
the linear analysis of equilibriums of system (1). A brief
review of the methods used to study codimension one Hopf
bifurcations is presented in Section 4. In Section 5, numerical
simulation is given to illustrate the theoretical analysis. We
controlled the system to any fixed point to eliminate the
chaotic vibration by means of sliding mode method in
Section 6. Finally, conclusions are given in Section 7.

2. New Chaotic Attractor

Chaos Entanglement [18]. If two or more linear subsystems
can behave in chaotic manners when they are entangled by
some nonlinear functions, we say it is chaos entanglement.
These nonlinear functions are called entanglement functions.

Consider two linear subsystems; one is 2-dimensional
and the other is 1-dimensional,

𝑥̇ = 𝑎𝑥 + 𝑏𝑦,

̇𝑦 = − 𝑏𝑥 + 𝑎𝑦,

(1)

𝑧̇ = 𝑐𝑧, (2)

where (𝑥, 𝑦, 𝑧) ∈ 𝑅

3 is the state variable. When 𝑎 < 0 and
𝑐 < 0, both subsystems are stable. We entangle these two
subsystems in the following way:

𝑥̇ = 𝑎𝑥 + 𝑏𝑦,

̇𝑦 = −𝑏𝑥 + 𝑎𝑦 + 𝑑 sin 𝑧,

𝑧̇ = 𝑐𝑧 + 𝑒 sin 𝑥,

(3)

where 𝑎 < 0, 𝑐 < 0, (𝑑, 𝑒) ∈ 𝑅

2 is the entanglement coefficient,
and (sin 𝑥, sin 𝑧) is the entanglement function.

Zhang et al. [18] have proved that the system (3) is
dissipative and bounded and possesses one positive Lyapunov
exponent. So, the system (3) is chaotic. Despite the simplicity,
system (3) has a rich dynamical behavior, ranging from stable
equilibrium points to periodic and even chaotic oscillations,
depending on the parameter values. When the real constants

𝑎 = −1, 𝑏 = 1, 𝑐 = −1, 𝑑 = 36, and 𝑒 = 18, the system (3) has
a chaotic attractor as shown in Figures 1(a)–1(d).

Moreover, the dynamics of the system (3) can be char-
acterized with its Lyapunov exponents which are computed
numerically by Wolf et al. algorithm proposed in [19],
where the Lyapunov exponents 𝜆

1
= 0.596592, 𝜆

2
=

0, and 𝜆

3
= −3.596124 as shown in Figure 2(a), and the

Lyapunov dimension 𝐷

𝐾𝑌
= 2.16589. The time history, the

frequency spectrum, and Poincaré map in 𝑦−𝑧 {𝑥 = 0} plane
of the chaotic attractor shown in Figures 2(b), 2(c) and 2(d)
respectively.

3. Linear Analysis of the New Chaotic System

This paper studies the stability and bifurcations with the
respective qualitative changes in the dynamics of the system
(3). System (3) has a rich dynamical behavior, ranging
from stable equilibrium points to periodic and even chaotic
oscillations, depending on the parameter values.

In a vectorial notation which will be useful in the
calculations, system (3) can be written as 𝑥

󸀠
= (𝑥, 𝜁), where

𝑓 (𝑥, 𝜁) = (𝑎𝑥 + 𝑏𝑦, −𝑏𝑥 + 𝑎𝑦 + 𝑑 sin 𝑧, 𝑐𝑧 + 𝑒 sin 𝑥) ,

(4)

𝑥 = (𝑥, 𝑦, 𝑧) ∈ 𝑅

3, 𝜁 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑅

2.
The equilibria of system (3) can be found by solving the

following equations simultaneously:

𝑎𝑥 + 𝑏𝑦 = 0,

−𝑏𝑥 + 𝑎𝑦 + 𝑑 sin 𝑧 = 0,

𝑐𝑧 + 𝑒 sin 𝑥 = 0.

(5)

Usually, it is not easy to find out its accurate solutions. For
simplification, we only consider 𝐸

0
= (0, 0, 0).

For the sake of completenesswe state the following lemma
(Routh-Hurwitz stability criterion) whose proof can be found
in [6].

Lemma 1 (see [9]). Thepolynomial𝑝(𝜆) = 𝜆

3
+𝑝

1
𝜆

2
+𝑝

2
𝜆+𝑝

3

with real coefficients has all roots with negative real parts if and
only if the numbers 𝑝

1
, 𝑝

2
, 𝑝

3
are positive and the inequality

𝑝

1
𝑝

2
> 𝑝

3
is satisfied.

We have the following proposition.

