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We establish an observability estimate for the fractional order parabolic equations evolved in a bounded domain Ω of R𝑛. The
observation region is𝐹×𝜔, where𝜔 and𝐹 aremeasurable subsets ofΩ and (0,𝑇), respectively, with positivemeasure.This inequality
is equivalent to the null controllable property for a linear controlled fractional order parabolic equation.Thebuilding of this estimate
is based on the Lebeau-Robbiano strategy and a delicate result in measure theory provided in Phung and Wang (2013).

1. Introduction

Let Ω be a bounded domain in R𝑛, 𝑛 ≥ 1, with real
analytic boundary. Let 𝜔 ⊂ Ω be a Lebesgue measurable
subset with positive measure, and denote the characteristic
function of 𝜔 by 𝜒

𝜔
. Let 𝑇 > 0. Let 𝐹 ⊂ (0, 𝑇) be

a Lebesgue measurable subset with positive measure, and
denote the characteristic function of 𝐹 by 𝜒

𝐹
. Now,we define

an unbounded operator 𝐴 in 𝐿
2

(Ω) as follows:

𝐷 (𝐴) = 𝐻
2

(Ω) ∩ 𝐻
1

0
(Ω) ,

𝐴V = −ΔV, for any V ∈ 𝐷 (𝐴) .
(1)

Let {𝜆
𝑖
}
∞

𝑖=1
, 0 < 𝜆

1
< 𝜆
2

≤ ⋅ ⋅ ⋅ , be the eigenvalues
of 𝐴 = −Δ, and let {𝑒

𝑖
}
∞

𝑖=1
be the corresponding eigenfunc-

tions satisfied that ‖𝑒
𝑖
(𝑥)‖
𝐿
2
(Ω)

= 1, 𝑖 = 1, 2, 3, . . ., which
constitutes an orthonormal basis of 𝐿2(Ω). It is well known
that we can define a class of operator 𝐴𝛼 (𝛼 ≥ 0) in 𝐿

2

(Ω) as
follows:

𝐷(𝐴
𝛼

) = {V ∈ 𝐿
2

(Ω) | V =

∞

∑

𝑖=1

V
𝑖
𝑒
𝑖
,

∞

∑

𝑖=1

𝜆
2𝛼

𝑖

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨

2

< ∞} ,

𝐴
𝛼V =

∞

∑

𝑖=1

𝜆
𝛼

𝑖
V
𝑖
𝑒
𝑖
, where V =

∞

∑

𝑖=1

V
𝑖
𝑒
𝑖
.

(2)

Moreover, the operator 𝐴
𝛼 is a self-adjoint operator

and −𝐴
𝛼 is an infinitesimal generator of a strong continuous

semigroup {𝑆
𝛼
(𝑡)}
𝑡≥0

. Now, we consider the following linear
controlled fractional order parabolic equation:

𝜕
𝑡
𝑦 (𝑥, 𝑡) + 𝐴

𝛼

𝑦 (𝑥, 𝑡) = 𝐵𝑢 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇] ,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω,

(3)

where 𝛼 > 1/2, 𝐵 is a linear bounded operator in 𝐿
2

(Ω)

defined by 𝐵𝑢 = 𝜒
𝐹
(𝑡) ⋅ 𝜒

𝜔
(𝑥)𝑢, 𝑦

0
∈ 𝐿
2

(Ω), and 𝑢(⋅, 𝑡) is
a control function taken from the space 𝐿

2

(0, 𝑇; 𝐿
2

(Ω)).
We denote 𝑦(⋅; 𝑦

0
, 𝑢) to be the unique solution of (3) cor-

responding to the control 𝑢 and the initial value 𝑦
0
. We

denote ‖ ⋅ ‖ and ⟨⋅, ⋅⟩ to be the usual norm and the inner
product in 𝐿

2

(Ω), respectively.
In recent years, extensive research has been devoted to

the study of differential equations with fractional orders
due to their importance for applications in various branches
of applied sciences and engineering. Many important phe-
nomena in signal processing, electromagnetics, crowded
systems, and fluid mechanics are well described by fractional
differential equation (see [1]). In this paper, we always discuss
the fractional Laplacian. The fractional Laplacian −𝐴

𝛼, with
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𝛼 ∈ (0, 1], generates the rotationally invariant 2𝛼 stable Lévy
process. For 𝛼 = 1, this process is the normal Brownian
motion 𝐵

𝑡
on R𝑛 (see [2]).

