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This paper considers a hybrid I/O automata model for an automated guided vehicle (AGV) system. A set of key properties of an
AGV system are characterized for the correctness of the system. An abstract model is constructed from the hybrid automata model
to simplify the proof of the constraints.The twomodels are equivalent in terms of bisimulation relation.We derive the constraints to
ensure the correctness of the properties. We validate the system by analyzing the parameters of the constraints of the AGV system.

1. Introduction

Complex systems cannot be described by a pure discrete
model or a continuous model [1–3]. Hybrid models have
become increasingly popular in the last few decades as
systems become increasingly complex. A hybrid system is a
dynamic system with interacting continuous time triggered
and discrete event triggered dynamics [1, 2, 4–6].Many appli-
cations involve hybrid systems, such as embedded controllers
[7], robotics [8, 9], mobile computing [10], and process
control [11], in which high reliability is a requirement [4]. To
model such a system, we need to describe and analyze it with
the rigorous use ofmathematics. An I/O automaton is used to
model concurrent and distributed discrete event systems [12].
A hybrid input/output automaton (HIOA) [4] is a framework,
which is developed by Lynch et al. and extended from hybrid
automata for modeling complex hybrid systems. This is done
by dividing the state variables of a HIOA into two sets,
classified as internal variables and external variables, where
the external variables include input variables and output
variables. Discrete transitions and continuous trajectories can
change the states of a system. An extremely important feature

of the hybrid I/O automaton framework is that the hybrid
system is divided into multiple modules. These modules are
described so that the hybrid system can be modeled easily.
The hybrid I/O automaton uses the external variables, input
variables, and output variables to communicate among the
automatons.

Automated guided vehicles (AGVs) are robots that move
on the floor of a facility directed by a combination of software
and sensor-based guidance systems. Earlier inventions on
AGVs can be dated back to Barrett Electronics in 1953. One
of the oldest publications on AGV can be found in [13]. In
the past, AGVs were typically deployed to manufacturing
facilities due to their efficiency, accuracy, and flexibility.
Nowadays, AGVs are also used in warehouses, distribu-
tion centers and transshipment terminals, and so forth for
repeated transportation tasks [14, 15]. The tracking path for
the AGV can be designed as a circle, ellipse, sine wave, or
other shapes such as arbitrary curves [16, 17]. The tracking
trajectory is very important as many papers develop effective
approaches to solve it, but our AGV is an example of applying
HIOAmodeling. Our modeling is inspired by [2]. But unlike
[2] which uses a straight line orbit that can be approximated
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to one-dimension, we investigate a two-dimensional problem
where an automated guided vehicle moves along a circular
painted orbit.

The first contribution of this paper is the formalmodeling
of an automated guided vehicle system using hybrid I/O
automata. The second contribution of this paper is a set of
important constraints which are characterized to ensure the
correctness of the properties of the vehicle system. In order
to simplify the model, we abstract a model from the hybrid
automata of the AGV and establish a bisimulation relation
between the two automata.

This paper is organized as follows. In Section 2, an
automated guided vehicle system is introduced. In Section 3,
the HIOA framework is introduced. In Section 4, we present
a HIOA model of the AGV system and abstract a model
from HIOA model. We prove that the two models have a
bisimulation relation. In Section 5, we extract the key proper-
ties and deduce the corresponding constraints to ensure the
correctness of the properties. We analyze the parameters of
the AGV system at the end of Section 6. Finally, we point out
some directions for future work.

2. An Automated Guided Vehicle System

We introduce the structure and behavior of a vehicle. The
vehicle consists of five components: the left wheels, the
right wheels, chassis, sensor, and controller. Figure 1 shows
a circular orbit tracking of our vehicle which is the focus of
the remainder of this paper. The vehicle has two degrees of
freedom. One is the velocity such that, at any time 𝑡, it can
move forward with a speed of V(𝑡), with the restriction that
0 ≤ V(𝑡) ≤ 10 mph (miles per hour). The other degree of
freedom is the circular movement of the vehicle such that
at any time 𝑡 the vehicle can rotate its body via the wheels
with an angular speed of −𝜋 ≤ 𝜔(𝑡) ≤ 𝜋 rad/s (radians per
second). Ignoring the inertia of the vehicle, we assume that
we can instantaneously change the velocity or angular speed.
The sensormeasures the displacement 𝑒(𝑡) between the center
of the vehicle and the center of the track using an array of
photodiodes. As the AGV passes over the track, the diode
directly above the track generatesmore current than the other
diodes. If the vehicle is close enough to the track, it will move
forward.When the vehicle strays too far to the left, it will steer
to the right; and when the vehicle strays too far to the right,
it will steer to the left. The vehicle can be stopped at any time
as long as it receives the control signal. If the vehicle is too far
away from the track that it is difficult to follow the track, then
it moves backward.

3. Hybrid I/O Automata Framework

In this section, we first introduce some basic notions about
the model we use and then consider the definitions and
theories of hybrid automata, hybrid I/O automata, and their
operations [4]. More detailed discussion of the hybrid I/O
automata can be found in [4].