Proposition 2. Define the following subsets of W:

𝑤

1
= {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) :

𝑎 < 0, 𝑏 > 0, 𝑐 < 0, 𝑑 >

(2𝑎

3
+ 2𝑎𝑏

2
+ 4𝑎

2
𝑐 + 2𝑎𝑐

2
)

𝑏𝑒

,

𝑒 > 0} ,
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Figure 1: (a) Chaotic attractor given by (1) with 𝑎 = −1, 𝑏 = 1, 𝑐 = −1, 𝑑 = 36, and 𝑒 = 18, and projection of the chaotic attractor on the (b)
𝑥 − 𝑦 plane, (c) 𝑦 − 𝑧 plane, and (d) 𝑥 − 𝑧 plane.

𝑤

2
= {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) :

𝑎 < 0, 𝑏 > 0, 𝑐 < 0, 𝑑 <

(2𝑎

3
+ 2𝑎𝑏

2
+ 4𝑎

2
𝑐 + 2𝑎𝑐

2
)

𝑏𝑒

,

𝑒 > 0} ,

𝑤

3
= {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) : 𝑎 < 0, 𝑏 > 0, 𝑐 < 0,

𝑑 =

(2𝑎

3
+ 2𝑎𝑏

2
+ 4𝑎

2
𝑐 + 2𝑎𝑐

2
)

𝑏𝑒

, 𝑒 > 0} .

(6)

The following statements hold.

(1) If (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑤

1
then the equilibrium 𝐸

0
is locally

asymptotically stable.
(2) If (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑤

2
then the equilibrium𝐸

0
is unstable.

(3) If (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑤

3
then the equilibrium𝐸

0
is unstable.

Proof. At the fixed point 𝐸

0
= (0, 0, 0), the Jacobian matrix is

defined as

𝐴 = (

𝑎 𝑏 0

−𝑏 𝑎 𝑑 cos 𝑧

𝑒 cos𝑥 0 𝑐

)

(0,0,0)

= (

𝑎 𝑏 0

−𝑏 𝑎 𝑑

𝑒 0 𝑐

) . (7)

The characteristic polynomial of the Jacobian matrix of
system (3) at 𝐸

0
has the form

𝑝 (𝜆) = 𝜆

3
− (2𝑎 + 𝑐) 𝜆

2
+ (𝑎

2
+ 𝑏

2
+ 2𝑎𝑐) 𝜆

− (𝑎

2
+ 𝑏

2
) 𝑐 − 𝑏𝑑𝑒.

(8)
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Figure 2: (a) Time history, (b) frequency spectrum, (c) Poincaré mapin 𝑦 − 𝑧{𝑥 = 0} plane, and (d) Lyapunov-exponent spectrum of chaotic
system (3).

From Lemma 1 the equilibrium 𝐸

0
= (0, 0, 0) is locally

asymptotically stable if the coefficients of the characteristic
polynomial satisfy

− (𝑎

2
+ 𝑏

2
) 𝑐 − 𝑏𝑑𝑒 > 0, (𝑎

2
+ 𝑏

2
+ 2𝑎𝑐) > 0, − (2𝑎 + 𝑐) > 0,

− (2𝑎 + 𝑐) (𝑎

2
+ 𝑏

2
+ 2𝑎𝑐) > (− (𝑎

2
+ 𝑏

2
) 𝑐 − 𝑏𝑑𝑒) .

(9)

The last inequality in (9) can be written as 𝑑 > (2𝑎

3
+ 2𝑎𝑏

2
+

4𝑎

2
𝑐 + 2𝑎𝑐

2
)/𝑏𝑒. So if (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑤

1
then the equilibrium

𝐸

0
is locally asymptotically stable and if (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑤

2

then the equilibrium 𝐸

0
is unstable. This proves items 1 and 2

of the proposition. Item 3 of the proposition will be proved
in the next section (see Theorem 3) with the calculation
of the first Lyapunov coefficient at the equilibrium 𝐸

0
for

parameters in 𝑤

3
. In fact, when (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑤

3
the

equilibrium 𝐸

0
is a Hopf point; that is, the characteristic

polynomial of the Jacobian matrix of system (3) at 𝐸

0
has

eigenvalues of the form

𝜆

1
= 2𝑎 + 𝑐, 𝜆

2,3
= ±𝑖𝜔

0
= ±𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐.

(10)

Define

𝑑

0
=

(2𝑎

3
+ 2𝑎𝑏

2
+ 4𝑎

2
𝑐 + 2𝑎𝑐

2
)

𝑏𝑒

.

(11)

If (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ 𝑤

3
then the Jacobian matrix of (4) at 𝐸

0
has

one negative real eigenvalue 𝜆

1
and a pair of purely imaginary

eigenvalues𝜆

2,3
. From the centermanifold theorem, at aHopf

point a two-dimensional center manifold is well-defined; it
is invariant under the flow generated by (3) and can be
continued with arbitrary high class of differentiability to
nearby parameter values. This center manifold is attracting
since 𝜆

0
. So it is enough to study the stability of 𝐸

0
for

the flow restricted to the family of parameter-dependent
continuations of the center manifold.
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4. Hopf Bifurcation Analysis in System (4)
This section is a review of the projectionmethod described in
[20, 21] for the calculation of the first Lyapunov coefficients
associated with Hopf bifurcation, denoted by 𝑙

1
.

