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As amajor energy-saving industry, power industry has implemented energy-saving generation dispatching. Apart from security and
economy, low carbon will be the most important target in power dispatch mechanisms. In this paper, considering a power system
with many thermal power generators which use different petrochemical fuels (such as coal, petroleum, and natural gas) to produce
electricity, respectively, we establish a self-scheduling model based on the forecasted locational marginal prices, particularly taking
into account CO

2
emission constraint, CO

2
emission cost, and unit heat value of fuels. Then, we propose a distributionally robust

self-scheduling optimizationmodel under uncertainty in both the distribution form andmoments of the locationalmarginal prices,
where the knowledge of the prices is solely derived from historical data. We prove that the proposed robust self-scheduling model
can be solved to any precision in polynomial time. These arguments are confirmed in a practical example on the IEEE 30 bus test
system.

1. Introduction

Generation self-scheduling in a pool-based electricitymarket
has been recently studied in the power systems literature [1–
3]. The self-schedules are required in developing successful
bidding strategies and constructing hourly bidding curves
for consideration by the independent system operator. In
order to obtain successful generation bids, the generation
companies have to self-schedule their unit by maximizing
the expected profit based on the forecasted location marginal
prices and accounting for the network security constraints.
For a price-taker generation and a single time period, the
generation schedule 𝑥 is obtained from the following deter-
ministic self-scheduling problem:

max
𝑥∈𝑋

𝜉
𝑇
𝑥 −

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
) , (1)

where𝑥 is an (𝑚×1) column vector containing the generation
schedule, 𝜉 is an (𝑚×1) column vector of locational marginal
prices (LMPs),𝑋 ⊂ 𝑅

𝑚 is the feasible regionwhich is a convex

and compact set, and 𝐶
𝑖
(𝑥
𝑖
) is the generation quadratic cost

function:

𝐶
𝑖
(𝑥
𝑖
) = 𝑎
𝑖
+ 𝑏
𝑖
𝑥
𝑖
+ 𝑐
𝑖
𝑥
2

𝑖
𝑖 = 1, . . . , 𝑚. (2)

The issue of interest for this work is that, since the
electricity prices are of stochastic nature, the generation
company cannot be certain about the revenue. Measuring
the underlying risk due to this uncertainty is crucial not
only for assessing profitability but also for generation self-
scheduling. Stochastic programming can effectively describe
self-scheduling problems in uncertain environments. Unfor-
tunately, although the self-scheduling problem is a convex
optimization problem, to solve it one must often resort to
Monte Carlo approximations, which can be computationally
challenging. A more challenging difficulty that arises in
practice is the need to commit to a distribution given only
limited information about the stochastic parameters [4].

In an effort to address these issues, robust formulations
for self-scheduling problems were proposed; see [2, 3]. Jabr
[2] considers a generation self-scheduling model based on a
worst-case conditional robust profit with partial information
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on the probability distribution of prices. It is assumed that the
nominal distribution and a set of possible distributions were
given. Uncertainty of prices is represented by box and ellip-
soidal uncertainty sets. However, in practice, true probability
distribution of prices cannot be known exactly.Their solution
can be misleading when there is ambiguity in the choice of
a distribution for the random prices. Recently, Delage and
Ye [4] proposed a distributionally robust optimization model
that describes uncertainty in both the distribution form and
moments (mean and covariance matrix). By deriving a new
form of confidence region for the mean and the covariance
matrix of a random vector, it was showed how the proposed
distribution set can be well justified when addressing data-
driven problems (i.e., problems where the knowledge of the
random parameters is solely derived from historical data).

On the other hand, as a major energy-saving industry,
power industry has implemented energy-saving generation
dispatching. Apart from security and economy, low carbon
will be the most important target in power dispatch mech-
anisms. It becomes a common target for the global power
industry to build a more safe, economic, and low-carbon
power system [5]. So more attention should be paid to the
reduction of CO

2
emission in power system operation [5, 6].

