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We consider the boundary value problem for a fourth order nonlinear p-Laplacian difference equation containing both advance and
retardation. By using Mountain pass lemma and some established inequalities, sufficient conditions of the existence of solutions of
the boundary value problem are obtained. And an illustrative example is given in the last part of the paper.

1. Introduction

Let N, Z, and R denote the sets of all natural numbers,
integers, and real numbers, respectively. For 𝑎, 𝑏 ∈ Z, define
Z(𝑎) = {𝑎, 𝑎+1, . . .} andZ(𝑎, 𝑏) = {𝑎, 𝑎+1, . . . , 𝑏}when 𝑎 ≤ 𝑏.

Consider the following fourth order nonlinear difference
equation:

Δ
2
(𝑟
𝑛−2
𝜙
𝑝
(Δ
2
𝑢
𝑛−2
)) − 𝑓 (𝑛, 𝑢

𝑛+1
, 𝑢
𝑛
, 𝑢
𝑛−1
) = 0,

𝑛 ∈ Z (1, 𝑘) ,
(1)

with boundary value conditions

𝑢
−1
= 𝑢
0
= 𝑢
𝑘+1
= 𝑢
𝑘+2
= 0, (2)

where 𝑘 ∈ N, 𝑟
𝑗
is a positive number for 𝑗 ∈ Z(−1, 𝑘), Δ is

the forward difference operator defined by Δ𝑢
𝑛
= 𝑢
𝑛+1
− 𝑢
𝑛
,

Δ
2
𝑢
𝑛
= Δ(Δ𝑢

𝑛
), and 𝜙

𝑝
is the 𝑝-Laplacian operator; that is,

𝜙
𝑝
(𝑠) = |𝑠|

𝑝−2
𝑠 (𝑝 > 1), 𝑓 ∈ 𝐶(Z(1, 𝑘) ×R3,R).

In the last decade, by using various techniques such
as critical point theory, fix point theory, topological degree
theory, and coincidence degree theory, a great deal of works
have been done on the existence of solutions to bound-
ary value problems of difference equations (see [1–7] and
references therein). Among these approaches, the critical
point theory seems to be a powerful tool to deal with this

problem (see [5, 7–9]). However, compared to the boundary
value problems of lower order difference equations ([6, 8,
10–13]), the study of boundary value problems of higher
order difference equations is relatively rare (see [9, 14, 15]),
especially the works by using the critical point theory [16].
For the background on difference equations, we refer to [17].

In this paper, we will consider the existence of solutions
of the boundary value problem of (1) with (2). First, we
will construct a functional 𝐽 such that solutions of the
boundary value problem (1) with (2) correspond to critical
points of 𝐽. Then, by using Mountain pass lemma, we obtain
the existence of critical points of 𝐽. We mention that (1)
is a kind of difference equation containing both advance
and retardation. This kind of difference equation has many
applications both in theory and practice. For example, in [17],
Agarwal considered the following difference equation:

−𝜔
2
𝑀𝑢 (𝑘) + 𝑓 (−𝑢 (𝑘 − 1) + 2𝑢 (𝑘) − 𝑢 (𝑘 + 1)) = 0, (3)

with the boundary value conditions

𝑢 (0) = 𝑢 (𝑘 + 1) = 0, (4)

as an example. It represents the amplitude of the motion of
every particle in the string. And in [7], the authors considered
the following second order functional difference equation:

𝐿𝑢
𝑛
= 𝑓 (𝑛, 𝑢

𝑛+1
, 𝑢
𝑛
, 𝑢
𝑛−1
) , (5)
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with different boundary value conditions

Δ𝑥
0
= 𝐴, 𝑥

𝑇+1
= 𝐵, (6)

where the operator 𝐿 is the Jacobi operator given by

𝐿𝑢
𝑛
= 𝑎
𝑛
𝑢
𝑛+1
+ 𝑎
𝑛−1
𝑢
𝑛−1
+ 𝑏
𝑛
𝑢
𝑛
. (7)

In [18], the authors considered the second order 𝑝-Laplacian
difference equation:

Δ (𝜙
𝑝
(Δ𝑢
𝑛−1
)) + 𝑓 (𝑛, 𝑢

𝑛+1
, 𝑢
𝑛
, 𝑢
𝑛−1
) = 0, 𝑛 ∈ Z (1, 𝑘) ,

(8)

with boundary value conditions

𝑢
0
= 𝑢
𝑘+1
= 0. (9)

As for the periodic and subharmonic solutions of𝑝-Laplacian
difference equations containing both advance and retarda-
tion, we refer to [19]. And for the periodic solutions of 𝜙-
Laplacian difference equations, we refer to [20].