Consider the differential equation

𝑥

󸀠
= 𝑓 (𝑥, 𝜁) , (12)

where 𝑥 ∈ 𝑅

3, 𝜁 ∈ 𝑅

5 are, respectively, vectors representing
phase variables and control parameters. Assume that 𝑓 is of
class𝐶

∞ in𝑅

3
×𝑅

5. Suppose that (12) has an equilibriumpoint
𝑥 = 𝑥

0
at 𝜁 = 𝜁

0
and, denoting the variable 𝑥 − 𝑥

0
also by 𝑥,

write

𝐹 (𝑥) = 𝑓 (𝑥, 𝜁

0
) , (13)

as

𝐹 (𝑥) = 𝐴𝑥 +

1

2

𝐵 (𝑥, 𝑥) +

1

6

𝐶 (𝑥, 𝑥, 𝑥) + 𝑂 (‖𝑥‖

4
) , (14)

where 𝐴 = 𝑓

𝑥
(0, 𝜁

0
), and for 𝑖 = 1, 2, 3,

𝐵

𝑖
(𝑥, 𝑦) =

3

∑

𝑗,𝑘=1

𝜕

2
𝐹

𝑖
(𝜉)

𝜕𝜉

𝑖
𝜕𝜉

𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜉=0

𝑥

𝑖
𝑦

𝑘
,

𝐶

𝑖
(𝑥, 𝑦, 𝑧) =

3

∑

𝑗,𝑘,𝑙=1

𝜕

3
𝐹

𝑖 (
𝜉)

𝜕𝜉

𝑖
𝜕𝜉

𝑘
𝜕𝜉

𝑙

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉=0

𝑥

𝑖
𝑦

𝑘
𝑧

𝑙
.

(15)

Suppose that (𝑥

0
, 𝜁

0
) is an equilibrium point of (12)

where the Jacobian matrix 𝐴 has a pair of purely imaginary
eigenvalues 𝜆

2,3
= ±𝑖𝜔

0
, (𝜔

0
> 0), and admits no other

eigenvalue with zero real part. Let 𝑇

𝑐 be the generalized
eigenspace of 𝐴 corresponding to 𝜆

2,3
. By this it is meant

the largest subspace invariant by 𝐴 on the largest subspace
invariant the eigenvalues are 𝜆

2,3
.

Let 𝑝, 𝑞 ∈ 𝐶

3 be vectors such that

𝐴𝑞 = 𝑖𝜔

0
𝑞, 𝐴

𝑇
𝑝 = −𝑖𝜔

0
𝑝, ⟨𝑝, 𝑞⟩ =

3

∑

𝑖=1

𝑝

𝑖
𝑞

𝑖
= 1,

(16)

where 𝐴

𝑇 is the transpose of the matrix 𝐴 and 𝑞 is the
conjugate complex of the matrix 𝑞. Any vector 𝑦 ∈ 𝑇

𝑐 can
be represented as 𝑦 = 𝜔𝑞+𝜔𝑞, where𝜔 = ⟨𝑝, 𝑦⟩ ∈ 𝐶 and𝜔 is
the conjugate complex of the matrix 𝜔. The two-dimensional
center manifold associated with the eigenvalues 𝜆

2,3
= ±𝑖𝜔

0

can be parameterized by the variables 𝜔 and 𝜔 by means of
an immersion of the form 𝑥 = 𝐻(𝜔, 𝜔), where 𝐻 : 𝐶

2
→ 𝑅

3

has a Taylor expansion of the form

𝐻 (𝜔, 𝜔) = 𝜔𝑞 + 𝜔𝑞 + ∑

2≤𝑗+𝑘≤7

1

𝑗!𝑘!

ℎ

𝑗𝑘
𝜔

𝑗
𝜔

𝑘
+ 𝑂 (|𝜔|

8
) , (17)

with ℎ

𝑗𝑘
∈ 𝐶

3, and ℎ

𝑗𝑘
= ℎ

𝑘𝑗
. Substituting this expression into

(12) we obtain the following differential equation:

𝐻

𝜔
𝜔

󸀠
+ 𝐻

𝜔
𝜔

󸀠
= 𝐹 (𝐻 (𝜔, 𝜔)) , (18)

where 𝐹 is given by (13). The complex vectors ℎ

𝑗𝑘
are

obtained solving the system of linear equations defined by
the coefficients of (18), taking into account the coefficients of
𝐹, so that system (18), on the chart 𝜔 for a central manifold,
writes as follows:

𝜔

󸀠
= 𝑖𝜔

0
𝜔 +

1

2

𝐺

21
𝜔|𝜔|

2
+

1

12

𝐺

32
𝜔|𝜔|

4

+

1

144

𝐺

43
𝜔|𝜔|

6
+ 𝑂 (|𝜔|

8
) ,

(19)

with 𝐺

𝑗𝑘
∈ 𝐶.