The main contribution of this paper is twofold. First,
by considering a power system with many thermal power
generators which use different petrochemical fuels (such
as coal, petroleum, and natural gas) to produce electricity,
respectively, we establish a self-scheduling model based on
the forecasted locational marginal prices, particularly taking
into account CO

2
emission constraint, CO

2
emission cost,

and unit heat value of fuels. This problem is important
and timely as world leaders and international organizations
discuss the roles and responsibilities of each country and
sector of economic activity in the path towards a sustainable
future. Second, motivated by the work of Delage and Ye [4],
we propose a distributionally robust self-scheduling opti-
mization model under uncertainty in both the distribution
form and moments of the locational marginal prices, where
the knowledge of the prices is solely derived from historical
data.Then we prove that the proposed robust self-scheduling
model can be solved to any precision in polynomial time.
These arguments are confirmed in a practical example on the
IEEE 30 bus test system.

2. Robust Self-Scheduling Problem
with Moment Uncertainty and CO

2

Emission Constraint

2.1. Power Dispatch with 𝐶𝑂
2
Emission Constraint. In this

section, we describe the power scheduling problemwith CO
2

emission constraint.
Given is a thermal power system with𝑀 thermal power

generators 𝑖 ∈ 𝑀 = {1, . . . , 𝑚}, which use petrochemical fuels
as their fuels, such as coal, petroleum, and natural gas. The
quantity of CO

2
emission of each power generator 𝑖 can be

represented as

𝐸
𝑖
= 𝐹
𝑖
ℎ
𝑖
, (3)

where 𝐹
𝑖
is the quantity of the fuel which is consumed

to produce electricity and ℎ
𝑖
(≥ 0) is the amount of CO

2

emissions by per unit of fuel complete combustion. The
generating capacity of this power generator is

𝑥
𝑖
= 𝐹
𝑖
𝑝
𝑖
𝜑
𝑖
, (4)

where 𝑝
𝑖
(> 0) is the unit heat value of the fuel and 𝜑

𝑖
(> 0) is

the energy conversion efficiency.
By (3) and (4), we get the carbon characteristic function

of power generator 𝑖:

𝐸
𝑖
=

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
. (5)

The objective is themaximization of the expected profit based
on the forecasted locational marginal prices 𝜉, particularly
taking into account CO

2
emission constraints and CO

2

emission cost. The cost consists of the variable cost of
electricity production of the thermal generators and the cost
of CO

2
emission. So the power scheduling problem with

CO
2
emission constraints can be modeled as the following

deterministic self-scheduling problem:

max
𝑥∈𝑋

𝐸[𝜉
𝑇
𝑥 −

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
) −

𝑚

∑

𝑖=1

𝛿 ⋅

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
]

s.t.
𝑚

∑

𝑖=1

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
≤ 𝐸,

(6)

where𝑥 is an (𝑚×1) column vector containing the generation
schedule, 𝜉 is an (𝑚 × 1) column vector of forecasted
locational marginal prices (LMPs), 𝑋 is the feasible region,
𝛿 is the CO

2
emission price with the unit £/ton, 𝐸 is

the maximum allowable CO
2
emissions, and 𝐶

𝑖
(𝑥
𝑖
) is the

generator quadratic cost function:

𝐶
𝑖
(𝑥
𝑖
) = 𝑎
𝑖
+ 𝑏
𝑖
𝑥
𝑖
+ 𝑐
𝑖
𝑥
2

𝑖
, 𝑖 = 1, . . . , 𝑚, (7)

where 𝑐
𝑖
> 0 for 𝑖 = 1, . . . , 𝑚.

Letting𝐷
𝑖
(𝑥
𝑖
) ≡ 𝛿(ℎ

𝑖
/𝑝
𝑖
)(1/𝜑
𝑖
)𝑥
𝑖
, by (5), problem (6) can

be rewritten as follows:

max
𝑥∈𝑋

𝐸[𝜉
𝑇
𝑥 −

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
) −

𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
)]

s.t.
𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
)

𝛿

≤ 𝐸.