Throughout this paper, we assume that there exists a func-
tion 𝐹(𝑛, 𝑢, V) which is differentiable in (𝑢, V) and 𝐹(𝑛, 0, 0) =
0 for each 𝑛 ∈ Z(0, 𝑘), satisfying

𝜕𝐹 (𝑛 − 1, V, 𝑤)
𝜕V

+

𝜕𝐹 (𝑛, 𝑢, V)
𝜕V

= 𝑓 (𝑛, 𝑢, V, 𝑤) ,

∀𝑢, V, 𝑤 ∈ R,
(10)

for 𝑛 ∈ Z(1, 𝑘).

2. Preliminaries and Main Results

Lemma 1. Let𝑝 ∈ (1,∞); then there exist two positive sequen-
ces {𝑐
∗
(𝑛)}
𝑛∈N and {𝑐∗(𝑛)}

𝑛∈N such that

𝑐
∗
(𝑏 − 𝑎 + 1)(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

1/2

≤ (

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

)

1/𝑝

≤ 𝑐
∗
(𝑏 − 𝑎 + 1)(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

1/2

(11)

holds for any 𝑎, 𝑏 ∈ Z with 𝑎 < 𝑏, where 𝑐
∗
(𝑛) = 1, 𝑐∗(𝑛) =

𝑛
(2−𝑝)/2𝑝 for 𝑝 ∈ (1, 2] and 𝑐

∗
(𝑛) = 𝑛

−(𝑝−2)/2𝑝, 𝑐∗(𝑛) = 1 for
𝑝 ∈ (2,∞).

Proof. If 1 < 𝑝 ≤ 2, by Hölder’s inequality, we have

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

≤ (

𝑏

∑

𝑗=𝑎

1
2/(2−𝑝)

)

(2−𝑝)/2

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

𝑝/2

= (𝑏 − 𝑎 + 1)
(2−𝑝)/2

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

𝑝/2

,

(12)

which implies that

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

)

1/𝑝

≤ (𝑏 − 𝑎 + 1)
(2−𝑝)/2𝑝

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

1/2

, (13)

and 𝑐
∗
(𝑛) = 1 is obvious. If 𝑝 > 2, then we have

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ (

𝑏

∑

𝑗=𝑎

1
𝑝/(𝑝−2)

)

(𝑝−2)/𝑝

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

)

2/𝑝

= (𝑏 − 𝑎 + 1)
(𝑝−2)/𝑝

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

)

2/𝑝

,

(14)

which implies that

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

)

1/𝑝

≥ (𝑏 − 𝑎 + 1)
−(𝑝−2)/2𝑝

(

𝑏

∑

𝑗=𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

1/2

, (15)

and 𝑐∗(𝑛) = 1 is obvious. Now the proof is complete.

Lemma 2. There exist two positive sequences {𝜆
∗
(𝑛)}
𝑛∈N and

{𝜆
∗
(𝑛)}
𝑛∈N such that

𝜆
∗
(𝑏 − 𝑎 + 1)

𝑏

∑

𝑗=𝑎

𝑢
2

𝑗
≤

𝑏

∑

𝑗=𝑎−1

(Δ𝑢
𝑗
)

2

≤ 𝜆
∗
(𝑏 − 𝑎 + 1)

𝑏

∑

𝑗=𝑎

𝑢
2

𝑗

(16)

holds for any 𝑎, 𝑏 ∈ Z with 𝑎 < 𝑏 and 𝑢
𝑎−1
= 𝑢
𝑏+1
= 0, where

𝜆
∗
(𝑛) = 4sin2 𝜋

2 (𝑛 + 1)

