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We obtained some generalized common fixed point results in the context of complex valued metric spaces. Moreover, we proved
an existence theorem for the common solution for two Urysohn integral equations. Examples are presented to support our results.

1. Introduction and Preliminaries

Since the appearance of the Banach contraction mapping
principle, a number of papers were dedicated to the improve-
ment and generalization of that result. Most of these deal
with the generalizations of the contractive condition inmetric
spaces.

Gähler [1] generalized the idea of metric space and
introduced a 2-metric space which was followed by a number
of papers dealing with this generalized space. Plenty of
material is also available in other generalized metric spaces,
such as, rectangular metric spaces, semimetric spaces, pseu-
dometric spaces, probabilistic metric spaces, fuzzy metric
spaces, quasimetric spaces, quasisemi metric spaces, 𝐷-
metric spaces,𝐺-metric space, partial metric space, and cone
metric spaces (see [2–14]). Azam et al. [15] improved the
Banach contraction principle by generalizing it in complex
valued metric space involving rational inequity which could
not be handled in cone metric spaces [3, 5, 11, 15] due
to limitations regarding product and quotient. Rouzkard
and Imdad [16] extended the work of Azam et al. [15].
Sintunavarat and Kumam [17] obtained common fixed point
results by replacing constant of contractive condition to
control functions. Recently, Klin-eam and Suanoom [12]
extend the concept of complex valued metric spaces and
generalized the results of Azam et al. [15] and Rouzkard and
Imdad [16]. In this paper we continue the study of complex
valued metric spaces and established some fixed point results

for mappings satisfying a rational inequality. The idea of
complex valued metric spaces can be exploited to define
complex valued normed spaces and complex valued Hilbert
spaces and then it will bring wonderful research activities in
nonlinear analysis.

In this paper we continue our investigations initiated by
Azamet al. [15] and prove a commonfixed point result for two
mappings and applied it to get the coincidence and common
fixed points of three and four mappings.

We begin with listing some notations, definitions, and
basic facts on these topics that we will need to convey our
theorems. Let C be the set of complex numbers and 𝑧

1
, 𝑧
2
∈

C. Define a partial order ≾ on C as follows:

iff 𝑧
1
≾ 𝑧
2
, Re (𝑧

1
) ⩽ Re (𝑧

2
) , Im (𝑧

1
) ⩽ Im (𝑧

2
) . (1)

It follows that

𝑧
1
≾ 𝑧
2 (2)

if one of the following conditions is satisfied:

(i)Re (𝑧
1
) = Re (𝑧

2
) , Im (𝑧

1
) < Im (𝑧

2
) ,

(ii)Re (𝑧
1
) < Re (𝑧

2
) , Im (𝑧

1
) = Im (𝑧

2
) ,

(iii)Re (𝑧
1
) < Re (𝑧

2
) , Im (𝑧

1
) < Im (𝑧

2
) ,

(iv)Re (𝑧
1
) = Re (𝑧

2
) , Im (𝑧

1
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2
) .

(3)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 363925, 7 pages
http://dx.doi.org/10.1155/2014/363925

http://dx.doi.org/10.1155/2014/363925


2 Abstract and Applied Analysis

In particular, we will write 𝑧
1
⋨𝑧
2
if 𝑧
1

̸= 𝑧
2
and one of (i), (ii),

and (iii) is satisfied and we will write 𝑧
1

≺ 𝑧
2
if only (iii) is

satisfied. Note that

0 ≾ 𝑧
1
⋨𝑧
2
󳨐⇒

󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨 <

󵄨󵄨󵄨󵄨𝑧2
󵄨󵄨󵄨󵄨 ,

𝑧
1
⪯ 𝑧
2
, 𝑧

2
≺ 𝑧
3
󳨐⇒ 𝑧
1
≺ 𝑧
3
.

(4)

Definition 1. Let 𝑋 be a nonempty set. Suppose that the self-
mapping 𝑑 : 𝑋 × 𝑋 → C satisfies:

(1) 0 ≾ 𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

(3) 𝑑(𝑥, 𝑦) ≾ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is called a complex valuedmetric on𝑋, and (𝑋, 𝑑)

is called a complex valued metric space. A point 𝑥 ∈ 𝑋 is
called interior point of a set 𝐴 ⊆ 𝑋 whenever there exists
0 ≺ 𝑟 ∈ C such that

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) ≺ 𝑟} ⊆ 𝐴. (5)

A point 𝑥 ∈ 𝑋 is called a limit point of 𝐴 whenever for
every 0 ≺ 𝑟 ∈ C,

𝐵 (𝑥, 𝑟) ∩ (𝐴 \ {𝑥}) ̸= 𝜙. (6)

𝐴 is called openwhenever each element of𝐴 is an interior
point of 𝐴. Moreover, a subset 𝐵 ⊆ 𝑋 is called closed
whenever each limit point of 𝐵 belongs to 𝐵. The family