The first Lyapunov coefficient 𝑙

1
is defined by

𝑙

1
=

1

2

Re𝐺

21
, (20)

where𝐺

21
= ⟨𝑝, 𝐻

21
⟩,𝐻
21

= 𝐶(𝑞, 𝑞, 𝑞)+𝐵(𝑞, ℎ

20
)+2𝐵(𝑞, ℎ

11
),

ℎ

20
= (2𝑖𝜔

0
𝐼

3
− 𝐴)

−1
𝐵(𝑞, 𝑞), ℎ

11
= −𝐴

−1
𝐵(𝑞, 𝑞), and 𝐼

3
is the

unit 3 × 3 matrix.
A Hopf point (𝑥

0
, 𝜁

0
) of system (12) is an equilibrium

point where the Jacobian matrix 𝐴 has a pair of purely
imaginary eigenvalues 𝜆

2,3
= ±𝑖𝜔

0
, (𝜔

0
> 0) and the other

eigenvalue 𝜆

1
̸= 0. From the center manifold theorem, at

a Hopf point a two-dimensional center manifold is well-
defined; it is invariant under the flow generated by (12) and
can be continued with arbitrary high class of differentiability
to nearby parameter values.

A Hopf point is called transversal if the parameter
dependent complex eigenvalues cross the imaginary axis with
nonzero derivative. In a neighborhood of a transversal Hopf
point with 𝑙

1
̸= 0 the dynamic behavior of the system (12),

reduced to the family of parameter-dependent continuations
of the center manifold, is orbitally topologically equivalent to
the following complex normal form 𝜔

󸀠
= (𝜂 + 𝑖𝜔)𝜔 + 𝑙

1
𝜔|𝜔|

2,
where𝜔 ∈ 𝐶. 𝜂, 𝜔, and 𝑙

1
are real functions having derivatives

of arbitrary higher order, which are continuations of 0, 𝜔

0
,

and the first Lyapunov coefficient at the Hopf point. When
𝑙

1
< 0 (𝑙

1
> 0) one family of stable (unstable) periodic orbits

can be found on this family of manifolds, shrinking to an
equilibrium point at the Hopf point.

Next we study the stability of 𝐸

0
for parameters in 𝐻. We

have the following theorem.

Theorem 3. Consider the system (3); the first Lyapunov
coefficient at 𝐸

0
for parameter values in 𝑤

3
is given by

𝑙

1
(𝑎, 𝑏, 𝑐, 𝑑

0
, 𝑒) =

𝑒𝑎𝜔

2
(𝑘 + 𝑒

2
) − 𝑎

2
(𝑘 − 𝑒

2
)

2𝑒

3
(2𝑎

2
+ 𝑏

2
+ 2𝑎𝑐)

,

(21)

where

𝑘 = 𝑎

2
+ 𝑏

2
+ 𝑐

2
+ 2𝑎𝑐, 𝜔 =

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐.

(22)

As 𝑏 > 𝑒 > 0 then 𝑙

1
(𝑎, 𝑏, 𝑐, 𝑑

0
, 𝑒) < 0 and system (3) has

a transversal Hopf point at 𝐸

0
for 𝑑 = 𝑑

0
and 𝑏 > 𝑒 > 0 (see

Figure 4).More precisely, Hopf point at𝐸

0
is stable and for each

𝑑 > 𝑑

0
, but close to 𝑑

0
, there exists a stable periodic orbit near

the asymptotically stable equilibrium point 𝐸

0
.
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Figure 3: Time history and phase diagram of system (3) with 𝑎 = −1, 𝑏 = 1, 𝑐 = −1, 𝑒 = 18, and 𝑑 = −0.2.

Proof. For parameters on the Hopf surface 𝑤

3
one has

𝜆

1
= 2𝑎 + 𝑐, 𝜆

2,3
= ±𝑖𝜔

0
= ±𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐,

𝑞 = (

𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 − 𝑐

𝑒

,

(𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 − 𝑎) (𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 − 𝑐)

𝑏𝑒

, 1) ,

𝑝 = (𝑝

1
, 𝑝

2
, 𝑝

3
) ,

𝐶 (𝑞, 𝑞, 𝑞)

= (0, −𝑑,

(𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 − 𝑐)

2

(𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 + 𝑐)

𝑒

2
) ,

(23)
where

𝑝

1
=

𝑒 ((𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 + 𝑎) (𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 + 𝑐))

−2 (𝑎

2
+ 𝑏

2
+ 𝑐

2
+ 2𝑎𝑐)

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐𝑖 − 𝑏𝑑𝑒

,

𝑝

2
=

𝑏𝑒 ((𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 + 𝑐))

−2 (𝑎

2
+ 𝑏

2
+ 𝑐

2
+ 2𝑎𝑐)

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐𝑖 − 𝑏𝑑𝑒

,

𝑝

3
=

𝑏𝑑𝑒

−2 (𝑎

2
+ 𝑏

2
+ 𝑐

2
+ 2𝑎𝑐)

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐𝑖 − 𝑏𝑑𝑒

.