(8)

2.2. Robust Self-Scheduling ProblemwithMoment Uncertainty
and 𝐶𝑂

2
Emission Constraints. In practice, It is often the

case that one has limited information about the locational
marginal prices 𝜉 driving the uncertain parameters that are
involved in the decision making process. The data samples
may be not available, or the data samples may be unstable. In
such situations, it might instead be safer to rely on estimates
of the mean 𝜇

0
and covariance matrix Σ

0
of the random

vector 𝜉, for example, using empirical estimates. However, we
believe that, in such problems, it is also rarely the case that
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one is entirely confident in these estimates. For this reason,
motivated by Delage and Ye [4], we propose representing the
uncertainty using two constraints parameterized by 𝛾

1
≥ 0

and 𝛾
2
≥ 1:

(E [𝜉] − 𝜇
0
)
𝑇

Σ
−1

0
(E [𝜉] − 𝜇

0
) ≤ 𝛾
1
, (9)

E [(𝜉 − 𝜇
0
) (𝜉 − 𝜇

0
)
𝑇

] ⪯ 𝛾
2
Σ
0
, (10)

where constraint (9) assumes that the mean of price 𝜉 lies
in an ellipsoid of size 𝛾

1
centered at the estimate 𝜇

0
and

constraint (10) forces the centered second-moment matrix of
𝜉 to lie in a positive semidefinite cone defined with a matrix
inequality. In other words, it describes how likely 𝜉 is to
be close to 𝜇

0
in terms of the correlations expressed in Σ

0
.

Finally, the parameters 𝛾
1
and 𝛾

2
provide natural means of

quantifying one’s confidence in 𝜇
0
and Σ

0
, respectively.

Denote the distributional set as

D
1
(F, 𝜇
0
, Σ
0
, 𝛾
1
, 𝛾
2
)

= {𝐹 ∈ U | P (𝜉 ∈ F) = 1,

(E [𝜉] − 𝜇
0
)
𝑇

Σ
−1

0
(E [𝜉] − 𝜇

0
) ≤ 𝛾
1
,

E [(𝜉 − 𝜇
0
) (𝜉 − 𝜇

0
)
𝑇

] ⪯ 𝛾
2
Σ
0
} ,

(11)

where U is the set of all probability measures on the
measurable space (R𝑚,B), withB being the Borel 𝜎-algebra
on R𝑚, and F ∈ R𝑚 is any closed convex set known to
contain the support of 𝐹. The setD

1
(F, 𝜇
0
, Σ
0
, 𝛾
1
, 𝛾
2
), which

will also be referred to in shorthand notation as D
1
, can be

seen as a generalization of many previously proposed sets.
Next we will study worst-case expected results over the

choice of a distribution in the distributional set D
1
. This

leads to solving the distributionally robust self-scheduling
optimization with moment uncertainty of prices (DRSSO):

V = max
𝑥∈𝑋

(min
𝐹∈D
1

E
𝐹
[𝜉
𝑇
𝑥 −

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
) −

𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
)])

s.t.
𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
)

𝛿
𝑖

≤ 𝐸,

(12)

where E
𝐹
[⋅] is the expectation taken with respect to the ran-

dom vector 𝜉 given that it follows the probability distribution
𝐹 ∈ D

1
. It is easy to see thatDRSSOproblem (12) is equivalent

to the following problem:

− V = min
𝑥∈𝑋

(max
𝐹∈D
1

E
𝐹
[−𝜉
𝑇
𝑥 +

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
) +

𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
)])

s.t.
𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
)

𝛿
𝑖

≤ 𝐸.

(13)

We start by considering the question of solving the inner
maximization problem of the problem (13) that uses the set
D
1
.

Definition 1. Given any fixed 𝑥 ∈ 𝑋, let Φ(𝑥; 𝛾
1
, 𝛾
2
) be the

optimal value of the moment problem:

max
𝐹∈D
1

E
𝐹
[−𝜉
𝑇
𝑥 +

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
) +

𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
)] . (14)

Applying the duality theory and robust optimizationmethods
[7–10], by [4, Lemma 1], we can circumvent the difficulty of
finding the optimal value of the problem (14).