, 𝜆
∗
(𝑛) = 4sin2 𝑛𝜋

2 (𝑛 + 1)

. (17)

Proof. There is no harm in assuming that 𝑎 = 1, 𝑏 = 𝑘. Then

𝑘

∑

𝑗=0

(Δ𝑢
𝑗
)

2

= (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) 𝐴(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
)
tr
, (18)

where (⋅)tr means the transpose of (⋅), and𝐴 is the 𝑘×𝑘matrix
given by

𝐴 =
(

(

2 −1 0 ⋅ ⋅ ⋅ 0 0

−1 2 −1 ⋅ ⋅ ⋅ 0 0

0 −1 2 ⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 2 −1

0 0 0 ⋅ ⋅ ⋅ −1 2

)

)

. (19)

We will calculate the eigenvalues of𝐴. Similar to [21], assume
that 𝜆 is an eigenvalue of 𝐴. Since 𝐴 − 𝑟𝐼 is positive-definite
for 𝑟 < 0 and negative-definite for 𝑟 > 4, where 𝐼 is the 𝑘 ×
𝑘 identity matrix, we see that 𝜆 ∈ [0, 4]. Assume that 𝜉 =
(𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑘
)
tr is an eigenvector associated to 𝜆 and define

the sequence {𝑦
𝑛
}
𝑘+1

𝑛=0
as

𝑦
𝑖
= 𝜉
𝑖
, 𝑖 ∈ Z (1, 𝑘) , 𝑦

0
= 𝑦
𝑘+1
= 0. (20)
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Then {𝑦
𝑛
} satisfies

− 𝑦
𝑛+1
+ (2 − 𝜆) 𝑦

𝑛
− 𝑦
𝑛−1
= 0, 𝑦

0
= 𝑦
𝑘+1
= 0,

𝑛 ∈ Z (1, 𝑘) .
(21)

Since the roots of the equation −𝑟2 + (2 − 𝜆)𝑟 − 1 = 0 are

𝑟
1
=

1

2

(2 − 𝜆 + √4 − (2 − 𝜆)
2
) 𝑖,

𝑟
2
=

1

2

(2 − 𝜆 − √4 − (2 − 𝜆)
2
) 𝑖,

(22)

set

𝜃 = arccos 1
2

(2 − 𝜆) . (23)

Then

𝑦
𝑛
= 𝑑
1
cos 𝑛𝜃 + 𝑑

2
sin 𝑛𝜃 (24)

for some constants 𝑑
1
and 𝑑

2
. 𝑦
0
= 0 implies that 𝑑

1
= 0, and

𝑦
𝑘+1
= 0 implies that sin(𝑘+1)𝜃 = 0. Therefore, (𝑘+1)𝜃 = 𝑗𝜋

for 𝑗 ∈ Z(1, 𝑘). By (23), we have 𝜆 = 2(1 − cos 𝜃) = 4sin2𝜃/2
which implies that the eigenvalues of 𝐴 are

𝜆
𝑗
= 4sin2

𝑗𝜋

2 (𝑘 + 1)

, 𝑗 ∈ Z (1, 𝑘) . (25)

The maximum eigenvalue of 𝐴 is 𝜆
𝑘
, and the minimal

eigenvalue of𝐴 is 𝜆
1
. Equation (16) follows from (18) and the

fact that 𝜆
𝑘
= 𝜆
∗
(𝑘) and 𝜆

1
= 𝜆
∗
(𝑘).

Before we apply the critical point theory, we will establish
the corresponding variational framework for (1) with (2).

Let

𝐸 = {𝑢 = {𝑢
𝑛
} : Z (−1, 𝑘 + 2)

󳨀→ R | 𝑢
−1
= 𝑢
0
= 𝑢
𝑘+1
= 𝑢
𝑘+2
= 0} .