(24)
We can get

𝐻

21
= (0, −𝑑,

(𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 − 𝑐)

2

(𝑖

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐 + 𝑐)

𝑒

2
) ,

𝐺

21
= ⟨𝑝, 𝐻

21
⟩

= (−2𝑏𝑑𝑒𝜔

2
𝑘 (𝑘 + 𝑒

2
) + 𝑏

2
𝑐𝑑

2
𝑒 (𝑘 − 𝑒

2
)

− [2𝑏𝑐𝑑𝑒𝑘 (𝑘 − 𝑒

2
) + 𝑏𝑑𝑒

2
𝑏𝑑 (𝑘 + 𝑒

2
)] 𝜔𝑖)

× (−(2𝑒𝑘𝜔)

2
− (𝑏𝑑𝑒

2
)

2

)

−1

,

(25)

where

𝑘 = 𝑎

2
+ 𝑏

2
+ 𝑐

2
+ 2𝑎𝑐, 𝜔 =

√

𝑎

2
+ 𝑏

2
+ 2𝑎𝑐.

(26)

Now it remains only to verify the transversality condition
of the Hopf bifurcation, so consider the family of differential
equation (3) regarded as dependent on the parameter 𝑑. The
real part 𝜉 of the pair of complex eigenvalues at the critical
parameter 𝑑 = 𝑑

0
verifies

𝜉

󸀠
(𝑑

0
) = Re⟨𝑝,

𝑑𝐴

𝑑𝑑

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑑=𝑑0

𝑞⟩ = −

𝑏𝑒𝜔

2
+ 𝑎𝑏𝑐𝑒

2𝑘𝜔 + 2𝑎

2
𝑘

< 0. (27)

Since 𝜉

󸀠
(𝑑

0
) ̸= 0, the transversality condition at the Hopf

point holds.

5. Numerical Example

Next, we will give a numerical example of system (3). Let
𝑎 = −1, 𝑏 = 1, 𝑐 = −1, and 𝑒 = 18; we can compute the Hopf
bifurcation value 𝑑

0
= −0.555556. The equilibrium is stable

when 𝑑 = −0.2 > 𝑑

0
and unstable when 𝑑 = −0.8 < 𝑑

0
,

as shown in Figure 3 and Figure 5, respectively. Thus, the
periodic solutions bifurcating from the equilibrium point 𝐸

0

are supercritical and stable.
The characteristic polynomial of the Jacobian matrix of

system (3) at 𝐸

0
has the form

𝑝 (𝜆) = 𝜆

3
+ 𝐴𝜆

2
+ 𝐵𝜆 + 𝐶, (28)
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Figure 4: Time history and phase diagram of system (3) with 𝑎 = −1, 𝑏 = 1, 𝑐 = −1, 𝑒 = 18, and 𝑑 = −0.555556.
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Figure 5: Time history and phase diagram of system (3) with 𝑎 = −1, 𝑏 = 1, 𝑐 = −1, 𝑒 = 18, and 𝑑 = −0.8.

where
𝐴 = − 2𝑎 − 𝑐, 𝐵 = 𝑎

2
+ 𝑏

2
+ 2𝑎𝑐,

𝐶 = − 𝑐 (𝑎

2
+ 𝑏

2
) − 𝑏𝑑𝑒.

(29)

If 𝐴 > 0, 𝐵 > 0, 𝐶 > 0, and 𝐴𝐵 − 𝐶 > 0, then the
equilibrium𝐸

0
is asymptotically stable. If𝐴 > 0,𝐵 > 0,𝐶 > 0,

and 𝐴𝐵 − 𝐶 = 0, then the characteristic polynomial of the
Jacobian matrix of system(1) at 𝐸

0
with one pair of conjugate

nonzero purely imaginary eigenvalues and the real part of
other characteristic root are less than zero.