𝐹 = {𝐵 (𝑥, 𝑟) : 𝑥 ∈ 𝑋, 0 ≺ 𝑟} (7)

is a subbasis for a Hausdorff topology 𝜏 on𝑋.
Let 𝑥
𝑛
be a sequence in 𝑋 and 𝑥 ∈ 𝑋. If for every 𝑐 ∈ C

with 0 ≺ 𝑐 there is 𝑛
0

∈ N such that for all 𝑛 > 𝑛
0
,

𝑑(𝑥
𝑛
, 𝑥) ≺ 𝑐, then {𝑥

𝑛
} is said to be convergent, {𝑥

𝑛
} converges

to 𝑥, and 𝑥 is the limit point of {𝑥
𝑛
}. We denote this by

lim
𝑛→∞

𝑥
𝑛

= 𝑥, or 𝑥
𝑛

→ 𝑥, as 𝑛 → ∞. If for every
𝑐 ∈ C with 0 ≺ 𝑐 there is 𝑛

0
∈ N such that for all 𝑛 > 𝑛

0
,

𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚

) ≺ 𝑐, then {𝑥
𝑛
} is called a Cauchy sequence in

(𝑋, 𝑑). If every Cauchy sequence is convergent in (𝑋, 𝑑), then
(𝑋, 𝑑) is called a complete complex valued metric space. Let
𝑋 be a nonempty set and 𝑇, 𝑓 : 𝑋 → 𝑋. The mappings 𝑇,
𝑓 are said to be weakly compatible if they commute at their
coincidence point (i.e., 𝑇𝑓𝑥 = 𝑓𝑇𝑥 whenever 𝑇𝑥 = 𝑓𝑥). A
point 𝑦 ∈ 𝑋 is called point of coincidence of 𝑇 and 𝑓 if there
exists a point 𝑥 ∈ 𝑋 such that 𝑦 = 𝑇𝑥 = 𝑓𝑥. We require the
following lemmas.

Lemma 2 (see [15]). Let (𝑋, 𝑑) be a complex valued metric
space and let {𝑥

𝑛
} be a sequence in𝑋. Then {𝑥

𝑛
} converges to 𝑥

if and only if |𝑑(𝑥
𝑛
, 𝑥)| → 0 as 𝑛 → ∞.

Lemma 3 (see [15]). Let (𝑋, 𝑑) be a complex valued metric
space and let {𝑥

𝑛
} be a sequence in 𝑋. Then {𝑥

𝑛
} is a Cauchy

sequence if and only if |𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚

)| → 0 as 𝑛 → ∞.

Definition 4 (see [18]). Two families of self-mappings {𝑇
𝑖
}
𝑚

1

and {𝑆
𝑖
}
𝑛

1
are said to be pairwise commuting if:

(1) 𝑇
𝑖
𝑇
𝑗
= 𝑇
𝑗
𝑇
𝑖
, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚};

(2) 𝑆
𝑘
𝑆
𝑙
= 𝑆
𝑙
𝑆
𝑘
, 𝑘, 𝑙 ∈ {1, 2, . . . , 𝑛};

(3) 𝑇
𝑖
𝑆
𝑘
= 𝑆
𝑘
𝑇
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑘 ∈ {1, 2, . . . , 𝑛}.

Lemma 5 (see [19]). Let𝑋 be a nonempty set and𝑓 : 𝑋 → 𝑋

a function.Then there exists a subset𝐸 ⊂ 𝑋 such that𝑓𝐸 = 𝑓𝑋

and 𝑓 : 𝐸 → 𝑋 is one to one.

Lemma 6 (see [20]). Let 𝑋 be a nonempty set and the
mappings 𝑆, 𝑇, 𝑓 : 𝑋 → 𝑋 have a unique point of coincidence
V in 𝑋. If (𝑆, 𝑓) and (𝑇, 𝑓) are weakly compatible, then 𝑓V is a
unique common fixed point of 𝑆, 𝑇, 𝑓.

2. Main Results

Theorem 7. Let (𝑋, 𝑑) be a complete complex valued metric
space and 0 ≤ ℎ < 1. If the self-mappings 𝑆, 𝑇 : 𝑋 → 𝑋 satisfy

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (8)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝐿 (𝑥, 𝑦)

∈ {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,
𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
}

(9)

then 𝑆 and 𝑇 have a unique common fixed point.

Proof. Wewill first show that fixed point of onemap is a fixed
point of the other. Suppose that 𝑝 = 𝑇𝑝. Then from (8)

𝑑 (𝑆𝑝, 𝑝) = 𝑑 (𝑆𝑝, 𝑇𝑝) ≾ ℎ𝐿 (𝑝, 𝑝) . (10)

Case 1

𝑑 (𝑆𝑝, 𝑝) ≾ ℎ𝑑 (𝑝, 𝑝) = 0, 𝑝 = 𝑆𝑝. (11)

Case 2

𝑑 (𝑆𝑝, 𝑝) ≾ ℎ𝑑 (𝑝, 𝑆𝑝) , (12)

which yields that 𝑝 = 𝑆𝑝.