(26)

Then 𝐸 is a 𝑘-dimensional Hilbert space.
Obviously, 𝐸 is isomorphic to R𝑘. In fact, we can find a

map 𝐼 : 𝐸 → R𝑘 defined by

𝐼 : {𝑢
𝑛
} 󳨀→ (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
)
tr
. (27)

Define the inner product on 𝐸 as

⟨𝑢, V⟩ =
𝑘

∑

𝑗=1

𝑢
𝑗
V
𝑗
, ∀𝑢, V ∈ 𝐸. (28)

The corresponding norm ‖ ⋅ ‖ can be induced by

‖𝑢‖ = (

𝑘

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

1/2

, ∀𝑢 ∈ 𝐸. (29)

For all 𝑢 ∈ 𝐸, define the functional 𝐽(𝑢) on 𝐸 as follows:

𝐽 (𝑢) =

1

𝑝

𝑘

∑

𝑛=−1

𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
Δ
2
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

−

𝑘

∑

𝑛=0

𝐹 (𝑛, 𝑢
𝑛+1
, 𝑢
𝑛
) . (30)

Clearly, 𝐽 ∈ 𝐶1(𝐸,R). We can compute the partial derivative
as

𝜕𝐽 (𝑢)

𝜕𝑢
𝑗

= Δ
2
(𝑟
𝑗−2
𝜙
𝑝
(Δ
2
𝑢
𝑗−2
)) − 𝑓 (𝑗, 𝑢

𝑗+1
, 𝑢
𝑗
, 𝑢
𝑗−1
) , (31)

for 𝑗 ∈ Z(1, 𝑘), 𝑢 = {𝑢
𝑗
} ∈ 𝐸. Therefore, 𝑢 ∈ 𝐸 is a critical

point of 𝐽 if and only if 𝑢 is a solution of (1) with (2).

Definition 3. Let 𝐸 be a real Banach space; the functional
𝐽 ∈ 𝐶
1
(𝐸,R) is said to satisfy the Palais-Smale (P.S. for short)

condition if any sequence {𝑥
𝑚
} in 𝐸 such that {𝐽(𝑥

𝑚
)} is

bounded and 𝐽󸀠(𝑥
𝑚
) → 0 as𝑚 → ∞ contains a convergent

subsequence.

Let 𝐵
𝜌
denote the open ball in 𝐸 with radius 𝜌 and center

0, and let 𝜕𝐵
𝜌
denote its boundary.

In order to obtain the existence of critical points of 𝐽 on𝐸,
we need to use the following basic lemma, which is important
in the proof of our main results.

Lemma4 (Mountain pass lemma [22]). Let𝐸 be a realHilbert
space and 𝐽 ∈ 𝐶1(𝐸,R) satisfies the P.S. condition, if 𝐽(0) = 0
and the following conditions hold.

(𝐽
1
)There exist constants 𝑎 > 0 and 𝜌 > 0 such that 𝐽|

𝜕𝐵𝜌
≥

𝑎.

(𝐽
2
)There exists 𝑒 ∈ 𝐸 \ 𝐵

𝜌
such that 𝐽(𝑒) < 0.

Then 𝐽 possesses a critical value 𝑐 ≥ 𝑎 given by

𝑐 = inf
𝑔∈Γ

max
𝑠∈[0,1]

𝐽 (𝑔 (𝑠)) , (32)

where

Γ = {𝑔 ∈ 𝐶 ([0, 1] , 𝐸) | 𝑔 (0) = 0, 𝑔 (1) = 𝑒} . (33)

Let

𝑟
∗
= min {𝑟

𝑛
| 𝑛 ∈ Z (−1, 𝑘)} ,

𝑟
∗
= max {𝑟

𝑛
| 𝑛 ∈ Z (−1, 𝑘)} ,

𝛼
0
=

𝑟
∗

𝑝

(

𝑐
∗
(𝑘 + 2)

𝑐
∗
(𝑘 + 1)

)

𝑝

(

𝜆
∗
(𝑘 + 1)𝜆

∗
(𝑘)

2

)

𝑝/2

,

𝛽
0
=

𝑟
∗

𝑝

(

𝑐
∗
(𝑘 + 2)

𝑐
∗
(𝑘 + 1)

)

𝑝

(

𝜆
∗
(𝑘 + 1)𝜆

∗
(𝑘)

2

)

𝑝/2

.