Lemma 2. For a fixed 𝑥 ∈ R𝑛, suppose that 𝛾
1
≥ 0, 𝛾

2
≥ 1,

Σ
0
≻ 0. ThenΦ(𝑥; 𝛾

1
, 𝛾
2
)must be equal to the optimal value of

the problem (15):

min
𝑄,𝑞,𝑟,𝑡

𝑟 + 𝑡

s.t. 𝑡 ≥ (𝛾
2
Σ
0
+ 𝜇
0
𝜇
𝑇

0
) ⋅ 𝑄 + 𝜇

𝑇

0
𝑞

+ √𝛾1

󵄩
󵄩
󵄩
󵄩
󵄩
Σ
1/2

0
(𝑞 + 2𝑄𝜇

0
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝑟 ≥ −𝜉
𝑇
𝑥 +

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
)

+

𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
) − 𝜉
𝑇
𝑄𝜉 − 𝜉

𝑇
𝑞, ∀𝜉 ∈ F

𝑄 ⪰ 0,

(15)

where (𝐴 ⋅ 𝐵) refers to the Frobenius inner product between
matrices,𝑄 ∈ R𝑚×𝑚 is a symmetric matrix, the vector 𝑞 ∈ R𝑚,
and 𝑟, 𝑡 ∈ R. In addition, ifΦ(𝑥; 𝛾

1
, 𝛾
2
) is finite, then the set of

optimal solutions to problem (15)must be nonempty.

Proof. Let ℎ(𝑥, 𝜉) = −𝜉
𝑇
𝑥 + ∑

𝑚

𝑖=1
𝐶
𝑖
(𝑥
𝑖
) + ∑

𝑚

𝑖=1
𝐷
𝑖
(𝑥
𝑖
). Then

ℎ(𝑥, 𝜉) is 𝐹-integrable for all 𝐹 ∈ D
1
and the conclusions are

followed by [4, Lemma 1]. This completes the proof.

The following result shows that the DRSSO problem (13)
is a tractable problem.

Theorem 3. Assume that the set 𝑋 is convex and compact.
Then DRSSO problem (13) is equivalent to the following convex
optimization problem:

− V = min
𝑥,𝑄,𝑞,𝑟,𝑡,𝜂,𝑦,𝜔

𝑟 + 𝑡

s.t. 𝑡 ≥ (𝛾
2
Σ
0
+ 𝜇
0
𝜇
𝑇

0
) ⋅ 𝑄 + 𝜇

𝑇

0
𝑞

+ √𝛾1

󵄩
󵄩
󵄩
󵄩
󵄩
Σ
1/2

0
(𝑞 + 2𝑄𝜇

0
)

󵄩
󵄩
󵄩
󵄩
󵄩

[

[

[

𝑄

𝑞

2

+

𝑥

2

𝑞
𝑇

2

+

𝑥
𝑇

2

𝑟 − 𝜂

]

]

]

⪰ 0
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𝑄 ⪰ 0

𝜂 ≥

𝑚

∑

𝑖=1

(𝑎
𝑖
+ 𝑏
𝑖
𝑥
𝑖
) +

𝑚

∑

𝑖=1

𝛿
𝑖

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
+ 𝑦,

𝑦 ≥

𝑚

∑

𝑖=1

𝜔
2

𝑖

𝜔
𝑖
= √𝑐𝑖

𝑥
𝑖

𝑚

∑

𝑖=1

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
≤ 𝐸

𝑥 ∈ 𝑋.

(16)

In addition, the DRSSO problem (13) can be solved to any
precision 𝜖 in time polynomial in log(1/𝜖) and the size of 𝑥 and
𝜉.