Case 3

𝑑 (𝑆𝑝, 𝑝) ≾ ℎ𝑑 (𝑝, 𝑇𝑝) = 0, 𝑝 = 𝑆𝑝. (13)

Case 4

𝑑 (𝑆𝑝, 𝑝) ≾ ℎ [
𝑑 (𝑝, 𝑆𝑝) 𝑑 (𝑝, 𝑇𝑝)

1 + 𝑑 (𝑝, 𝑝)
] , (14)

which implies that 𝑑(𝑆𝑝, 𝑝) ≾ 0, and hence 𝑝 = 𝑆𝑝. In a
similar manner it can be shown that any fixed point of 𝑆 is
also the fixed point of 𝑇. Let 𝑥

0
∈ 𝑋and define

𝑥
2𝑛+1

= 𝑆𝑥
2𝑛

𝑥
2𝑛+2

= 𝑇𝑥
2𝑛+1

, 𝑛 ≥ 0.

(15)
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We will assume that 𝑥
𝑛

̸= 𝑥
𝑛+1

for each 𝑛. Otherwise, there
exists an 𝑛 such that 𝑥

2𝑛
= 𝑥
2𝑛+1

.Then 𝑥
2𝑛

= 𝑆𝑥
2𝑛
and 𝑥

2𝑛
is a

fixed point of 𝑆, hence a fixed point of 𝑇. Similarly, if 𝑥
2𝑛+1

=

𝑥
2𝑛+2

for some 𝑛, then 𝑥
2𝑛+1

is common fixed point of 𝑇 and
hence of 𝑆. From (8)

𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) = 𝑑 (𝑆𝑥
2𝑛
, 𝑇𝑥
2𝑛+1

) ≤ ℎ𝐿 (𝑥
2𝑛
, 𝑥
2𝑛+1

) . (16)

Case 1

󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑑 (𝑆𝑥
2𝑛
, 𝑇𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨 ≤ ℎ

󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨 .

(17)

Case 2
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑑 (𝑆𝑥
2𝑛
, 𝑇𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨

≤ ℎ
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
)
󵄨󵄨󵄨󵄨

= ℎ
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨 .

(18)

Case 3
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑑 (𝑆𝑥
2𝑛
, 𝑇𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨

≤ ℎ
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑇𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨

= ℎ
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨 ,

(19)

which implies that

𝑥
2𝑛+1

= 𝑥
2𝑛+2

, (20)

a contradiction to our assumption.

Case 4
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑑 (𝑆𝑥
2𝑛
, 𝑇𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨

≤ ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝑥
2𝑛+1

, 𝑇𝑥
2𝑛+1

)

1 + 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

1 + 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨

≤ ℎ
󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨 .

(21)

That is

𝑥
2𝑛+1

= 𝑥
2𝑛+2

, (22)

a contradiction to our assumption.
Thus, |𝑑(𝑥

2𝑛+1
, 𝑥
2𝑛+2

)| ≤ ℎ|𝑑(𝑥
2𝑛
, 𝑥
2𝑛+1

)|. Similarly, one
can show that |𝑑(𝑥

2𝑛+2
, 𝑥
2𝑛+3

)| ≤ ℎ|𝑑(𝑥
2𝑛+1

, 𝑥
2𝑛+2

)|. It follows
that, for all 𝑛,

󵄨󵄨󵄨󵄨𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄨󵄨󵄨󵄨 ≤ ℎ

󵄨󵄨󵄨󵄨𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)
󵄨󵄨󵄨󵄨

≤ ℎ
2 󵄨󵄨󵄨󵄨𝑑 (𝑥

𝑛−2
, 𝑥
𝑛−1

)
󵄨󵄨󵄨󵄨 ≤ ⋅ ⋅ ⋅ ≤ ℎ

𝑛 󵄨󵄨󵄨󵄨𝑑 (𝑥
0
, 𝑥
1
)
󵄨󵄨󵄨󵄨 .

(23)

Now for any 𝑚 > 𝑛,
󵄨󵄨󵄨󵄨𝑑 (𝑥
𝑚
, 𝑥
𝑛
)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)
󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑑 (𝑥
𝑚−1

, 𝑥
𝑚
)
󵄨󵄨󵄨󵄨

≤ [ℎ
𝑛
+ ℎ
𝑛+1

+ ⋅ ⋅ ⋅ + ℎ
𝑚−1

]
󵄨󵄨󵄨󵄨𝑑 (𝑥
0
, 𝑥
1
)
󵄨󵄨󵄨󵄨

≤ [
ℎ
𝑛

1 − ℎ
]
󵄨󵄨󵄨󵄨𝑑 (𝑥
0
, 𝑥
1
)
󵄨󵄨󵄨󵄨

(24)

and so

󵄨󵄨󵄨󵄨𝑑 (𝑥
𝑚
, 𝑥
𝑛
)
󵄨󵄨󵄨󵄨 ≤

ℎ
𝑛

1 − ℎ

󵄨󵄨󵄨󵄨𝑑 (𝑥
0
, 𝑥
1
)
󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑚, 𝑛 󳨀→ ∞.