(34)

Then, for 𝑝 ∈ (1, 2],

𝛼
0
=

𝑟
∗

𝑝

(𝑘 + 1)
−(2−𝑝)/2

8
𝑝/2
(sin 𝜋

2(𝑘 + 2)

sin 𝜋

2(𝑘 + 1)

)

𝑝

,

𝛽
0
=

𝑟
∗

𝑝

(𝑘 + 2)
(2−𝑝)/2

8
𝑝/2
(sin (𝑘 + 1)𝜋

2(𝑘 + 2)

sin 𝑘𝜋

2(𝑘 + 1)

)

𝑝

.

(35)
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For 𝑝 ∈ (2,∞),

𝛼
0
=

𝑟
∗

𝑝

(𝑘 + 2)
−(𝑝−2)/2

8
𝑝/2
(sin 𝜋

2(𝑘 + 2)

sin 𝜋

2(𝑘 + 1)

)

𝑝

,

𝛽
0
=

𝑟
∗

𝑝

(𝑘 + 1)
(𝑝−2)/2

8
𝑝/2
(sin (𝑘 + 1)𝜋

2(𝑘 + 2)

sin 𝑘𝜋

2(𝑘 + 1)

)

𝑝

.

(36)

Now we state our main results.

Theorem 5. Assume that 𝐹(𝑛, 𝑢, V) satisfies the following con-
ditions.

(𝐹
1
)There exist constants 𝛿 ∈ (0,∞) and 𝛼 ∈ (0, 𝛼

0
) such

that

𝐹 (𝑛, 𝑢, V) ≤ 𝛼(𝑢2 + V2)
𝑝/2

, for 𝑛 ∈ Z (0, 𝑘) ,

𝑢
2
+ V2 ≤ 𝛿2.

(37)

(𝐹
2
)There exist constants 𝛽 ∈ (𝛽

0
,∞) and 𝛾 ∈ (0,∞) such

that

𝐹 (𝑛, 𝑢, V) ≥ 𝛽(𝑢2 + V2)
𝑝/2

− 𝛾, for 𝑛 ∈ Z (0, 𝑘) . (38)

Then (1) with (2) possesses at least two nontrivial solutions.

Remark 6. Comparing our results with the results of the
boundary value problems of second order 𝑝-Laplacian dif-
ference equations in [18], we find that our results are more
precisely.

In view of (37) and (38), it is easy to obtain the following
corollary.

Corollary 7. Assume that 𝐹(𝑛, 𝑢, V) satisfies

lim
𝑢
2
+V2→0

𝐹 (𝑛, 𝑢, V)

(𝑢
2
+ V2)𝑝/2

= 0, ∀𝑛 ∈ Z (0, 𝑘) ,

lim
𝑢
2
+V2→+∞

𝐹 (𝑛, 𝑢, V)

(𝑢
2
+ V2)𝑝/2

= +∞, ∀𝑛 ∈ Z (0, 𝑘) .

(39)

Then (1) with (2) possesses at least two nontrivial solutions.

For the case when 𝑝 = 2, we have the following corollary
for the boundary value problems of the fourth order nonlin-
ear difference equations.

Corollary 8. Assume that𝐹(𝑛, 𝑢, V) satisfies the following con-
ditions.

(𝐹
3
)There exist constants 𝛿

1
> 0 and 0 < 𝛼

1
< (8𝑟

∗
/𝑝)

(sin(𝜋/2(𝑘 + 2)) sin(𝜋/2(𝑘 + 1)))2 such that

𝐹 (𝑛, 𝑢, V) ≤ 𝛼
1
(𝑢
2
+ V2) , for 𝑛 ∈ Z (0, 𝑘) ,

𝑢
2
+ V2 ≤ 𝛿2

1
.

(40)

(𝐹
4
)There exist constants 𝛽

1
> (8𝑟
∗
/𝑝)(sin((𝑘 + 1)𝜋/2(𝑘 +

2)) sin(𝑘𝜋/2(𝑘 + 1)))2 and 𝛾
1
> 0 such that

𝐹 (𝑛, 𝑢, V) ≥ 𝛽
1
(𝑢
2
+ V2) − 𝛾

1
, for 𝑛 ∈ Z (0, 𝑘) . (41)

Then the following fourth order nonlinear difference equation

Δ
2
(𝑟
𝑛−2
Δ
2
𝑢
𝑛−2
) − 𝑓 (𝑛, 𝑢

𝑛+1
, 𝑢
𝑛
, 𝑢
𝑛−1
) = 0,

𝑛 ∈ Z (1, 𝑘) ,
(42)

with the boundary value conditions (2) possesses at least two
nontrivial solutions.