Now, we will focus on the issue of what the controllable
property is for the controlled system (3). System (3) is said
to be null controllable in time 𝑇 if for any 𝑦

0
∈ 𝐿
2

(Ω), there
exists a control function 𝑢 ∈ 𝐿

2

(0, 𝑇; 𝐿
2

(Ω)), such that the
solutions of (3) matches

𝑦 (𝑇; 𝑦
0
, 𝑢) = 0. (4)

The problem of null controllability of parabolic equations has
also been the object of numerous studies. Extensive related
references can be found in [3–7] and the rich works cited
therein. Especially, we refer to [5] for a null controllability
result for the parabolic equations which plays a crucial role
in establishing the main result in our paper. In the above
works, the control region 𝜔 is always assumed to contain an
open ball. The reason is that the main technique used in
the argument, Carleman inequality, is required to construct
weight functions. The construction of such functions seems
to be not possible, when 𝜔 do not contain a ball. Recently, the
null controllability for the parabolic equations with 𝜔 that is
a measurable subset of positive measure has been established
in [8], where an inequality involving measurable sets for a
class of real analytic functions was set up in a skillful way.
On the other hand, the classical null controllability for some
fractional order parabolic equation was studied in [9, 10].
In particular, in [9] the authors proved that one-dimension
problem is not controllable from the boundary for 𝛼 ∈

(0, 1/2].
By the classical duality argument [11], the controllable

properties can be transformed into observability problems
on the adjoint system. The adjoint system for (3) may be
described as follows:

𝜕
𝑡
𝜑 (𝑥, 𝑡) = 𝐴

𝛼

𝜑 (𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω × [0, 𝑇) ,

𝜑 (𝑥, 𝑇) = 𝜑
0
(𝑥) , 𝑥 ∈ Ω.

(5)

Thus, the exact null controllability property is equivalent to
the existence of a constant 𝐶 = 𝐶(𝑇) > 0 such that the
following inequality holds for every solution of (5):

󵄩󵄩󵄩󵄩𝜑(𝑥, 0)
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

≤ 𝐶 (𝑇)∫
𝐹

∫
𝜔

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡. (6)

Inequality (6) is called observability inequality, and the best
constant 𝐶(𝑇) in inequality (6) will be referred as the observ-
ability constant. In this work, we discuss the internal observ-
ability estimate for the adjoint system (5) when 𝜔 and 𝐹 are
measurable subsets of Ω and (0, 𝑇), respectively, with posi-
tive measure. To the best of our knowledge, this observability
estimate has not been studied in the past publications.

The main result of the paper is presented as follows.

Theorem 1. Suppose that Ω ⊂ R𝑛, 𝑛 ≥ 1, is a bounded
domain with a real analytic boundary and𝜔 ⊂ Ω is a Lebesgue
measurable set with positive measure. Let 𝑇 > 0, and let
𝐹 ⊂ (0, 𝑇) be a Lebesgue measurable set with positive measure.

Let 𝛼 > 1/2. Then, there exists a constant 𝐶 = 𝐶(Ω, 𝑇, 𝜔, 𝐹, 𝛼)

such that, for any data 𝜑
0
∈ 𝐿
2

(Ω), the solution of (5) satisfied

󵄩󵄩󵄩󵄩𝜑 (𝑥, 0)
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

≤ 𝐶 (Ω, 𝑇, 𝜔, 𝐹, 𝛼) ∫
𝐹

∫
𝜔

󵄨󵄨󵄨󵄨𝜑 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡.