(25)

This implies that {𝑥
𝑛
} is a Cauchy sequence. Since 𝑋 is

complete, there exists 𝑢 ∈ 𝑋 such that 𝑥
𝑛

→ 𝑢. It follows
that 𝑢 = 𝑆𝑢; otherwise 𝑑(𝑢, 𝑆𝑢) = 𝑧 ≻ 0 and we would then
have

𝑧 ≾ 𝑑 (𝑢, 𝑥
2𝑛+2

) + 𝑑 (𝑥
2𝑛+2

, 𝑆𝑢)

≾ 𝑑 (𝑢, 𝑥
2𝑛+2

) + 𝑑 (𝑇𝑥
2𝑛+1

, 𝑆𝑢)

≾ 𝑑 (𝑢, 𝑥
2𝑛+2

) + ℎ𝐿 (𝑢, 𝑥
2𝑛+1

) .

(26)

Case 1

|𝑧| ≤
󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥

2𝑛+2
)
󵄨󵄨󵄨󵄨 + ℎ

󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨 . (27)

That is, |𝑧| ≤ 0, a contradiction and hence 𝑢 = 𝑆𝑢.

Case 2

|𝑧| ≤
󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥

2𝑛+2
)
󵄨󵄨󵄨󵄨 + ℎ |𝑑 (𝑢, 𝑆𝑢)| . (28)

That is, |𝑧| ≤ 0, a contradiction and hence 𝑢 = 𝑆𝑢.

Case 3

|𝑧| ≤
󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥

2𝑛+2
)
󵄨󵄨󵄨󵄨 + ℎ

󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑇𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥

2𝑛+2
)
󵄨󵄨󵄨󵄨 + ℎ

󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥

2𝑛+2
)
󵄨󵄨󵄨󵄨 + ℎ
2𝑛+2 󵄨󵄨󵄨󵄨𝑑 (𝑥

0
, 𝑥
1
)
󵄨󵄨󵄨󵄨 .

(29)

This in turn gives us |𝑧| ≤ 0, a contradiction and hence 𝑢 =

𝑆𝑢.

Case 4

|𝑧| ≤
󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥

2𝑛+2
)
󵄨󵄨󵄨󵄨 + ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑥
2𝑛+1,

𝑇𝑥
2𝑛+1

)

1 + 𝑑 (𝑢, 𝑥
2𝑛+1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑑 (𝑢, 𝑥
2𝑛+2

) + ℎ
|𝑑 (𝑢, 𝑆𝑢)|

󵄨󵄨󵄨󵄨𝑑 (𝑥
2𝑛+1,

𝑥
2𝑛+2

)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 + 𝑑 (𝑢, 𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑑 (𝑢, 𝑥

2𝑛+2
)
󵄨󵄨󵄨󵄨 + ℎ
2𝑛+2

|𝑑 (𝑢, 𝑆𝑢)|
󵄨󵄨󵄨󵄨𝑑 (𝑥
0,
𝑥
1
)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 + 𝑑 (𝑢, 𝑥
2𝑛+1

)
󵄨󵄨󵄨󵄨

.

(30)

That is, |𝑧| ≤ 0 and hence 𝑢 = 𝑆𝑢. It follows similarly that 𝑢 =

𝑇𝑢. We now show that 𝑆 and 𝑇 have unique common fixed
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point. For this, assume that 𝑢∗ in𝑋 is another common fixed
point of 𝑆 and 𝑇. Then 𝑑(𝑢, 𝑢

∗
) = 𝑑(𝑆𝑢, 𝑇𝑢

∗
) ≾ ℎ𝐿(𝑢, 𝑢

∗
).

Case 1

𝑑 (𝑢, 𝑢
∗
) ≾ ℎ𝑑 (𝑢, 𝑢

∗
) . (31)

Case 2

𝑑 (𝑢, 𝑢
∗
) ≾ ℎ𝑑 (𝑢, 𝑆𝑢) ≾ ℎ𝑑 (𝑢, 𝑢) = 0. (32)

This gives us 𝑢 = 𝑢
∗.

Case 3

𝑑 (𝑢, 𝑢
∗
) ≾ ℎ𝑑 (𝑢

∗
, 𝑇𝑢
∗
) = ℎ𝑑 (𝑢

∗
, 𝑢
∗
) = 0. (33)

Case 4

𝑑 (𝑢, 𝑢
∗
) ≾

ℎ𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑢
∗
, 𝑇𝑢
∗
)

1 + 𝑑 (𝑢, 𝑢
∗
)

= 0. (34)

Hence, in all cases 𝑢
∗

= 𝑢. This completes the proof of the
theorem.