3. Proof of Theorem 5

In order to prove Theorem 5, we first establish the following
lemma.

Lemma 9. Assume that 𝐹 satisfies (𝐹
2
); then the functional 𝐽

satisfies the P.S. condition.

Proof. Let {𝑢(𝑠)}
𝑠∈N be a sequence in 𝐸 such that {𝐽(𝑢(𝑠))} is

bounded and 𝐽󸀠(𝑢(𝑠)) → 0 as 𝑠 → ∞. Then there exists a
positive constant 𝐶 such that |𝐽(𝑢(𝑠))| ≤ 𝐶 for 𝑠 ∈ N.

By (11) and (16), we have

1

𝑝

𝑘

∑

𝑛=−1

𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
Δ
2
𝑢
(𝑠)

𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

≤

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(

𝑘

∑

𝑛=−1

󵄨
󵄨
󵄨
󵄨
󵄨
Δ
2
𝑢
(𝑠)

𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

𝑝/2

≤

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(𝜆
∗
(𝑘 + 1)

𝑘

∑

𝑛=0

(Δ𝑢
(𝑠)

𝑛
)
2
)

𝑝/2

≤

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(𝜆
∗
(𝑘 + 1)𝜆

∗
(𝑘)

𝑘

∑

𝑛=1

(𝑢
(𝑠)

𝑛
)
2
)

𝑝/2

=

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(𝜆
∗
(𝑘 + 1)𝜆

∗
(𝑘))
𝑝/2󵄩󵄩
󵄩
󵄩
󵄩
𝑢
(𝑠)󵄩󵄩
󵄩
󵄩
󵄩

𝑝

= (𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
𝛽
0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
(𝑠)󵄩󵄩
󵄩
󵄩
󵄩

𝑝

.

(43)

And by (𝐹
2
), (11), and (16), we have

𝑘

∑

𝑛=0

𝐹 (𝑛, 𝑢
(𝑠)

𝑛+1
, 𝑢
(𝑠)

𝑛
)

≥ 𝛽

𝑘

∑

𝑛=0

((𝑢
(𝑠)

𝑛+1
)

2

+ (𝑢
(𝑠)

𝑛
)

2

)

𝑝/2

− (𝑘 + 1) 𝛾

≥ 𝛽
[

[

𝑐
∗
(𝑘 + 1)(

𝑘

∑

𝑛=0

((𝑢
(𝑠)

𝑛+1
)

2

+ (𝑢
(𝑠)

𝑛
)

2

))

1/2

]

]

𝑝

− (𝑘 + 1) 𝛾

= (𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
𝛽

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
(𝑠)󵄩󵄩
󵄩
󵄩
󵄩

𝑝

− (𝑘 + 1) 𝛾.

(44)
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Therefore, by (30), we obtain

𝐽 (𝑢
(𝑠)
) =

1

𝑝

𝑘

∑

𝑛=−1

𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
Δ
2
𝑢
(𝑠)

𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

−

𝑘

∑

𝑛=0

F (𝑛, 𝑢(𝑠)
𝑛+1
, 𝑢
(𝑠)

𝑛
)

≤ (𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
(𝛽
0
− 𝛽)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
(𝑠)󵄩󵄩
󵄩
󵄩
󵄩

𝑝

+ (𝑘 + 1) 𝛾.

(45)

Noticing that 𝐽(𝑢(𝑠)) ≥ −𝐶 and 𝛽 > 𝛽
0
, by (45), we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
(𝑠)󵄩󵄩
󵄩
󵄩
󵄩

𝑝

≤

(𝑘 + 1) 𝛾 + 𝐶

(𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
(𝛽 − 𝛽

0
)

. (46)

Since 𝐸 is a finite-dimensional space, (46) implies that {𝑢(𝑠)}
is bounded and has a convergent subsequence. Thus P.S.
condition is verified.