When the parameters 𝑐 = −1, 𝑑 = 36, and 𝑒 = 18 are fixed
while parameters 𝑎, 𝑏 are varied, some different dynamical
behaviors of system (3) are obtained. Let 𝐴 = 0, 𝐵 = 0, 𝐶 = 0,
and𝐴𝐵−𝐶 = 0, and useMATLAB to draw the stability region

on the parameter plane 𝑎 − 𝑏, as shown in Figure 6. In this
figure, the symbol 𝐿

𝑖
, 𝑖 = 1, 2, 3, 4, represents 𝐴 = 0, 𝐵 = 0,

𝐶 = 0, and 𝐴𝐵 − 𝐶 = 0, respectively. And in region (I), 𝐴 > 0,
𝐵 < 0, 𝐶 < 0, 𝐴𝐵 − 𝐶 > 0, in region (II), 𝐴 > 0, 𝐵 < 0,
𝐶 > 0, 𝐴𝐵 − 𝐶 < 0, in region (III), 𝐴 < 0, 𝐵 < 0, 𝐶 < 0,
𝐴𝐵 − 𝐶 > 0, in region (IV): 𝐴 < 0, 𝐵 < 0, 𝐶 > 0, 𝐴𝐵 − 𝐶 < 0,
in the region (V): 𝐴 < 0, 𝐵 > 0, 𝐶 > 0, 𝐴𝐵 − 𝐶 < 0, in the
region (VI), 𝐴 < 0, 𝐵 > 0, 𝐶 < 0, 𝐴𝐵 − 𝐶 > 0, in region (VII),
𝐴 < 0, 𝐵 > 0, 𝐶 < 0, 𝐴𝐵 − 𝐶 < 0, in region (VIII), 𝐴 > 0,
𝐵 > 0, 𝐶 < 0, 𝐴𝐵 − 𝐶 > 0, in region (IX), 𝐴 > 0, 𝐵 > 0,
𝐶 > 0, 𝐴𝐵 − 𝐶 < 0, and in region (X), 𝐴 > 0, 𝐵 > 0, 𝐶 > 0,
𝐴𝐵 − 𝐶 > 0. All of the points are stable in region (X) and in
the other regions are unstable.

According to the above analysis, we know the 𝐿

4
is the

Hopf bifurcation boundaries of the system. And the system
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Figure 6: The stable region on the parameter plane (𝑎, 𝑏).
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Figure 7: Phase diagram of system (3) with different parameters.

(3) will generate the Hopf bifurcation when the bifurcation
parameter passes through 𝐿

4
from region (X) to region (IX).

Next, we combined with Figure 6 and fixed 𝑎 = −6; then
we can compute the Hopf bifurcation value 𝑏

0
= −0.9232.

The system (3) has a transversal Hopf point at 𝐸

0
when

the bifurcation parameter 𝑏 passes through 𝑏

0
, as shown in

Figure 7(b). In addition, we choose (𝑎, 𝑏) = (−6, −0.8),
(𝑎, 𝑏) = (−6, −1.2), and (𝑎, 𝑏) = (−1, 1); the points are located
in region (X), region (IX), and region (VIII), respectively, as
shown in Figures 7(a) and 7(c) and Figure 7(d).

When the parameters 𝑎 = −1, 𝑑 = 36, and 𝑒 = 18 are fixed
while parameters 𝑏, 𝑐 are varied, some different dynamical
behaviors of system (3) are obtained. Let 𝐴 = 0, 𝐵 = 0, and
𝐶 = 0, 𝐴𝐵 − 𝐶 = 0, and use MATLAB to draw the stability
region on the parameter plane 𝑏 − 𝑐, as shown in Figure 8.
In this figure, the symbol 𝐿

𝑖
, 𝑖 = 1, 2, 3, 4, represents 𝐴 = 0,

𝐵 = 0, 𝐶 = 0, and 𝐴𝐵 − 𝐶 = 0, respectively. And in region
(I), 𝐴 > 0, 𝐵 < 0, 𝐶 > 0, 𝐴𝐵 − 𝐶 < 0, in region (II), 𝐴 > 0,
𝐵 < 0, 𝐶 < 0, 𝐴𝐵 − 𝐶 > 0, in region (III), 𝐴 < 0, 𝐵 < 0,
𝐶 < 0, 𝐴𝐵 − 𝐶 > 0, in region (IV), 𝐴 < 0, 𝐵 < 0, 𝐶 > 0,
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Figure 9: Phase diagram of system (3) with different parameters.

𝐴𝐵 − 𝐶 > 0, in region (V), 𝐴 > 0, 𝐵 > 0, 𝐶 > 0, 𝐴𝐵 − 𝐶 > 0,
in region (VI), 𝐴 > 0, 𝐵 > 0, 𝐶 < 0, 𝐴𝐵 − 𝐶 > 0, in region
(VII), 𝐴 < 0, 𝐵 > 0, 𝐶 < 0, 𝐴𝐵 − 𝐶 > 0, in region (VIII),
𝐴 < 0, 𝐵 < 0, 𝐶 > 0, 𝐴𝐵 − 𝐶 > 0, in region (IX), 𝐴 < 0, 𝐵 > 0,
𝐶 > 0, 𝐴𝐵 − 𝐶 < 0, and in region (X), 𝐴 > 0, 𝐵 > 0, 𝐶 > 0,
𝐴𝐵 − 𝐶 < 0. All of the points are stable in region (V) and in
the other regions are unstable.