(7)

Observability inequality (7) in Theorem 1 allows for
estimating the total energy of the solutions of (5) at time
0 in terms of the partial energy localized in the observa-
tion region 𝐹 × 𝜔, where 𝜔 and 𝐹 are measurable subsets
of Ω and (0, 𝑇), respectively, with positive measure. This
inequality is equivalent to the null controllability property for
the controlled system (3).

We proceed as follows. In Section 2, we give some
preliminary results. Section 3 is devoted to the proof of
Theorem 1.

2. Preliminary Results

In this section, we will introduce some notions and prelim-
inary results. Based on classical semigroup theory, we see
that the operator −𝐴𝛼 is the generator of a semigroup of
contraction in 𝐿

2

(Ω), which we denote by 𝑆
𝛼
(𝑡), 𝛼 > 1/2.

Indeed, the semigroup can be written as follows:

𝑆
𝛼
(𝑡) 𝜓 =

∞

∑

𝑖=1

𝑒
−𝜆
𝛼

𝑖
𝑡

⟨𝜓, 𝑒
𝑖
⟩
𝑒
𝑖

, for 𝜓 ∈ 𝐿
2

(Ω) . (8)

From this, it follows that
󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜓

󵄩󵄩󵄩󵄩𝐿2(Ω)
≤ 𝑒
−𝜆
𝛼

1
𝑡󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿2(Ω)
, (9)

for any 𝛼 > 1/2 (see [12]).
Throughout the rest of the paper, the following notation

will be used. For each measurable set 𝐴 ⊆ R, |𝐴| stands for
its Lebesgue measure in R. The following lemma is quoted
from [13].

Lemma 2. Let 𝐸 ⊆ [0, 𝑇] be a measurable set with a positive
measure, and let 𝑙 be a density point for 𝐸. Then for each 𝑧 >

1, there exists a 𝑙
1
∈ (𝑙, 𝑇) such that the sequence {𝑙

𝑖
}
∞

𝑖=1
, given

by

𝑙
𝑖+1

= 𝑙 +
1

𝑧𝑖
(𝑙
1
− 𝑙) , (10)

satisfies

󵄨󵄨󵄨󵄨𝐸 ∩ (𝑙
𝑖+1

, 𝑙
𝑖
)
󵄨󵄨󵄨󵄨 ≥

1

2
(𝑙
𝑖
− 𝑙
𝑖+1

) . (11)

Next, we recall the following results, which play a key role
in this paper.

Lemma 3. Let Ω be a bounded domain in 𝑅
𝑛, 𝑛 ≥ 1. Suppose

that Ω have real analytic boundary. Then, for each subset
𝜔 ⊂ Ω with positive measure, there exist two positive constants
𝐶
1
> 1 and 𝐶

2
> 0, which only depend on Ω,𝜔, such that

∑

𝜆
𝑖
≤𝑟

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

2

≤ 𝐶
1
𝑒
𝐶
2
√𝑟

∫
𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝜆
𝑖
≤𝑟

𝑎
𝑖
𝑒
𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 (12)
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for each finite 𝑟 > 0 and each choice of the coefficients {𝑎
𝑖
}
𝜆
𝑖
≤𝑟

with 𝑎
𝑖
∈ R.

This conclusion can be found in the literature [8].
Next, for each 𝑟 > 0, we define 𝑋

𝑟
= span{𝑒

𝑖
(𝑥)}
𝜆
𝑖
≤𝑟

and
𝑋
⊥

𝑟
= span{𝑒

𝑖
(𝑥)}
𝜆
𝑖
>𝑟
. Indeed, for each 𝑟 > 0, 𝐿2(Ω) = 𝑋

𝑟
⊕

𝑋
⊥

𝑟
.

Lemma 4. For any 𝜉
0
∈ 𝑋
⊥

𝑟
, it always holds that

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜉0
󵄩󵄩󵄩󵄩𝐿2(Ω)

< 𝑒
−𝑟
𝛼
𝑡󵄩󵄩󵄩󵄩𝜉0

󵄩󵄩󵄩󵄩𝐿2(Ω)
. (13)

This lemma can be easily obtained by (8) and (9).