Now we give the proof of Theorem 5.

Proof. For any 𝑢 ∈ 𝐸 with ‖𝑢‖ ≤ 𝛿, according to (11) and (16),
we have

1

𝑝

𝑘

∑

𝑛=−1

𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
Δ
2
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

≥

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(

𝑘

∑

𝑛=−1

󵄨
󵄨
󵄨
󵄨
󵄨
Δ
2
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

𝑝/2

≥

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(𝜆
∗
(𝑘 + 1)

𝑘

∑

𝑛=0

(Δ𝑢
𝑛
)
2
)

𝑝/2

≥

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(𝜆
∗
(𝑘 + 1)𝜆

∗
(𝑘)

𝑘

∑

𝑛=1

(𝑢
𝑛
)
2
)

𝑝/2

=

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(𝜆
∗
(𝑘 + 1)𝜆

∗
(𝑘))
𝑝/2

‖𝑢‖
𝑝
.

(47)

By (𝐹
1
), (11), and (16), we have
𝑘

∑

𝑛=0

𝐹 (𝑛, 𝑢
𝑛+1
, 𝑢
𝑛
)

≤ 𝛼

𝑘

∑

𝑛=0

(𝑢
2

𝑛+1
+ 𝑢
2

𝑛
)

𝑝/2

≤ 𝛼
[

[

𝑐
∗
(𝑘 + 1)(

𝑘

∑

𝑛=0

(𝑢
2

𝑛+1
+ 𝑢
2

𝑛
))

1/2

]

]

𝑝

= 𝛼(𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
‖𝑢‖
𝑝
.

(48)

So, by (30), we get

𝐽 (𝑢) =

1

𝑝

𝑘

∑

𝑛=−1

𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
Δ
2
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

−

𝑘

∑

𝑛=0

𝐹 (𝑛, 𝑢
𝑛+1
, 𝑢
𝑛
)

≥ [

𝑟
∗

𝑝

(𝑐
∗
(𝑘 + 2))

𝑝

(𝜆
∗
(𝑘 + 1)𝜆

∗
(𝑘))
𝑝/2

− 𝛼(𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
] ‖𝑢‖
𝑝

= (𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
(𝛼
0
− 𝛼) ‖𝑢‖

𝑝
.

(49)

Since 𝛼 < 𝛼
0
, we let 𝑎 = (𝑐∗(𝑘 + 1))𝑝2𝑝/2(𝛼

0
−𝛼)𝛿
𝑝 and 𝜌 = 𝛿.

Then by (49),

𝐽 (𝑢) ≥ 𝑎, ∀𝑢 ∈ 𝜕𝐵
𝜌
, (50)

which means that 𝐽 satisfies the condition (𝐽
1
) of the Moun-

tain pass lemma.
By our assumptions, it is clear that 𝐽(0) = 0. In order to

use Mountain pass lemma, it suffices to verify that condition
(𝐽
2
) holds. In fact, similar to the proof of (45), we have

𝐽 (𝑢) ≤ (𝑐
∗
(𝑘 + 1))

𝑝

2
𝑝/2
(𝛽
0
− 𝛽) ‖𝑢‖

𝑝
+ (𝑘 + 1) 𝛾, (51)

for any 𝑢 ∈ 𝐸. Since 𝛽
0
< 𝛽, it is easy to see that there exists

an 𝑒 ∈ 𝐸 with ‖𝑒‖ > 𝜌 such that 𝐽(±𝑒) < 0. Thus (𝐽
2
) holds.

According toMountain pass lemma, 𝐽 possesses a critical
value 𝑐 ≥ 𝑎 given by

𝑐 = inf
𝑔∈Γ1

max
𝑠∈[0,1]

𝐽 (𝑔 (𝑠)) , (52)

where

Γ
1
= {𝑔 ∈ 𝐶 ([0, 1] , 𝐸) | 𝑔 (0) = 0, 𝑔 (1) = 𝑒} . (53)

Let 𝑢 ∈ 𝐸 be a critical point of 𝐽 corresponding to the
critical value 𝑐; then 𝑢 is nontrivial and 𝐽(𝑢) = 𝑐.