Proof. By Lemma 2, the DRSO problem (13) must be equal to
the following problem:

− V = min
𝑥,𝑄,𝑞,𝑟,𝑡

𝑟 + 𝑡

s.t. 𝑡 ≥ (𝛾
2
Σ
0
+ 𝜇
0
𝜇
𝑇

0
) ⋅ 𝑄 + 𝜇

𝑇

0
𝑞

+ √𝛾1

󵄩
󵄩
󵄩
󵄩
󵄩
Σ
1/2

0
(𝑞 + 2𝑄𝜇

0
)

󵄩
󵄩
󵄩
󵄩
󵄩
,

𝑟 ≥ −𝜉
𝑇
𝑥 +

𝑚

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
)

+

𝑚

∑

𝑖=1

𝐷
𝑖
(𝑥
𝑖
) − 𝜉
𝑇
𝑄𝜉 − 𝜉

𝑇
𝑞, ∀𝜉 ∈ F,

𝐶
𝑖
(𝑥
𝑖
) = 𝑎
𝑖
+ 𝑏
𝑖
𝑥
𝑖
+ 𝑐
𝑖
𝑥
2

𝑖
, 𝑖 = 1, . . . , 𝑚

𝐷
𝑖
(𝑥
𝑖
) = 𝛿
𝑖

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
, 𝑖 = 1, . . . , 𝑚,

𝑄 ⪰ 0,

𝑚

∑

𝑖=1

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
≤ 𝐸,

𝑥 ∈ 𝑋.

(17)

Let

𝜂 ≥

𝑚

∑

𝑖=1

(𝑎
𝑖
+ 𝑏
𝑖
𝑥
𝑖
) +

𝑚

∑

𝑖=1

𝛿
𝑖

ℎ
𝑖

𝑝
𝑖

1

𝜑
𝑖

𝑥
𝑖
+ 𝑦,

𝑦 ≥

𝑚

∑

𝑖=1

𝜔
2

𝑖
,

𝜔
𝑖
= √𝑐𝑖

𝑥
𝑖
.

(18)

Then 𝜂 ≥ ∑
𝑚

𝑖=1
𝐶
𝑖
(𝑥
𝑖
)+∑
𝑚

𝑖=1
𝐷
𝑖
(𝑥
𝑖
), and the inequality (17) can

be replaced by

𝜉
𝑇
𝑄𝜉 + 𝜉

𝑇
𝑞 + 𝜉
𝑇
𝑥 + 𝑟 − 𝜂 ≥ 0, ∀𝜉 ∈ F. (19)

Note that the constraint in (19) can be written as the following
LMI:

[

𝜉

1
]

𝑇

[

[

[

𝑄

𝑞 + 𝑥

2

𝑞
𝑇
+ 𝑥
𝑇

2

𝑟 − 𝜂

]

]

]

[

𝜉

1
] ≥ 0, ∀𝜉 ∈ F

⇐⇒
[

[

[

𝑄

𝑞

2

+

𝑥

2

𝑞
𝑇

2

+

𝑥
𝑇

2

𝑟 − 𝜂

]

]

]

⪰ 0.

(20)

So DRSSO problem (13) is equivalent to the convex optimiza-
tion problem (16).

Since 𝑓(𝑥, 𝜉) = −𝜉
𝑇
𝑥 + ∑

𝑚

𝑖=1
𝐶
𝑖
(𝑥
𝑖
) + ∑

𝑚

𝑖=1
𝐷
𝑖
(𝑥
𝑖
) is

convex in 𝑥 and concave in 𝜉 and 𝑋 is convex and compact,
the assumptions in [4] are satisfied. So a straightforward
application of [4, Proposition 2] shows that DRSSO problem
(13) can be solved in polynomial time. This completes the
proof.

If𝑋 is a convex polyhedron, then the convex optimization
problem (16) is a semidefinite program that can be solved by
SeDuMi conic optimizer.

3. Numerical Example

We present our simulation results on the IEEE 30 bus
test system and get the results by using the SeDuMi conic
optimizer running on an Intel Core i3-2350M (2.30GHz) PC
with 2GB RAM. There are 6 power generations with coal
as their fuel in this system. Reference [11] gives the network
and load data for this system. The generator data is listed in
Table 1. A historical data set of 100 samples of prices vector 𝜉
is shown in [2, Table 2]. We assume that the generating units
in Table 1 belong to the same generation company.