3. The Proof of Main Result

Proof. Let 𝐸 = {𝑡 | 𝑡 = 𝑇−𝑠,where 𝑠 ∈ 𝐹}.Then, |𝐸| = |𝐹| >

0. Let 𝑙 be a density point for 𝐸. By Lemma 2, for 𝑧 > 1, there
exists a 𝑙

1
∈ (𝑙, 𝑇) and a sequence {𝑙

𝑖
}
∞

𝑖=1
satisfied (10) and (11).

We now define a sequence subset of (0, 𝑇) as follows:

𝐸
𝑖
= {𝑡 −

𝑙
𝑖
− 𝑙
𝑖+1

4
| 𝑡 ∈ 𝐸 ∩ (𝑙

𝑖+1
+
𝑙
𝑖
− 𝑙
𝑖+1

4
, 𝑙
𝑖
)} . (14)

In fact, 𝐸
𝑖
is a subset of (𝑙

𝑖+1
, 𝑙
𝑖+1

+ (3/4)(𝑙
𝑖
− 𝑙
𝑖+1

)), and

󵄨󵄨󵄨󵄨𝐸𝑖
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸 ∩ (𝑙
𝑖+1

+
𝑙
𝑖
− 𝑙
𝑖+1

4
, 𝑙
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸 ∩ {(𝑙
𝑖+1

, 𝑙
𝑖
) \ (𝑙
𝑖+1

, 𝑙
𝑖+1

+
𝑙
𝑖
− 𝑙
𝑖+1

4
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(15)

By (11), it follow that

󵄨󵄨󵄨󵄨𝐸𝑖
󵄨󵄨󵄨󵄨 ≥

𝑙
𝑖
− 𝑙
𝑖+1

4
. (16)

Let 𝑖
0
be the first natural number satisfying 𝑖

0
> 1/(2𝛼 − 1);

namely, 𝑖
0
= [1/(2𝛼 − 1)] + 1. Let 𝑏 > 1 be a positive number

satisfying

(
𝑏
𝛼

𝑧
)

𝑖

(1 −
1

𝑧
) (𝑙
1
− 𝑙) > 4𝐶

2
𝑏
(𝑖+1)/2

+ 4 ln (8𝐶
1
𝑧) ,

for 𝑖 = 𝑖
0
, 𝑖
0
+ 1, 𝑖
0
+ 2, . . . .

(17)

Taking 𝑟
𝑖
= 𝑏
𝑖, by (8), it follows that, for any 𝜉 ∈ 𝑋

𝑟
𝑖

,

∫

𝑙
𝑖+1
+(3/4)(𝑙

𝑖
−𝑙
𝑖+1
)

𝑙
𝑖+1

𝜒
𝐸
𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
(𝑙
𝑖+1

+
3

4
(𝑙
𝑖
− 𝑙
𝑖+1

)) 𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
𝑑𝑡

≤ ∫

𝑙
𝑖+1
+(3/4)(𝑙

𝑖
−𝑙
𝑖+1
)

𝑙
𝑖+1

𝜒
𝐸
𝑖
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜉
󵄩󵄩󵄩󵄩𝐿2(Ω)

𝑑𝑡.

(18)

Combining with (16) and (12), this shows that

𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
(𝑙
𝑖+1

+
3

4
(𝑙
𝑖
− 𝑙
𝑖+1

)) 𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
󵄨󵄨󵄨󵄨𝐸𝑖

󵄨󵄨󵄨󵄨 ⋅

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
(𝑙
𝑖+1

+
3

4
(𝑙
𝑖
− 𝑙
𝑖+1

)) 𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ ∫

𝑙
𝑖+1
+(3/4)(𝑙

𝑖
−𝑙
𝑖+1
)

𝑙
𝑖+1

𝜒
𝐸
𝑖
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜉
󵄩󵄩󵄩󵄩𝐿2(Ω)

𝑑𝑡

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖+1
+(3/4)(𝑙

𝑖
−𝑙
𝑖+1
)

𝑙
𝑖+1

𝜒
𝐸
𝑖
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜉
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡.