Corollary 8 (see [15]). Let (𝑋, 𝑑) be a complete complex
valued metric space and let 𝑆, 𝑇 : 𝑋 → 𝑋 and 0 < ℎ < 1.
If the self-mappings 𝑆, 𝑇satisfy

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (35)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
} , (36)

then 𝑆 and 𝑇 have a unique common fixed point.

Corollary 9. Let (𝑋, 𝑑) be a complete complex valued metric
space and 0 ≤ ℎ < 1. If the self-mapping 𝑇 : 𝑋 → 𝑋 satisfies

𝑑 (𝑇𝑥, 𝑇𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (37)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝐿 (𝑥, 𝑦)

∈ {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,
𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
}

(38)

then 𝑇 has a unique fixed point.

Corollary 10 (see [15]). Let (𝑋, 𝑑) be a complete complex
valued metric space and let 𝑇 : 𝑋 → 𝑋 and 0 ≤ ℎ < 1. If
the self-mapping 𝑇satisfies

𝑑 (𝑇𝑥, 𝑇𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (39)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
} , (40)

then 𝑇 has a unique fixed point.

As an application of Theorem 7, we prove the following
theorem for two finite families of mappings.

Theorem 11. If {𝑇
𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
are two finite pairwise com-

muting finite families of self-mapping defined on a complete
complex valued metric space (𝑋, 𝑑) such that the mappings 𝑆

and 𝑇 (with 𝑇 = 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑚
and 𝑆 = 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
) satisfy

the contractive condition (8), then the component maps of the
two families {𝑇

𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
have a unique common fixed point.

Proof. From theorem we can say that the mappings 𝑇 and 𝑆

have a unique common fixed point 𝑧; that is, 𝑇𝑧 = 𝑆𝑧 = 𝑧.
Now our requirement is to show that 𝑧 is a common fixed
point of all the componentmappings of both families. In view
of pairwise commutativity of the families {𝑇

𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
, (for

every 1 ≤ 𝑘 ≤ 𝑚) we can write 𝑇
𝑘
𝑧 = 𝑇

𝑘
𝑇𝑧 = 𝑇𝑇

𝑘
𝑧 and

𝑇
𝑘
𝑧 = 𝑇
𝑘
𝑆𝑧 = 𝑆𝑇

𝑘
𝑧 which show that 𝑇

𝑘
𝑧 (for every 𝑘) is also

a common fixed point of 𝑇 and 𝑆. By using the uniqueness of
commonfixed point, we canwrite𝑇

𝑘
𝑧 = 𝑧 (for every 𝑘) which

shows that 𝑧 is a common fixed point of the family {𝑇
𝑖
}
𝑚

1
.

Using the same argument one can also show that (for every
1 ≤ 𝑘 ≤ 𝑛) 𝑆

𝑘
𝑧 = 𝑧.Thus componentmaps of the two families

{𝑇
𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
have a unique common fixed point.

By setting 𝑇
1
= 𝑇
2
= ⋅ ⋅ ⋅ = 𝑇

𝑚
= 𝐹 and 𝑆

1
= 𝑆
2
= ⋅ ⋅ ⋅ =

𝑆
𝑛
= 𝐺, in Theorem 11, we get the following corollary.

Corollary 12. If 𝐹 and 𝐺 are two commuting self-mappings
defined on a complete complex valued metric space (𝑋, 𝑑)

satisfying the condition

𝑑 (𝐹
𝑚
𝑥, 𝐺
𝑛
𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (41)

for all 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ ℎ < 1, where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝐹
𝑚
𝑥) , 𝑑 (𝑦, 𝐺

𝑛
𝑦) ,

𝑑 (𝑥, 𝐹
𝑚
𝑥) 𝑑 (𝑦, 𝐺

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)
} ,

(42)

then 𝐹 and 𝐺 have a unique common fixed point.

Corollary 13. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑇 : 𝑋 → 𝑋 be a self-mapping satisfying

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (43)

for all 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ ℎ < 1, where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇
𝑚
𝑥) , 𝑑 (𝑦, 𝑇

𝑛
𝑦) ,

𝑑 (𝑥, 𝑇
𝑛
𝑥) 𝑑 (𝑦, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)
} .

(44)

Then 𝑇 has a unique fixed point.

Corollary 14 (see [15]). Let (𝑋, 𝑑) be a complete complex
valued metric space and 𝑇 : 𝑋 → 𝑋 and 0 ≤ ℎ < 1. The
self-mapping 𝑇 satisfies

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (45)
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for all 𝑥, 𝑦 ∈ 𝑋, where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇

𝑛
𝑥) 𝑑 (𝑦, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)
} . (46)

Then 𝑇 has a unique fixed point.

Our next example exhibits the superiority of Corollary 13
over Corollary 9.