AGV

Track

Y

y(t)
e(t)

𝜃1(t)
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Figure 1: AGV tracking circular painted orbit.

3.1. Basic Notions. Hybrid behaviors, including discrete
behavior, continuous behavior, and information flows into
the system, are often described using static and dynamic
variables, trajectories, and hybrid sequences. First, we intro-
duce several basic notions involved in hybrid behavior. A
location of the internal state of a system or a location
of a connection between a component of a system and
a component of another system can be represented as a
variable, which may be static in type and denote a set of
values of the variable, or dynamic in type and indicate a set of
trajectories of the variable. A set of variables can be changed
by discrete transitions, which are taken via discrete actions
when they are enabled or by trajectories over a time interval.
A hybrid sequence represents a series of changes that occur
instantaneously along with the evolution of time and may be
finite or infinite.

3.2. Hybrid Automata. As hybrid I/O automata are an
extension of hybrid automata, we define the structure of
hybrid automata first in order to describe the hybrid I/O
automata. The definition of hybrid automata is given below,
where≜ denotesmathematical definition. For amore detailed
description, see [4].

Definition 1. A hybrid automaton (HA) is an eight-tuple
𝐻
𝑀
= (𝐸
𝑉
, 𝐼
𝑉
, 𝑆, 𝑠
0
, 𝐸
𝐴
, 𝐼
𝐴
, 𝐷
𝑇
, 𝑇), where

(i) 𝐸
𝑉
is a set of external variables,

(ii) 𝐼
𝑉
is a set of internal variables, and𝑉 ≜ 𝐸

𝑉
∪ 𝐼
𝑉
is the

disjunction that represent all variables,
(iii) 𝑆 ⊆ val(𝐼

𝑉
) is a set of states,

(iv) 𝑠
0
⊆ 𝑆 is a nonempty set of initial states,

(v) 𝐸
𝐴
is a set of external actions,

(vi) 𝐼
𝐴
is a set of internal actions, and 𝐴 ≜ 𝐸

𝐴
∪ 𝐼
𝐴
is the

union of 𝐸
𝐴
and 𝐼
𝐴
,
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(vii) 𝐷
𝑇
⊆ 𝑆 × 𝐴 × 𝑆 is a set of discrete transitions,

(viii) 𝑇 is a set of trajectories for 𝑉. For every 𝜏 ∈ 𝑇 and
𝑡 ∈ dom(𝜏) (domain of 𝜏), we have 𝜏(𝑡)⌈𝐼

𝑉
∈ 𝑆,

where 𝜏(𝑡)⌈𝐼V is the restriction of 𝜏(𝑡) to 𝐼
𝑉
; that is,

the function 𝑔 with dom(𝑔) = dom(𝜏) ∩ 𝐼V such that
𝑔(𝑡) = 𝜏(𝑡). We require the following axioms:

(A1) for all 𝜏 ∈ 𝑇 for all 𝜏󸀠 ≤ 𝜏 𝜏󸀠 ∈ 𝑇;
(A2) for all 𝜏 ∈ 𝑇 for all 𝑡 ∈ dom(𝜏) 𝜏 ⊳ 𝑡 ∈ 𝑇

where 𝜏 ⊳ 𝑡 denotes ((𝜏⌈[𝑡, +∞)) − 𝑡);
(A3) suppose 𝜏

0
, 𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑖
, . . . is a sequence of tra-

jectories in 𝑇; if 𝜏
𝑖
is closed and 𝜏

𝑖
⋅ 𝑙state = 𝜏

𝑖+1
⋅

𝑓state, where 𝑖 ∈ N, 𝜏
𝑖
is not the last trajectory

of the hybrid sequence, then 𝜏
0
_𝜏
1
_𝜏
2
⋅ ⋅ ⋅ ∈ 𝑇,

where 𝜏_𝜏
󸀠
≜ 𝜏 ∪ (𝜏

󸀠
⌈(0,∞) + 𝜏 ⋅ 𝑙time).

The execution fragment of a hybrid automaton is a hybrid
sequence 𝛼 = 𝜏

0
𝑎
1
𝜏
1
𝑎
2
, . . . , 𝜏

𝑖
𝑎
𝑖+1
, . . ., where 𝜏

𝑖
∈ 𝑇, where 𝑖 is

a nonnegative integer and𝑇 is defined inDefinition 1; and if 𝜏
𝑖

is not the last trajectory, then 𝜏
𝑖
⋅ 𝑙state

𝑎𝑖+1

󳨀󳨀󳨀→ 𝜏
𝑖+1
⋅𝑓state, where

𝑙state represents the last state and 𝑓state denotes the first
state. Any input trajectory of the composition can be accepted
by the composition, and we say that the components of the
composition are strongly compatible HIOAs. Trace is the
external behavior of a hybrid I/O automaton. Concatenation
represents two hybrid sequences linked together. Let and be
hybrid sequences and closed, with the concatenation being
denoted by 𝛼_𝛼

󸀠
≜ init(𝛼)(last(𝛼)_head(𝛼󸀠))tail(𝛼󸀠).