(19)

For each 𝜙 ∈ 𝐿
2

(Ω), we can write 𝜙 = 𝜙
1
+ 𝜙
2
, where 𝜙

1
∈

𝑋
𝑟
𝑖

and 𝜙
2
∈ 𝑋
⊥

𝑟
𝑖

. Taking 𝜉 = 𝑆
𝛼
((𝑙
𝑖
− 𝑙
𝑖+1

)/4)𝜙
1
in (19), it

follows that
𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖)𝜙1
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝑙
𝑖+1

+
3

4
(𝑙
𝑖
− 𝑙
𝑖+1

)) ∘ 𝑆
𝛼
(
𝑙
𝑖
− 𝑙
𝑖+1

4
)𝜙
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖+1
+(3/4)(𝑙

𝑖
−𝑙
𝑖+1
)

𝑙
𝑖+1

𝜒
𝐸
𝑖
(𝑡)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝑡 +

𝑙
𝑖
− 𝑙
𝑖+1

4
)𝜙
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1
+((𝑙
𝑖
−𝑙
𝑖+1
)/4)

𝜒
𝐸
𝑖

(𝑡 −
𝑙
𝑖
− 𝑙
𝑖+1

4
)

×
󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙1

󵄩󵄩󵄩󵄩𝐿2(𝜔)
𝑑𝑡.

(20)
By the definition of 𝐸

𝑖
, it is easily to see that

𝜒
𝐸
𝑖

(𝑡 −
𝑙
𝑖
− 𝑙
𝑖+1

4
) = 𝜒

𝐸
(𝑡) ,

for any 𝑡 ∈ (𝑙
𝑖+1

+
𝑙
𝑖
− 𝑙
𝑖+1

4
, 𝑙
𝑖
) .

(21)

This, together with (20), deduces
𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖)𝜙1
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1
+((𝑙
𝑖
−𝑙
𝑖+1
)/4)

𝜒
𝐸
(𝑡)

× (
󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙

󵄩󵄩󵄩󵄩𝐿2(𝜔)
+
󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙2

󵄩󵄩󵄩󵄩𝐿2(Ω)
) 𝑑𝑡

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1
+((𝑙
𝑖
−𝑙
𝑖+1
)/4)

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡

+ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 (𝑙
𝑖
− 𝑙
𝑖+1

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝛼
(𝑙
𝑖+1

+
𝑙
𝑖
− 𝑙
𝑖+1

4
)𝜙
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

𝑑𝑡.

(22)
The last step is based on the energy decay property of 𝑆

𝛼
(𝑡).

Along with Lemma 4, we derive that
𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖)𝜙1
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1
+((𝑙
𝑖
−𝑙
𝑖+1
)/4)

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡

+ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 (𝑙
𝑖
− 𝑙
𝑖+1

) 𝑒
−𝑟
𝛼

𝑖
((𝑙
𝑖
−𝑙
𝑖+1
)/4)󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙2

󵄩󵄩󵄩󵄩𝐿2(Ω)
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≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡

+ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 (𝑙
𝑖
− 𝑙
𝑖+1

) 𝑒
−𝑟
𝛼

𝑖
((𝑙
𝑖
−𝑙
𝑖+1
)/4)󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙2

󵄩󵄩󵄩󵄩𝐿2(Ω)
.

(23)

Therefore,

𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖)𝜙
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡

+ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 (𝑙
𝑖
− 𝑙
𝑖+1

) 𝑒
−𝑟
𝛼

𝑖
((𝑙
𝑖
−𝑙
𝑖+1
)/4)󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙2

󵄩󵄩󵄩󵄩𝐿2(Ω)

+
𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖)𝜙2
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡

+ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 (𝑙
𝑖
− 𝑙
𝑖+1

) 𝑒
−𝑟
𝛼

𝑖
((𝑙
𝑖
−𝑙
𝑖+1
)/4)󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙2

󵄩󵄩󵄩󵄩𝐿2(Ω)

+
𝑙
𝑖
− 𝑙
𝑖+1

4
𝑒
−𝑟
𝛼

𝑖
(𝑙
𝑖
−𝑙
𝑖+1
)󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙2

󵄩󵄩󵄩󵄩𝐿2(Ω)
.