In implementing our method, the distributional set is
formulated as D

1
(R6, 𝜇

0
, Σ
0
, 0.2, 2.3), where 𝜇

0
and Σ

0
are

the empirical estimates of the mean and covariance matrix
of prices vector 𝜉 shown in [2, Table 2].

We choose the parameters 𝛾
1
and 𝛾
2
based on some simple

statistical analysis of a lot of experiments. We convert the
calorific value of different kinds of coals to standard unit of
coal and let the unit heat value of fuel𝑝 equal 8.13 (kW ⋅h)/kg
standard unit of coal, the amount of CO

2
emissions by per

unit of fuel complete combustion ℎ equal 2.62 kgCO
2
/kg

standard unit of coal in uniform, and themaximumallowable
CO
2
emissions 𝐸 equal 150 ton.

If we fix 𝛾
2
= 1.2 and let 𝛾

1
vary from 0 to 2, it can be

shown that the profit decreases when 𝛾
1
increases from 0 to

1.2, and the profit is almost invariable after 𝛾
1
> 1.2. Table 2

illustrates the generation self-scheduling result for 𝛾
1
from 0

to 1 and 𝛾
2
= 1.2.

The value of 𝛾
1
reflects the stability of the electricity price.

The electricity price is more instable when the value of 𝛾
1
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Table 1: Generator data.

Bus number 𝑥min, MW 𝑥max, MW Cost coefficients
𝑎, £/h 𝑏, £/MWh 𝑐, £/MW2h

1 50 200 0 2.00 0.00375
2 20 80 0 1.75 0.01750
5 15 50 0 1.00 0.06250
8 10 35 0 3.25 0.00834
11 10 30 0 3.00 0.02500
13 12 40 0 3.00 0.02500

Table 2: Generation self-scheduling result for 𝛾
1
from 0 to 1 (𝛾

2
= 1.2).

𝛾
1

Bus 1, MW Bus 2, MW Bus 5, MW Bus 8, MW Bus 11, MW Bus 13, MW Profit, £
0 135.00 35.37 16.45 35.00 30.00 38.67 229.52
0.2 103.36 33.44 16.20 35.00 30.00 36.77 188.78
0.4 91.42 32.45 16.08 35.00 30.00 35.94 174.14
0.6 82.87 31.62 15.98 35.00 30.00 35.29 163.71
0.8 76.13 30.88 15.90 35.00 30.00 34.73 155.41
1 70.55 30.20 15.82 35.00 30.00 34.23 148.44

is higher. If generations produce too much electricity, they
would face more risks. The decision makers would produce
less electricity when the value of 𝛾

1
is high. And due to the

basic power needs, the generating capacity would tend to be
stable if the value of 𝛾

1
is too high. Figure 1 shows the result

intuitively.
However, if we fix 𝛾

1
and let 𝛾

2
vary from 1 to 10, numerical

results show that the profit is almost invariable. This implies
that 𝛾
2
is not sensitive to the model.

Now we study three kinds of fuels with different unit heat
values. The unit heat value 𝑝 of natural gas, coal, and oil is
shown in [12, Table 1]. And we can get ℎ, the quantity of
CO
2
released by the unit fuel burnt fully, by some simple

calculations. The relevant data is listed in Table 3. From this
table, we can know that the unit heat value of natural gas
is higher than that of coking coal and the quantity of CO

2

released by the unit natural gas is lower than that of it. Let
𝛿 = 0.2 £/ton, 𝐸 = 135.0 ton. We assume the 6 buses all use
one fuel as their power fuel; the three results are shown in
Table 4.

The results show that using natural gas gets more eco-
nomic benefits. This is because the unit natural gas can
produce more quantity of heat and release fewer CO

2
. And

the result of using oil is between natural gas and coking coal.
In addition, we can find that the quantity of CO

2
emission

of coking coal and the quantity of CO
2
emission of oil have

reached the maximum allowable value, respectively.
For different power generators, we let their efficiency

increase in turns. Numerical results show that the profits
increase as their efficiency increases.