On the other hand, by (51), we have

lim
‖𝑢‖→∞

𝐽 (𝑢) = −∞. (54)

Since 𝐸 is a 𝑘-dimensional space, by the continuity of 𝐽(𝑢) on
𝑢, we see that there exists 𝑢̂ ∈ 𝐸 such that

𝐽 (𝑢̂) = max {𝐽 (𝑢) | 𝑢 ∈ 𝐸} . (55)

Clearly, 𝑢̂ is a nonzero critical point of 𝐽, and 𝐽(𝑢̂) ≥ 𝑐 ≥ 𝑎 > 0.
If 𝑢̂ ̸= 𝑢, then the proof is finished.Otherwise, 𝑢̂ = 𝑢. Since

‖−𝑒‖ > 𝜌 and 𝐽(−𝑒) < 0, then byMountain pass lemma again,
𝐽 possesses a critical value 𝑐 ≥ 𝑎 given by

𝑐 = inf
𝑔∈Γ2

max
𝑠∈[0,1]

𝐽 (𝑔 (𝑠)) , (56)

where

Γ
2
= {𝑔 ∈ 𝐶 ([0, 1] , 𝐸) | 𝑔 (0) = 0, 𝑔 (1) = −𝑒} . (57)

Let 𝑢̃ ∈ 𝐸 be a critical point of 𝐽 corresponding to the
critical value 𝑐. If 𝑢̃ ̸= 𝑢̂, then the proof is finished. Otherwise
𝑢̃ = 𝑢̂ = 𝑢. Let 𝑔

1
(𝑠) = 𝑠𝑒 for 𝑠 ∈ [0, 1]; then 𝑔

1
∈ Γ
1
. By

the definition of 𝑐, we see that there exists 𝑠
1
∈ (0, 1) such

that 𝐽(𝑠
1
𝑒) = 𝐽(𝑢̂). Thus 𝑠

1
𝑒 is a critical point of 𝐽. Similar, let

𝑔
2
(𝑠) = −𝑠𝑒 for 𝑠 ∈ [0, 1]; then 𝑔

2
∈ Γ
2
. By the definition of

𝑐, we see that there exists 𝑠
2
∈ (0, 1) such that 𝐽(−𝑠

2
𝑒) = 𝐽(𝑢̂).

And −𝑠
2
𝑒 is a critical point of 𝐽. Clearly 𝑠

1
𝑒 ̸= − 𝑠

2
𝑒. The proof

is now completed.

In the last part of this paper, we give an example to
illustrate our results.
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Example 10. Consider (1) with (2), where 𝑓 is defined by

𝑓 (𝑛, 𝑢, V, 𝑤)

=

2𝜇
𝑛
V(𝑢2 + V2)

𝑝/2

1 + 𝑢
2
+ V2

+ 𝜇
𝑛
𝑝V ln (1 + 𝑢2 + V2) (𝑢2 + V2)

(𝑝/2)−1

+

2𝜇
𝑛−1

V(V2 + 𝑤2)
𝑝/2

1 + V2 + 𝑤2

+ 𝜇
𝑛−1
𝑝V ln (1 + V2 + 𝑤2) (V2 + 𝑤2)

(𝑝/2)−1

,

(58)

for 𝑛 ∈ Z(1, 𝑘). Here 𝜇
𝑛
> 0 for 𝑛 ∈ Z(0, 𝑘). Define

𝐹 (𝑛, 𝑢, V) = 𝜇
𝑛
ln (1 + 𝑢2 + V2) (𝑢2 + V2)

𝑝/2

,

𝑛 ∈ Z (0, 𝑘) .

(59)

Then 𝐹(𝑛, 0, 0) = 0 for 𝑛 ∈ Z(0, 𝑘) and (10) holds. Moreover,
it is easy to see that 𝐹(𝑛, 𝑢, V) satisfies (39) for 𝑛 ∈ Z(0, 𝑘). By
Corollary 7, we see that (1) with (2) when 𝑓 is defined by (58)
has at least two nontrivial solutions.
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