Example 15. Let 𝑋
1
= {𝑧 ∈ C : 0 ≤ Re 𝑧 ≤ 1, Im 𝑧 = 0} and

𝑋
2
= {𝑧 ∈ C : 0 ≤ Im 𝑧 ≤ 1,Re 𝑧 = 0} and let 𝑋 = 𝑋

1
∪ 𝑋
2
.

Then with 𝑧 = 𝑥 + 𝑖𝑦, set 𝑆 = 𝑇 and define 𝑇 : 𝑋 → 𝑋 as
follows:

𝑇 (𝑥, 𝑦) =

{{{{

{{{{

{

(0, 0) if 𝑥, 𝑦 ∈ 𝑄

(1, 0) if 𝑥 ∈ 𝑄
𝑐
, 𝑦 ∈ 𝑄

(0, 1) if 𝑥 ∈ 𝑄, 𝑦 ∈ 𝑄
𝑐

(1, 1) if 𝑥, 𝑦 ∈ 𝑄
𝑐
.

(47)

Consider a complex valuedmetric 𝑑 : 𝑋×𝑋 → C as follows:

𝑑 (𝑧
1
, 𝑧
2
) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

2𝑖

3

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 , if 𝑧
1
, 𝑧
2
∈ 𝑋
1

𝑖

3

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 , if 𝑧
1
, 𝑧
2
∈ 𝑋
2

𝑖 (
2

3
𝑥
1
+

1

3
𝑦
2
) , if 𝑧

1
∈ 𝑋
1
, 𝑧
2
∈ 𝑋
2

𝑖 (
1

3
𝑦
1
+

2

3
𝑥
2
) if 𝑧

1
∈ 𝑋
2
, 𝑧
2
∈ 𝑋
1
,

(48)

where 𝑧
1

= 𝑥
1
+ 𝑖𝑦
1
, 𝑧
2

= 𝑥
2
+ 𝑖𝑦
2

∈ 𝑋. Then (𝑋, 𝑑)

is a complete complex valued metric space. By a routine
calculation, one can verify that the map 𝑇

2 satisfies condition
(43) with 𝜆 = (1/3)(say). It is interesting to notice that this
example cannot be covered by Corollary 9 as 𝑧

1
= (1, 0),

𝑧
2
= (1/2, 0) ∈ 𝑋 implies

2𝑖

3
= 𝑑 (𝑇𝑧

1
, 𝑇𝑧
2
) ≤ 𝑑 (𝑧

1
, 𝑧
2
) =

𝑖

3
(49)

a contradiction for every choice of 𝜆 which amounts to say
that condition (37) is not satisfied. Notice that the point 0 ∈ 𝑋

remains fixed under 𝑇 and 𝑇
2 and is indeed unique.

3. Application

By providing the following result, we establish an existence
theorem for the common solution for two Urysohn integral
equations.

Theorem 16. Let 𝑋 = 𝐶([𝑎, 𝑏],R𝑛), 𝑎 > 0, and 𝑑 : 𝑋 × 𝑋 →

C is defined as follows:

𝑑 (𝑥, 𝑦) = max
𝑡∈[𝑎,𝑏]

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩∞

√1 + 𝑎2𝑒
𝑖 tan−1𝑎

. (50)

Consider the Urysohn integral equations

𝑥 (𝑡) = ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑔 (𝑡) , (𝛼)

𝑥 (𝑡) = ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ℎ (𝑡) , (𝛽)

where 𝑡 ∈ [𝑎, 𝑏] ⊂ R, 𝑥, 𝑔, ℎ ∈ 𝑋.

Suppose that𝐾
1
, 𝐾
2
: [𝑎, 𝑏] × [𝑎, 𝑏] ×R𝑛 → R𝑛 are such

that 𝐹
𝑥
, 𝐺
𝑥
∈ 𝑋 for each 𝑥 ∈ 𝑋, where,

𝐹
𝑥
(𝑡) = ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝐺
𝑥
(𝑡) = ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [𝑎, 𝑏] .

(51)

If there exists 0 ≤ ℎ < 1 such that for every 𝑥, 𝑦 ∈ 𝑋

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑥
(𝑡) − 𝐺

𝑦
(𝑡) + 𝑔 (𝑡) − ℎ (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
√1 + 𝑎2𝑒

𝑖 tan−1𝑎

≾ ℎ𝐿 (𝑥, 𝑦) (𝑡) ,

(52)

where

𝐿 (𝑥, 𝑦) (𝑡)

∈ {𝐴 (𝑥, 𝑦) (𝑡) , 𝐵 (𝑥, 𝑦) (𝑡) , 𝐶 (𝑥, 𝑦) (𝑡) , 𝐷 (𝑥, 𝑦) (𝑡)} ,

𝐴 (𝑥, 𝑦) (𝑡) =
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)

󵄩󵄩󵄩󵄩∞
√1 + 𝑎2𝑒

𝑖 tan−1𝑎
,

𝐵 (𝑥, 𝑦) (𝑡) =
󵄩󵄩󵄩󵄩𝐹𝑥 (𝑡) + 𝑔(𝑡) − 𝑥(𝑡)