We consider the carbon price’s effect in the following.
Figure 2 illustrates the effect of carbon price 𝛿 on the
generation self-scheduling.Theupper part of the figure shows
that the profit and CO

2
emission decrease when the carbon

price 𝛿 increases with the limit of 𝐸. And the lower part of the
figure shows the result without the limit of 𝐸. When 𝛿 is very

Table 3: Relevant data of fuels.

Power fuel ℎ
𝑖
, kg(CO2)/kg 𝑝

𝑖
, Kwh/kg

Coking coal 3.04 7.90
Natural gas 2.18 10.81
Oil 3.06 11.61

0 0.5 1 1.5 2
140
150
160
170
180
190
200
210
220
230

f
(x

, k
si)

𝛾1

Figure 1: Relation between profit and 𝛾
1
.

small, the CO
2
emission is so large because there is no limit of

𝐸.That is,𝐸makes a difference on reducing carbon emissions.
When 𝛿 increases, the profit decreases. So government should
consider the effect of carbon price when they set the carbon
price.

We let the carbon price 𝛿 equal 0.2 £/ton and 0.6 £/ton,
respectively, and 𝐸 range from 120 ton to 180 ton. Figure 3
illustrates this result. Due to the emission restriction
decreases, the object 𝑓 and CO

2
emission go up. And they

tend to be stable along with the value of 𝐸 becoming larger.
By the comparison between the upper and the lower part
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Table 4: The result of using one kind of fuel (𝛿 = 0.2 £/ton, 𝐸 = 135.0 ton).

Bus number 1, MW 2, MW 5, MW 8, MW 11, MW 13, MW Profit, £ CO
2
, t

Natural gas 99.24 31.18 15.47 35.00 30.00 35.31 174.12 119.1
Oil 68.42 25.36 15.00 35.00 30.00 31.10 154.89 135.0
Coking coal 50.00 20.00 15.00 24.88 15.55 14.90 113.84 135.0
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Figure 2: Profit and CO
2
emission with increasing carbon price 𝛿.
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Figure 3: Profit and CO
2
emission with increasing 𝐸.

of Figure 3, the quality of CO
2
emission tends to reach an

invariable value earlier as 𝛿 = 0.6 £/ton. This shows that a
suitable carbon tax is a good means to reduce carbon dioxide
emissions.

Figure 4 demonstrates the change of generation self-
schedule when 𝐸 increases. At first when 𝐸 increases, some
generation schedule 𝑥 increases. But when the 𝐸 achieves a
point, the effect of restriction disappears and the generation
schedules are invariable.

4. Conclusion

This paper studies worst-case profit self-schedules of price-
taker generators with the constraints of CO

2
emission in

pool-based electricity markets. A distributionally robust
self-scheduling optimization model describes uncertainty of
prices in both distribution form and moments (mean and
covariance matrix), where the knowledge of the prices is
solely derived from historical data. It is proved that the
proposed robust self-scheduling model can be solved to
any precision in polynomial time. These arguments are
confirmed in a practical example on the IEEE 30 bus test

120 125 130 135 140 145 150 155 160 165 170
10
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35
40
45
50
55
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Bus 5

Bus 8
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Figure 4: Generation self-schedule 𝑥 with increasing 𝐸.

system. Numerical results show that parameter 𝛾
1
of mean

is sensitive to the solution and parameter 𝛾
2
of covariance



Journal of Applied Mathematics 7

is not sensitive to the solution. Through the comparison
between the different fuels and energy conversion efficiencies,
we find that the power stations should choose the fuels with
lower ℎ and higher 𝑝 as their power fuels. And the energy
conversion efficiency is also very important to the power
stations; we should try to improve it.Through the comparison
between the carbon prices 𝛿 and 𝐸, it is showed that the
maximum allowable CO

2
emissions makes a difference in

reducing carbon emissions and a reasonable carbon tax is a
good means to reduce carbon dioxide emissions.
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