3.3.Hybrid I/OAutomata. Wedescribed the hybrid automata
above.Here,we present the behavior and structure of aHIOA.
A HIOA is used to model a complex hybrid system. The
discrete state of the controller can be modeled by control
modes, represented as internal variables. Eachmode observes
an invariant condition.The internal variables can be changed
in two ways: in a discrete transition or in a continuous trajec-
tory. External variables, including input variables and output
variables, are used to exchange information between two
automatons. Here is the definition of a hybrid input/output
automaton. For a more detailed description, see [4].

Definition 2. A hybrid I/O automaton (HIOA) is a five-tuple
𝐴
𝑀
= (𝐻
𝑀
, 𝑈, 𝑌, 𝐼, 𝑂), where

(i) 𝐻
𝑀
= (𝐸
𝑉
, 𝐼
𝑉
, 𝑆, 𝑠
0
, 𝐸
𝐴
, 𝐼
𝐴
, 𝐷
𝑇
, 𝑇) is a hybrid automa-

ton,
(ii) 𝑈 ⊆ 𝐸

𝑉
is a set of input variables,

(iii) 𝑌 ≜ 𝐸
𝑉
\ 𝑈 is a set of output variables,

(iv) 𝐼 is a set of input actions,
(v) 𝑂 is a set of output actions,
(vi) the following axioms are satisfied:

(A1) for all 𝑥 ∈ 𝑆 for all 𝛼 ∈ 𝐼 ∃𝑥
󸀠
∈ 𝑆 such that

𝑥
𝑎

󳨀→ 𝑥
󸀠,

(A2) let trajs(𝑈)denote the set of all trajectories for𝑈,
for all 𝑥 ∈ 𝑆 for all 𝜐 ∈ trajs(𝑈) ∃𝜏 ∈ 𝑇 such
that 𝜏 ⋅ 𝑓state = 𝑥, 𝜏 ↓ 𝑈 ≤ 𝜐, and either

(a) 𝜏 ↓ 𝑈 = 𝜐, or
(b) 𝜏 is closed and some 𝑙 ∈ 𝐿 is enabled in 𝜏 ⋅

𝑙state,

where 𝑔 = 𝜏 ↓ 𝑈 represents dom(𝑔) = dom(𝜏) such
that, for all 𝑐 ∈ dom(𝑔) has 𝑔(𝑐) = 𝜏(𝑐)⌈𝑈.

We further define

(i) 𝑍 ≜ 𝐼
𝑉
∪ 𝑌 is a set of variables that are locally

controlled, and

(ii) 𝐿 ≜ 𝐼
𝐴
∪ 𝑂 is a set of actions that are locally

controlled.

Typically, it is difficult to model a complex system in one
shot. HIOA can decompose a hybrid system into multiple
components, model the modules as HIOAs, respectively,
and then compose them in the end. We introduce a very
important operation to compose two HIOAs, denoted as
symbol ‖. For the proof of Theorem 3 and Lemma 4, see [4].

Theorem 3. 𝐴
𝑀1

‖ 𝐴
𝑀2

is a hybrid I/O automaton when
𝐴
𝑀1

and 𝐴
𝑀2

are strongly compatible hybrid I/O automata
and 𝑈

1
∩ 𝑌
2
= 0.

Another important operation is hiding external variables
in HIOA. Suppose 𝐸

𝑉
⊆ 𝐸
𝑉𝐴
, 𝐵
𝑀
= VarHide(𝐸

𝑉
, 𝐴
𝑀
), 𝐸
𝑉𝐵
=

𝐸
𝑉𝐴
− 𝐸
𝑉
, and 𝑇

𝐵𝑀
= 𝑇
𝐴𝑀

↓ (𝑉
𝐴𝑀

− 𝐸
𝑉
).

Lemma 4. If 𝐴
𝑀

is a HIOA and 𝐸
𝑉

⊆ 𝐸
𝑉𝐴𝑀

, then
VarHide (𝐸

𝑉
, 𝐴
𝑀
) is a HIOA.