󵄩󵄩󵄩󵄩∞
√1 + 𝑎2𝑒

𝑖 tan−1𝑎
,

𝐶 (𝑥, 𝑦) (𝑡) =
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑦
(𝑡) + ℎ(𝑡) − 𝑦(𝑡)

󵄩󵄩󵄩󵄩󵄩∞
√1 + 𝑎2𝑒

𝑖 tan−1𝑎
,

𝐷 (𝑥, 𝑦) (𝑡)

=

󵄩󵄩󵄩󵄩𝐹𝑥 (𝑡) + 𝑔 (𝑡) − 𝑥 (𝑡)
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑦
(𝑡) + ℎ (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞

1 +max
𝑡∈[𝑎,𝑏]

𝐴 (𝑥, 𝑦) (𝑡)

× √1 + 𝑎2𝑒
𝑖 tan−1𝑎

,

(53)

then the system of integral equations (𝛼) and (𝛽) has a unique
common solution.

Proof. Define 𝑆, 𝑇 : 𝑋 → 𝑋 by

𝑆𝑥 = 𝐹
𝑥
+ 𝑔, 𝑇𝑥 = 𝐺

𝑥
+ ℎ. (54)
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Then

𝑑 (𝑆𝑥, 𝑇𝑦) = max
𝑡∈[𝑎,𝑏]

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑥
(𝑡) − 𝐺

𝑦
(𝑡) + 𝑔 (𝑡) − ℎ (𝑡)

󵄩󵄩󵄩󵄩󵄩∞

× √1 + 𝑎2𝑒
𝑖 tan−1𝑎

,

𝑑 (𝑥, 𝑦) = max
𝑡∈[𝑎,𝑏]

𝐴 (𝑥, 𝑦) (𝑡) ,

𝑑 (𝑥, 𝑆𝑥) = max
𝑡∈[𝑎,𝑏]

𝐵 (𝑥, 𝑦) (𝑡) ,

𝑑 (𝑦, 𝑇𝑦) = max
𝑡∈[𝑎,𝑏]

𝐶 (𝑥, 𝑦) (𝑡) ,

𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
= max
𝑡∈[𝑎,𝑏]

𝐷(𝑥, 𝑦) (𝑡) .

(55)

It is easily seen that 𝑑(𝑆𝑥, 𝑇𝑦) ≾ ℎ𝐿(𝑥, 𝑦), where

𝐿 (𝑥, 𝑦)

∈ {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,
𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
}

(56)

for every 𝑥, 𝑦 ∈ 𝑋. By Theorem 7, the Urysohn integral
equations (𝛼) and (𝛽) have a unique common solution.

Remark 17. Now we will apply techniques of [6] to obtain the
common fixed points of three and four mappings by using a
common fixed point result for two mappings.

Theorem 18. Let (𝑋, 𝑑) be a complete complex valued metric
space and 0 ≤ ℎ < 1. Let 𝑆, 𝑇, 𝑓 : 𝑋 → 𝑋 by the self-mappings
such that 𝑆𝑋 ∪ 𝑇𝑋 ⊂ 𝑓𝑋. Assume that the following holds:

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (57)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑓𝑥, 𝑓𝑦) , 𝑑 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑓𝑦, 𝑇𝑦) ,

𝑑 (𝑓𝑥, 𝑆𝑥) 𝑑 (𝑓𝑦, 𝑇𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} .

(58)

If (𝑆, 𝑓) and (𝑇, 𝑓) are weakly compatible and 𝑓𝑋 is closed,
then 𝑆, 𝑇, and 𝑓 have a unique common fixed point in 𝑋.

Proof. By Lemma 5, there exists 𝐸 ⊂ 𝑋 such that 𝑓𝐸 = 𝑓𝑋

and 𝑓 : 𝐸 → 𝑋 is one to one. Now define the self-mappings
𝑔, ℎ : 𝑓𝐸 → 𝑓𝐸 by 𝑔(𝑓𝑥) = 𝑆𝑥 and ℎ(𝑓𝑥) = 𝑇𝑥, respectively.
Since 𝑓 is one to one on 𝐸, then 𝑔, ℎ are well defined. Note
that

𝑑 (𝑔 (𝑓𝑥) , ℎ (𝑓𝑥)) ≾ ℎ𝐿 (𝑥, 𝑦) , (59)

where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑓𝑥, 𝑓𝑦) , 𝑑 (𝑓𝑥, 𝑔 (𝑓𝑥)) , 𝑑 (𝑓𝑦, ℎ (𝑓𝑦)) ,

𝑑 (𝑓𝑥, 𝑔 (𝑓𝑥)) 𝑑 (𝑓𝑦, ℎ (𝑓𝑦))

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} .