(24)

Thus,
𝑙
𝑖
− 𝑙
𝑖+1

4

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖)𝜙
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
1
𝑒
𝐶
2√𝑟𝑖 ∫

𝑙
𝑖

𝑙
𝑖+1

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡

+ (𝑙
𝑖
− 𝑙
𝑖+1

) 𝑒
−𝑟
𝛼

𝑖
((𝑙
𝑖
−𝑙
𝑖+1
)/4)

(𝐶
1
𝑒
𝐶
2√𝑟𝑖 + 1)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙
󵄩󵄩󵄩󵄩𝐿2(Ω)

.

(25)

This leads to
𝑙
𝑖
− 𝑙
𝑖+1

4𝐶
1
𝑒𝐶2√𝑟𝑖

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖)𝜙
󵄩󵄩󵄩󵄩𝐿2(Ω)

−
𝐶
1
𝑒
𝐶
2√𝑟𝑖 + 1

𝐶
1
𝑒𝐶2√𝑟𝑖

(𝑙
𝑖
− 𝑙
𝑖+1

) 𝑒
−𝑟
𝛼

𝑖
((𝑙
𝑖
−𝑙
𝑖+1
)/4)󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙

󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ ∫

𝑙
𝑖

𝑙
𝑖+1

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡.

(26)

Summing (26) from 𝑖
0
to ∞, it follows that

𝑙
𝑖
0

− 𝑙
𝑖
0
+1

4𝐶
1
𝑒
𝐶
2√𝑟𝑖0

󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
(𝑙
𝑖
0

)𝜙
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

+

∞

∑

𝑖=𝑖
0

𝑘
𝑖

󵄩󵄩󵄩󵄩𝑆𝛼(𝑙𝑖+1)𝜙
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ ∫

𝑇

0

𝜒
𝐸
(𝑡)

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡,

(27)

where

𝑘
𝑖
=

𝑙
𝑖+1

− 𝑙
𝑖+2

4𝐶
1
𝑒𝐶2√𝑟𝑖+1

−
𝐶
1
𝑒
𝐶
2√𝑟𝑖 + 1

𝐶
1
𝑒𝐶2√𝑟𝑖

(𝑙
𝑖
− 𝑙
𝑖+1

) 𝑒
−𝑟
𝛼

𝑖
((𝑙
𝑖
−𝑙
𝑖+1
)/4)

,

𝑖 = 𝑖
0
, 𝑖
0
+ 1, 𝑖
0
+ 2 . . . .

(28)

Actually, by (17), we can derive that

𝑘
𝑖
> 0, for any 𝑖 = 𝑖

0
, 𝑖
0
+ 1, 𝑖
0
+ 2 . . . . (29)

This, together with (27), shows that

󵄩󵄩󵄩󵄩𝑆𝛼(𝑇)𝜙
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
(𝑙
𝑖
0

)𝜙
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
4𝐶
1
𝑒
𝐶
2√𝑟𝑖0

𝑙
𝑖
0

− 𝑙
𝑖
0
+1

∫
𝐸

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)𝜙
󵄩󵄩󵄩󵄩𝐿2(𝜔)

𝑑𝑡.

(30)

Now, we are in the position to prove (7). The solution of (5)
can be written as follows:

𝜑 (𝑡) = 𝑆
𝛼
(𝑇 − 𝑡) 𝜑

0
. (31)

Along with (30), we can deduce that

󵄩󵄩󵄩󵄩𝜑(𝑥, 0)
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
4𝐶
1
𝑒
𝐶
2√𝑟𝑖0

𝑙
𝑖
0

− 𝑙
𝑖
0
+1

∫
𝐹

󵄩󵄩󵄩󵄩𝜑(𝑡)
󵄩󵄩󵄩󵄩𝐿2(𝑥,𝜔)

𝑑𝑡. (32)

This completes the proof of the main result.
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