Definition 5 (simulation relations). For all states𝑥
𝐴𝑀

and𝑥
𝐵𝑀

of 𝐴
𝑀

and 𝐵
𝑀
, given two comparable HIOAs, from 𝐴

𝑀
to

𝐵
𝑀
there exists a simulation relation𝑅

𝑆
⊆ 𝑆
𝐴𝑀
×𝑆
𝐵𝑀

(denoted
as 𝐴
𝑀
𝑅
𝑆
𝐵
𝑀
) when the following three conditions are met:

(i) knowing that 𝑥
𝐴𝑀

∈ 𝑠
0𝐴𝑀

and suppose there exists
a state 𝑥

𝐵𝑀
∈ 𝑠
0𝐵𝑀

such that 𝑥
𝐴𝑀
𝑅
𝑆
𝑥
𝐵𝑀

, where 𝑠
0𝐴𝑀

is the set of initial states of 𝐴
𝑀

and 𝑠
0𝐵𝑀

is the set of
initial states of 𝐵

𝑀
;

(ii) suppose 𝑥
𝐴𝑀
𝑅
𝑆
𝑥
𝐵𝑀

and an execution fragment of
𝐴
𝑀
; execution fragment 𝛼 = 𝜏

0
𝑎
1
𝜏
1
𝑎
2
, . . . , 𝜏

𝑖
𝑎
𝑖+1
, . . .,

meets 𝛼⋅𝑓state = 𝑥
𝐴𝑀

; there exists a closed execution
fragment 𝛽 in 𝐵

𝑀
that meets 𝛽 ⋅ 𝑓state = 𝑥

𝐵𝑀
,

trace(𝛽) = trace(𝛼), and 𝛼 ⋅ 𝑓state𝑅𝛽 ⋅ 𝑓state;

(iii) suppose 𝑥
𝐴𝑀
𝑅
𝑆
𝑥
𝐵𝑀

and an execution fragment of
𝐴
𝑀
𝛼 = 𝜏

0
has 𝛼 ⋅ 𝑓state = 𝑥

𝐵𝑀
; there exists a closed

execution fragment 𝛽 in 𝐵
𝑀

that meets 𝛽 ⋅ 𝑓state =
𝑥
𝐵𝑀

, trace(𝛽) = trace(𝛼), and 𝛼 ⋅ 𝑙state𝑅𝛽 ⋅ 𝑙state.

Corollary 6. Given two comparable HAs 𝐴
𝑀

and 𝐵
𝑀
, and

a simulation from 𝐴
𝑀

to 𝐵
𝑀

denoted as 𝐴
𝑀
𝑅
𝑠
𝐵
𝑀
, then

traces
𝐴𝑀

⊆ traces
𝐵𝑀

.

The proof refers to [4]. According to [18, 19], we define a
bisimulation as follows.
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Figure 2: Network of hybrid automata for an AGV.

Definition 7 (bisimulation). Given two comparable HIOAs
𝐴
𝑀
and 𝐵

𝑀
, for all pairs (𝑝, 𝑞) among all reachable states of

𝐴
𝑀
and 𝐵

𝑀
, 𝑝 in 𝐴

𝑀
, and 𝑞 in 𝐵

𝑀
. If all reachable states 𝑝∗

in𝐴
𝑀
have 𝑝 𝑎󳨀→ 𝑝

∗, this implies the existence of a state 𝑞∗ in
𝐵
𝑀

such that 𝑝 𝑎󳨀→ 𝑝
∗. At the same time, all reachable states

𝑞
∗ in 𝐵

𝑀
have 𝑝 𝑎󳨀→ 𝑝

∗, implying that there exists a state 𝑞∗

in 𝐴
𝑀
such that 𝑝 𝑎󳨀→ 𝑝

∗. Under these circumstances, we say
that 𝐴

𝑀
and 𝐵

𝑀
have a bisimulation relation.

4. Modeling the AGV System

We model the AGV system using HIOA. Inspired by [2], the
AGV system is modeled as a network of hybrid automata as
shown in Figure 2. The model consists of five parts: chassis,
left wheels, right wheels, sensor, and controller, respectively.
The five components communicate via shared variables. In
Figure 2, variables 𝜃

1
and 𝜃

2
are the angles of the left and

right wheels relative to the 𝑥-axis positive direction of globe
coordinate, respectively. Variables 𝑥 and 𝑦 represent the
chassis coordinates with respect to the global coordinate
frame. Variable 𝑒 is the distance 𝑒(𝑡) from which the center of
the AGV deviates from the center of the track at time 𝑡. The
variable is used to communicate between the sensor and the
controller.The controller receives the variable 𝑒, sends control
signals to the left wheel and the right wheel, and then changes
the mode of the AGV.

XOY is the global coordinate frame. V is the forward
velocity of the car. 𝑡sample is the sampling time.𝜔 is the angular
speed of the vehicle. 𝑒(𝑡) is the displacement of the center
of the vehicle from the track at time 𝑡. 𝜀

1
is the threshold

indicating that the AGV is close enough to the center of the
track that the AGV can move straight ahead in a forward
mode. 𝜀

2
is the threshold indicating that there is too great

a distance between the center of the AGV and the center of
track, and that the vehicle must therefore be steered to the
other side. 𝜀

3
is the threshold denoting that the vehicle has

strayed so far from the center of track that the vehicle is in
an unsafe condition and must be moved back via switching

to the back mode. 𝛼 is the maximum angle of vehicle velocity
direction to the tangential direction of the center point on the
track, where 0 ≤ 𝛼 ≤ 𝜋/2. 𝜃 is the angle of the vehicle velocity
direction to the 𝑥-axis positive direction. 𝜂 is the angle of the
vehicle velocity direction to the tangential direction of the
center point on the track, where −𝛼 ≤ 𝜂 ≤ 𝛼. 𝑅 is the radius
of the track.