(60)

By Theorem 7 as 𝑓𝐸 is complete, we deduce that there exists
a unique common fixed point 𝑓𝑧 ∈ 𝑓𝐸 of 𝑔 and ℎ; that is,
𝑓𝑧 = 𝑔(𝑓𝑧) = ℎ(𝑓𝑧). Thus, 𝑧 is a coincidence point of 𝑆,
𝑇, and 𝑓. Now we show that 𝑆, 𝑇, and 𝑓 have unique point
of coincidence. Now let 𝑥 ∈ 𝑋 such that 𝑆𝑥 = 𝑇𝑥 = 𝑓𝑥,
𝑓𝑥 ̸= 𝑓𝑧. Then 𝑓𝑥 is another common fixed point of 𝑔 and
ℎ, which is a contradiction, which implies that 𝑆, 𝑇, and 𝑓

have a unique point of coincidence. Since (𝑆, 𝑓) and (𝑇, 𝑓)

are weakly compatible by Lemma 6, we deduce that 𝑓𝑧 is a
unique common fixed point of 𝑆, 𝑇, and 𝑓.

Theorem 19. Let (𝑋, 𝑑) be a complete complex valued metric
space and 0 ≤ ℎ < 1. Let 𝑆, 𝑇, 𝑓, 𝑔 : 𝑋 → 𝑋 by the self-
mappings such that 𝑆𝑋, 𝑇𝑋 ⊂ 𝑓𝑋 = 𝑔𝑋. Assume that the
following holds:

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ ℎ𝐿 (𝑥, 𝑦) (61)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝐿 (𝑥, 𝑦) ∈ {𝑑 (𝑓𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑔𝑦, 𝑇𝑦) ,

𝑑 (𝑓𝑥, 𝑆𝑥) 𝑑 (𝑔𝑦, 𝑇𝑦)

1 + 𝑑 (𝑓𝑥, 𝑔𝑦)
} .

(62)

If (𝑆, 𝑓) and (𝑇, 𝑔) are weakly compatible and 𝑓𝑋 is closed in
𝑋, then 𝑆, 𝑇, 𝑓, and 𝑔 have a unique common fixed point in𝑋.

Proof. By Lemma 5, there exists 𝐸
1
, 𝐸
2
⊂ 𝑋 such that 𝑓𝐸

1
=

𝑓𝑋 = 𝑔𝑋 = 𝑔𝐸
2
, 𝑓 : 𝐸

1
→ 𝑋, 𝑔 : 𝐸

2
→ 𝑋 are one to one.

Now define the mappings 𝐴, 𝐵 : 𝑓𝐸
1

→ 𝑓𝐸
1
by 𝐴𝑓(𝑥) = 𝑆𝑥

and 𝐵𝑔(𝑥) = 𝑇𝑥, respectively. Since 𝑓, 𝑔 are one to one on 𝐸
1

and𝐸
2
, respectively, then themappings𝐴,𝐵 are well-defined.

Now

𝑑 (𝑆𝑥, 𝑇𝑦) = 𝑑 (𝐴 (𝑓𝑥) , 𝐵 (𝑔𝑦)) ≾ ℎ𝐿 (𝑥, 𝑦) , (63)

where

𝐿 (𝑥, 𝑦)

∈ {𝑑 (𝑓𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, 𝐴 (𝑓𝑥)) , 𝑑 (𝑔𝑦, 𝐵 (𝑔𝑦)) ,

𝑑 (𝑓𝑥, 𝐴 (𝑓𝑥)) 𝑑 (𝑔𝑦, 𝐵 (𝑔𝑦))

1 + 𝑑 (𝑓𝑥, 𝑔𝑦)
}

(64)

for all 𝑓𝑥, 𝑔𝑦 ∈ 𝑓𝐸
1
. By Theorem 7, as 𝑓𝐸

1
is complete

subspace of𝑋, we deduce that there exists a unique common
fixed point𝑓𝑧 ∈ 𝑓𝐸

1
of𝐴 and 𝐵; that is,𝐴(𝑓𝑧) = 𝐵𝑓(𝑧) = 𝑓𝑧.
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This implies that 𝑆𝑧 = 𝑓𝑧; let V ∈ 𝑋 such that 𝑓𝑧 = 𝑔V. We
have 𝐵(𝑔V) = 𝑔V ⇒ 𝑇V = 𝑔V. We show that 𝑆 and 𝑓 have a
unique point of coincidence. If 𝑆𝑤 = 𝑓𝑤 then 𝑓𝑤 is a fixed
point of𝐴. By the proof ofTheorem 7𝑓𝑤 is another common
fixed point of𝐴 and 𝐵 which is a contradiction. Hence, 𝑆 and
𝑓 have a unique point of coincidence. By Lemma 6, it follows
that 𝑓𝑧 is a unique common fixed point of 𝑆 and 𝑓. Similarly,
𝑔V is the unique common fixed point for 𝑇and 𝑔. This proves
that 𝑓𝑧 = 𝑔V is the unique common fixed point for 𝑆, 𝑇, 𝑓,
and 𝑔.
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