According to the above analysis, we know the 𝐿

4
is the

Hopf bifurcation boundaries of the system. And the system
(3) will generate the Hopf bifurcation when the bifurcation
parameter passes through 𝐿

4
from region (V) to region (X).

Next, we combined with Figure 8 and fixed 𝑏 = −0.5; then

we can compute the Hopf bifurcation value 𝑐

0
= −11.7181.

The system (3) has a transversal Hopf point at 𝐸

0
when

the bifurcation parameter 𝑐 passes through 𝑐

0
, as shown in

Figure 9(b). In addition, we choose (𝑏, 𝑐) = (−0.5, −10),
(𝑏, 𝑐) = (−0.5, −14), and (𝑏, 𝑐) = (6, −5); the points are located
in region (V), region (X), and region (VI), respectively, as
shown in Figures 9(a), 9(c), and 9(d).

6. Sliding Mode Control of Chaotic Vibrations

6.1. The Design of the Controller. We designed a sliding
surface with good nature and made the system possess
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Figure 10: Time domain charts of state variables before control.

the desired properties when it has limitations on the sliding
surface. Then to facilitate control, make the system reach the
sliding surface and keep sliding. After joining the controller,
the system (3) has the following form:

𝑥̇ = 𝑎𝑥 + 𝑏𝑦 + 𝑑

1
+ 𝑢

1
,

̇𝑦 = −𝑏𝑥 + 𝑎𝑦 + 𝑑 sin 𝑧 + 𝑑

2
+ 𝑢

2
,

𝑧̇ = 𝑐𝑧 + 𝑒 sin 𝑥 + 𝑑

3
+ 𝑢

3
,

(30)

where 𝑢

1
, 𝑢

2
, and 𝑢

3
are control inputs. If we join the

reasonable controller, we can control the chaos system to the
required range or the fixed point.

Define the following matrix:

A = (

−1 1 0

−1 −1 0

0 0 4

) , B = (

1 0 0

0 1 0

0 0 1

) ,

d = (

𝑑

1

𝑑

2

𝑑

3

) , g = (

0

36 sin 𝑧

18 sin𝑥

) ,

(31)

where A is the linear matrix of the system, B is the bounded
perturbation matrix, d is the control matrix, and g is the
nonlinearmatrix of the system.Thepurpose of control is to let
the system state x = [𝑥

1
, 𝑥

2
, 𝑥

3
]

𝑇 to track a time-varying state
x
𝑑

= [𝑥

𝑑1
, 𝑥

𝑑2
, 𝑥

𝑑3
]

𝑇. So, we can define the tracking error

e = x − x
𝑑
. (32)
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Figure 11: Time domain charts of state variables after control.

The error dynamic system can be written as

ė = ẋ − ẋ
𝑑

= Ax + Bg + Bu + d − ẋ
𝑑
. (33)

Define the time-varying proportional integral sliding
mode surface

S = Ke − ∫

𝑡

0

K (A − BL) e (𝜏) 𝑑𝜏,
(34)

where K ∈ R3×3, det(KB) ̸= 0. For the convenience of
calculation, we get K = diag(1, 1, 1). The additional matrix
L ∈ R3 × 3 andA−BL is negative definitematrix.The equation
S =

̇S = 0 must be satisfied under the sliding mode, where

̇S = KBg + KBLe + KBu + Kd + KAx
𝑑

− Kẋ
𝑑
. (35)

In order to satisfy the sliding conditions, the following
controller is designed:

u = − [g + Le] − (KB)

−1
[KAx

𝑑
− Kẋ
𝑑
]

− (KB)

−1
[𝜀 +

󵄩

󵄩

󵄩

󵄩

KBg󵄩

󵄩

󵄩

󵄩

] sign (S) ,

(36)

where sign(S) is symbolic function.

Proposition 4. The controller (36) can make the system (28)
reach the sliding mode S = 0 in a limited time if the constant
𝜀 satisfied the inequality 𝜀 > 𝛿

1
+ 𝛿

2
+ 1, where 𝛿

1
, 𝛿

2
are an

arbitrary small positive numbers. The state variables and the
selected reference state x

𝑑
are identical.