The AGV system is decomposed into five components
and modeled as hybrid automata: chassis, LWheel, RWheel,
sensor, and controller, respectively.

4.1. Component Chassis. The chassis secures the position
of each component. The state is composed of three state
variables: ⟨𝑥, 𝑦, 𝜃⟩ where 𝑥 is the 𝑥-coordinate of the center
of the vehicle; 𝑦 is the 𝑦-coordinate of the center of the
vehicle; and 𝜃 is the angle of the vehicle velocity direction
to the 𝑥-axis positive direction. We use differential algebraic
equations (DAEs) to describe the dynamic of the chassis.
Initially, we ensure that the vehicle moves forward, and the
initial condition is

𝜂 ∈ [−𝛼, 𝛼] ∧ |𝑒 (𝑡)| ≤ 𝜀1. (1)

From Figure 2, the chassis secures the wheels. Hence the
leftwheels, right wheels, and the chassis have the same angles.
We obtain the following algebraic equation:

𝜃
1
= 𝜃
2
= 𝜃. (2)

4.2. Component LWheel. We model the behavior of left
wheels as the hybrid automaton LWheel. The left wheel has
external variables: 𝑥

1
, which gives the 𝑥-coordinate of the

left wheel; 𝑦
1
, which gives the 𝑦-coordinate of the right

wheel; and 𝜃
1
, which is the angle of the moving direction

of the left wheel to the 𝑥-axis positive direction. The types
of these variables are real. This hybrid automaton model has
no actions or discrete transitions, just satisfied trajectories.
It communicates with the controller via the Boolean variable
𝑙 control and is stop. We obtain differential equations for the
left wheel as follows:

𝑑𝑥
1

𝑑𝑡
= if stop then 0

else if 𝑙 control then V cos 𝜃
1

else − V cos 𝜃
1

𝑑𝑦
1

𝑑𝑡
= if stop then 0

else if 𝑙 control then V sin 𝜃
1

else − V sin 𝜃
1
.

(3)

4.3. Component RWheel. Since the left wheels and right
wheels are symmetrical, we omit the description of the right
wheels.

4.4. Component Sensor. Wemodel the behavior of the sensor
as the hybrid automaton sensor, whose output at time 𝑡,
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for all 𝑡 𝑒(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)), gives the center position of the
AGV relative to the center of the track, shown in Figure 1.
The sensor communicates with the controller through the
variable 𝑒, which equals 𝑒(𝑡). Since the hybrid automaton
sensor has no internal variables, and there are neither actions
nor discrete transitions, only the following algebraic equation
is met for the trajectories of the sensor:

sensor = 𝑒 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡)) . (4)

4.5. Component Controller. The controller can be divided
into two levels. The supervisory controller determines the
structure of the mode transition and guards the enabled
transitions. The low-level controller determines the time-
based inputs to the system. We are modeling the behavior of
the controller as a hybrid automaton controller, whose input is
the sensor value and the output the control signals to the left
and right wheels that determine the operation of the wheels.
There is a clock built into the controller for measuring the
time interval since the last sampling. We use the variable 𝑐 to
represent this clock. A clock can be modeled as a first-order
differential equation, and the clock variable 𝑐 is defined as
follows:

𝑐 = 𝑘 ⋅ 𝑡, (5)

where 𝑘 is the rate of the clock, 𝑡 is the variable of time, and
𝑘 = 𝑑[𝑐(𝑡)]/𝑑𝑡. In our model, the value of 𝑘 can be a constant
1.

The controller has a variable 𝑒, which gets its value from
the sensor. There are two variables recording the value of the
sensor: variable new sample, used to record the latest sample
value, and variable sample, used to record the last sample
value. In order to ensure that the vehicle moves forward, the
initial states should satisfy:

𝑐 = 0 ∧ sample ∈ [−𝜖
1
, 𝜖
1
] . (6)

We define a transition as occurring when a guard in an
outgoing transition from the current state becomes enabled.
This control logic is captured in the mode transitions. The
outputs are the pure signals is stop, forward, and backward.
There are three Boolean variables recording the outputs,
is stop, 𝑙 control, and 𝑟 control, respectively. We use an
asterisk ∗ to represent the next sample value. When the
internal action clock transitions is taken, each state transition
that is enabled will be taken:

𝑐 = 𝑡sample 󴁄󴀼 {
𝑐
∗
= 0

sample∗ = new sample,
(7)

where 󴁄󴀼 denotes the event trigger.
For trajectories we require that

sample (𝑡
1
) = sample (𝑡

2
) , (8)

for all time 𝑡
1
, 𝑡
2
between clock transitions; that is, 𝑡

1
, 𝑡
2
∈

[𝑚 ⋅ 𝑡sample, (𝑚 + 1) ⋅ 𝑡sample) for all𝑚 ∈ N.
The new sample will record the new value from the

sensor:

new sample = 𝑒 (𝑡) . (9)

For every state, the following equations must hold:

𝑑𝑐

𝑑𝑡
= 1

𝑙 control = if sample ∈ [−𝜖
3
, 𝜖
3
] then true

else false

𝑟 control = if sample ∈ [−𝜖
3
, 𝜖
3
] then true

else false

is stop = if stop then true

else false.

(10)

The control logic determines the change in the state of the
controller. Our AGV is running on the circular track. Since
the circle is symmetrical, it suffices for us to just consider the
situation of the first quadrant. The refinement of the mode
gives the dynamic behavior of the output as a function of the
input. We know that the displacement 𝑒(𝑡) is the function
of 𝑥 and 𝑦 and that the control logic guards the transitions
whether enabled or not. They are as follows:

forward 󳨐⇒ ¬stop ∧ −𝜖
1
≤ 𝑒 (𝑡) ≤ 𝜖1

󳨐⇒

{{

{{

{

𝑥
󸀠
= V cos 𝜃,

𝑦
󸀠
= V sin 𝜃,

𝜃
󸀠
= 0

right 󳨐⇒ ¬stop ∧ 𝜖
3
≥ 𝑒 (𝑡) > 𝜖2

󳨐⇒

{{

{{

{

𝑥
󸀠
= V cos 𝜃,

𝑦
󸀠
= V sin 𝜃,

𝜃
󸀠
= −𝜔

left 󳨐⇒ ¬stop ∧ −𝜖
3
≤ 𝑒 (𝑡) < −𝜖2

󳨐⇒

{{

{{

{

𝑥
󸀠
= V cos 𝜃,

𝑦
󸀠
= V sin 𝜃,

𝜃
󸀠
= 𝜔

back 󳨐⇒ ¬stop ∧ 𝑒 (𝑡) < −𝜖3 ∨ 𝑒 (𝑡) > 𝜖3

󳨐⇒

{{

{{

{

𝑥
󸀠
= −V cos 𝜃,

𝑦
󸀠
= −V sin 𝜃,

𝜃
󸀠
= 0

stop 󳨐⇒
{{

{{

{

𝑥
󸀠
= 0,

𝑦
󸀠
= 0,

𝜃
󸀠
= 0

maintain 󳨐⇒ {
−𝜖
2
≤ 𝑒 (𝑡) < −𝜖1 or

𝜖
1
< 𝑒 (𝑡) ≤ 𝜖2.

(11)

4.6. Composition. Since the left wheels, the right wheels, and
the chassis have no output, they cannot be regarded as hybrid
I/O automata. Since 𝜃

1
and 𝜃

2
are the internal variables of
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wheels, we are modeling the three components as the hybrid
I/O automaton Plant by hiding these variables. In our model,
Plant, is stop, 𝑙 control, and 𝑟 control are inputs, and 𝑥 and 𝑦
are outputs:

Plant

= VarHide ({𝜃
1
, 𝜃
2
} , (Chassis ‖LWheel‖RWheel)) .

(12)

Likewise, the sensor can be regarded as a hybrid I/O automa-
ton, for which the inputs are 𝑥 and 𝑦, and the output
is 𝑒. The controller can also be viewed as a hybrid I/O
automaton for which the input is 𝑒, and the outputs are
is stop, 𝑙 control, and 𝑟 control. According toTheorem 3 and
Lemma 4, all of the components of the system are HIOAs
and the composition also an HIOA. We have obtained a
complete hybrid I/O automaton of the AGV system by hiding
the external variables:

𝐻
𝑀
= VarHide ({𝑥, 𝑦, 𝑒, is stop, 𝑙 control, 𝑟 control} ,

(Plant ‖Sensor‖Controller) ) .
(13)

4.7. Abstraction. We expect that the AGV is always moving
forward and never moves backward and use (14) to describe
this situation.We select the appropriate threshold and ensure
that the vehicle moves in the way we expect by specifying
parameter constraints for all reachable states of the hybrid I/O
automata𝐻

𝑀
:

󵄨󵄨󵄨󵄨
sample󵄨󵄨󵄨󵄨 ≤ 𝜖3. (14)

In addition, we hope that the forward mode occurs infinitely
often:

GF (𝑐 = 0 ∧ 󵄨󵄨󵄨󵄨sample󵄨󵄨󵄨󵄨 ≤ 𝜖1) . (15)

In order to simplify the model, we abstract a model𝐴
𝑀
from

the previous model 𝐻
𝑀
. Then, we use model 𝐴

𝑀
instead of

𝐻
𝑀
. We find the constraints we need from model 𝐴

𝑀
to

guarantee the correctness of the properties that we expect.
Here, we simplify the model in several ways, as follows.