Proof. Construct the Lyapunov function 𝑉 = S𝑇S = ∑

3

𝑖=1
S2
𝑖
;

according to (34), (35), and (36) one has

S𝑇 ̇S = S𝑇 (KBg + KBLe + KBu + Kd + KAx
𝑑

− Kẋ
𝑑
)

= S𝑇 [Kd − (𝜀 +

󵄩

󵄩

󵄩

󵄩

KBg󵄩

󵄩

󵄩

󵄩

) sign (S)] ≤ S𝑇 [d − 𝜀 sign (S)]
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Figure 12: Time domain charts of sliding surfaces after control.

≤

3

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

S
𝑖

󵄨

󵄨

󵄨

󵄨

𝛿

1
+

3

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

S
𝑖

󵄨

󵄨

󵄨

󵄨

𝛿

2
−

3

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

S
𝑖

󵄨

󵄨

󵄨

󵄨

𝜀

=

󵄨

󵄨

󵄨

󵄨

𝛿

1
+ 𝛿

2
− 𝜀

󵄨

󵄨

󵄨

󵄨

3

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

S
𝑖

󵄨

󵄨

󵄨

󵄨

< −

3

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

S
𝑖

󵄨

󵄨

󵄨

󵄨

.

(37)

By the same token, we get

̇S𝑇S < −

3

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

S
𝑖

󵄨

󵄨

󵄨

󵄨

,

̇

𝑉 =

̇S𝑇S + S𝑇 ̇S < −2

3

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

S
𝑖

󵄨

󵄨

󵄨

󵄨

. (38)

So the proposition follows.

6.2. The Numerical Simulation. In the case of 𝑢

1
= 𝑢

2
= 𝑢

3
=

0, the time-domain charts of the state variables of system (28)
are shown in Figure 10. Figure 10 illustrates that the system
(28) has a periodic motion state before control.

In order to control the system (28) to the target state,
we select the eigenvalue of A−BL to be P = [−5, −5, −5].
The pole-placement method is adopted to get the following
matrix:

L = (

4 1 0

−1 4 0

0 0 4

) . (39)

Select proportional integral sliding mode surface as fol-
lows:

𝑆

1
= 𝑒

1
+ ∫

𝑡

0

5𝑒

1 (
𝜏) 𝑑𝜏,

𝑆

2
= 𝑒

2
+ ∫

𝑡

0

5𝑒

2
(𝜏) 𝑑𝜏,

𝑆

3
= 𝑒

3
+ ∫

𝑡

0

5𝑒

3 (
𝜏) 𝑑𝜏.

(40)
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Set the initial value [𝑥

1
(0), 𝑥

2
(0), 𝑥

3
(0)] = [0.1, 0.1, 0.1],

and the reference state 𝑥

𝑑1
= 𝑥

𝑑2
= 𝑥

𝑑3
= 𝑥

𝑑
. The control

signal is as follows:

𝑢

1
= −4𝑒

1
− 𝑒

2
+ 𝑥̇

𝑑
− 𝜀 sign (𝑆

1
) ,

𝑢

2
= −36 sin 𝑧 + 𝑒

1
− 4𝑒

2
+ 2𝑥

𝑑
+ 𝑥̇

𝑑

− (𝜀 + |36 sin 𝑧|) sign (𝑆

2
) ,

𝑢

3
= −18 sin𝑥 − 4𝑒

3
+ 𝑥

𝑑
+ 𝑥̇

𝑑
− (𝜀 + |18 sin𝑥|) sign (𝑆

3
) .

(41)

6.3. Control to the Fixed Point. We can stabilize the system
(28) to any point by this method. In this paper, we select the
fixed point [0, 0, 0], reference state x

𝑑
= 0, small parameter

𝜀 = 7, and the initial value of the sliding mode surface
[𝑆

1
(0), 𝑆

2
(0), 𝑆

3
(0)] = [0.1, 0.1, 0.1]. The controller u(𝑡) is

activated at 𝑡 = 1𝑠, the time domain charts of state variables,
and sliding surfaces as shown in Figure 11 and Figure 12,
respectively.

Figures 11 and 12 show that, after joining the controller,
the system (28) tracks to reference state [0, 0, 0] ultimately,
and the sliding mode surface S becomes 0. It is proven that
the system (28) reached the sliding mode.

7. Conclusion

In this paper, a new approach to generate artificial chaos by
entangling two or multiple stable linear subsystems has been
introduced. Meanwhile, review the linear stability analysis
which accounts for the characterization, in the space of
parameters, of the Lyapunov stability of the equilibria of the
new system. It continues with the extension of the analysis
to the first-order, codimension one Hopf bifurcation, based
on the calculation of the first Lyapunov coefficient. At last,
we controlled the system to any fixed point to eliminate the
chaotic vibration by means of sliding mode method. And
the numerical simulations were presented to confirm the
effectiveness of the controller. Apparently there are more
interesting problems about this chaotic system in terms
of complexity, control, and synchronization, which deserve
further investigation. Therefore, further research into the
system is still important and insightful.
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