Based on (8), we know that the value of the variable
sample remains unchanged during the interval after the
current sampling and before the next sampling.Therefore we
can easily prove that (14) is satisfied. We cannot consider the
influence of the clock variable 𝑐. Furthermore, we assume that
the vehicle is at the initial state at the time 0:

𝑐 = 0 󳨐⇒ |𝑒 (𝑡)| ≤ 𝜖3. (16)

We find that the variables new sample and sample are ruled
out in our abstract model. Now, we use the refinements of
the five modes of AGV to describe the dynamic behavior
of an AGV. The formulas of the five modes are given as

𝜑forward, 𝜑right, 𝜑left, 𝜑back, and 𝜑stop, respectively; 𝜑step is the
disjunction of the five:

𝜑step ≜ 𝜑right ∨ 𝜑left

∨𝜑forward ∨ 𝜑back ∨ 𝜑stop

𝜑forward ≜

{{{{{{{

{{{{{{{

{

¬stop,
|𝑒 (𝑡)| ≤ 𝜖1,

𝑥
∗
= 𝑥 + V cos 𝜃𝑡sample,

𝑦
∗
= 𝑦 + V sin 𝜃𝑡sample,

𝜃
∗
= 𝜃

𝜑right ≜

{{{{{{{

{{{{{{{

{

¬stop,
𝑒 (𝑡) > 𝜖2,

𝑥
∗
= 𝑥 + V cos 𝜃𝑡sample,

𝑦
∗
= 𝑦 + V sin 𝜃𝑡sample,

𝜃
∗
= 𝜃 − 𝜔𝑡sample

𝜑left ≜

{{{{{{{

{{{{{{{

{

¬stop,
𝑒 (𝑡) < −𝜖2,

𝑥
∗
= 𝑥 + V cos 𝜃𝑡sample,

𝑦
∗
= 𝑦 + V sin 𝜃𝑡sample,

𝜃
∗
= 𝜃 + 𝜔𝑡sample

𝜑back ≜

{{{{{{{

{{{{{{{

{

¬stop,
|𝑒 (𝑡)| > 𝜖3,

𝑥
∗
= 𝑥 − V cos 𝜃𝑡sample,

𝑦
∗
= 𝑦 − V sin 𝜃𝑡sample,

𝜃
∗
= 𝜃

𝜑stop ≜

{{{{

{{{{

{

stop,
𝑥
∗
= 𝑥,

𝑦
∗
= 𝑦,

𝜃
∗
= 𝜃.

(17)

Now we get the abstract model of the AGV system. Since the
abstract model 𝐴 omits the time variable, it is simpler than
the original model. We will derive and verify the properties
using the abstractmodel.There are two kinds of typical errors
in formal verification, one is true error, where errors exist in
the physical system, but the result of formal verification is
correct.The reason of first kind of error is because we abstract
a model from our original model, and the details we omitted
may lead to the errors of original model being omitted, so we
get a passing proof.The other is false error which do not exist
in the physical system but the result of formal verification
is incorrect. The reason is that abstract model omitted the
details of original model. The abstract model cannot express
the original system due to lack of information from the
original system, and then the result of formal verification is
incorrect.

In order to ensure the two kinds of errors never occur,
we prove the original model𝐻

𝑀
and the abstract model 𝐴

𝑀

have a bisimulation equivalence relationship.
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Lemma 8. Let 𝑆
𝐾
be a set of all reachable states of𝐻

𝑀
, for all

𝑠 ∈ 𝑆
𝑅
; one has

𝑐 = 0 󳨐⇒ [
󵄨󵄨󵄨󵄨
sample 󵄨󵄨󵄨󵄨 ≤ 𝜖2 ⇐⇒ |𝑒 (𝑡)| ≤ 𝜖2] (18)

Proof. Use (14) and (15) to prove Lemma 8.

Theorem 9. The two comparable HIOAs𝐻
𝑀
and 𝐴

𝑀
have a

bisimulation relation.

Proof. Owing to the limitation of space, we do not provide a
detailed proof of Theorem 9, but the key step will be given.
𝐻
𝑀
and 𝐴

𝑀
satisfy the following condition:

𝑐
𝐻𝑀

= 0 ∧ 𝜃
𝐻𝑀

= 𝜃
𝐴𝑀

∧ 𝑥
𝐻𝑀

= 𝑥
𝐴𝑀

∧ 𝑦
𝐻𝑀

= 𝑦
𝐴𝑀
. (19)

For all state pairs (𝑝, 𝑞) among all reachable states of𝐻
𝑀
and

𝐴
𝑀
, 𝑝 ∈ 𝐻

𝑀
and 𝑞 ∈ 𝐴

𝑀
, if states of state pair (𝑝, 𝑞) hold the

weakest condition of labeled transition system respectively,
we say the pair (𝑝, 𝑞) is bisimulation equivalent. If each initial
state of𝐻

𝑀
bisimulates an initial state of𝐴

𝑀
, and there exists

an execution fragment from 𝑝 to 𝑝∗, where 𝑝∗ in 𝐻
𝑀

has
𝑝 → 𝑝

∗, implying the existence of a transition according
to the transition predicate 𝜑step of 𝐴

𝑀
from 𝑞 to 𝑞∗ in 𝐴

𝑀
,

such that 𝑞 ⇒ 𝑞
∗. At the same time, there exists a transition

according to the transition predicate 𝜑step of 𝐴
𝑀

from 𝑞 to
𝑞
∗, where 𝑞∗ in 𝐴

𝑀
has 𝑞 ⇒ 𝑞

∗, implying the existence of
an execution fragment from 𝑝 to 𝑝∗, where 𝑝∗ in 𝐻

𝑀
, such

that 𝑝 → 𝑝
∗. We can then use Definition 5, Corollary 6, and

Definition 7 to proveTheorem 9.

5. Correctness

5.1.TheDesired Properties of𝐴
𝑀
. For a system,we often hope

that bad things will never happen, a situation called safety,
that good things will eventually happen, and that they will
happen infinitely often, a situation called fairness.We express
the properties via invariants. For our system, we expect the
displacement from the center of the AGV to the center of the
track to never be larger than the threshold 𝜀

3
, and never be

less than the threshold −𝜀
3
. At the same time, we ensure that

𝜂 lies in the interval [−𝛼, 𝛼].

Property 1. The vehicle always moves forward and never
moves backward. It can be described as

𝜑safety ≜ 𝜂 ∈ [−𝛼, 𝛼] ∧ |𝑒 (𝑡)| ≤ 𝜀3. (20)

Property 2. The vehicle moves forward infinitely often. It can
be described using the temporal logic formula

𝜑fairness ≜ GF |𝑒 (𝑡)| ≤ 𝜀1. (21)

Lemma 10. If 𝜑
𝑠𝑎𝑓𝑒𝑡𝑦

is an invariant of 𝐴
𝑀

and formula
𝜑
𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠

holds for𝐴
𝑀
, then (14) is an invariant of𝐻

𝑀
and (15)

holds for𝐻
𝑀
.

Proof. Use Lemma 8,Theorem 9, and (8) to prove Lemma 10.

5.2. Parameter Constraints of the AGV System. In this section,
we will give several parameter constraints for our AGV sys-
tem. They are indispensable to guaranteeing the correctness
of the properties of safety (20) and fairness (21). We define
them in (22).

Parameter Constraints. Consider the following

𝜑
1
≜ (V cos𝛼𝑡sample)

2

+ (𝑅 + 𝜀
2
+ V sin𝛼𝑡sample)

2

≤ (𝜀
3
+ 𝑅)

𝜑
2
≜ (𝑅 − 𝜀

2
)
2
+ V2𝑡2sample − 2 (𝑅 − 𝜀2) V𝑡sample sin𝛼

≥ (𝑅 − 𝜀
3
)
2

𝜑
3
≜ 𝜔𝑡sample ≤ 𝛼

𝜑
4
≜ (𝑅 − 𝜀

3
)
2

≤ (V cos𝛼𝑡sample)
2

+ (𝑅 − 𝜀
2
+ V sin𝛼𝑡sample)

2

≤ (𝑅 + 𝜀
1
)
2
.

(22)

Theorem 11. If 𝜑
1
, 𝜑
2
, and 𝜑

3
are met, then the 𝜑safety property

is an invariant of 𝐴
𝑀
; that is,

𝜑
𝑠𝑎𝑓𝑒𝑡𝑦

∧ 𝜑
1
∧ 𝜑
2
∧ 𝜑
3
󳨐⇒ 𝜑

∗

𝑠𝑎𝑓𝑒𝑡𝑦
. (23)

Proof. In the first step, we prove that 𝜑safety ∧ 𝜑1 ⇒ 0 ≤

𝑒
∗
(𝑡) ≤ 𝜀

3
holds. Since the circle is symmetrical, we only

need to consider the situation of the first quadrant. In order
to guarantee that |𝑒(𝑡)| ≤ 𝜀

3
is met in all cases of outside the

circle track, we consider the most extreme case of the outside
of the circle. First of all, suppose that the vehicle moves on
the outside of the circle shown in Figure 3.The vehicle is very
close to point 𝐴 at the time of the current sampling, and
𝑒(𝑡) ≤ 𝜀

2
. The vehicle then moves forward to 𝐵 with 𝜂 = 𝛼 at

the next sampling; the 𝑒(𝑡) reaches the largest displacement.
We use 𝜑

1
to illustrate that 0 < 𝑒(𝑡) ≤ 𝜀

3
holds for 𝐴

𝑀
. The

derivations in (24) show that 𝑒∗(𝑡) ≤ 𝜀
3
.

Deriving from 𝜑
1
. Consider the following:

(V cos𝛼𝑡sample)
2

+ (𝑅 + 𝜀
2
+ V sin𝛼𝑡sample)

2

≤ (𝜀
3
+ 𝑅)
2

√(V cos𝛼𝑡sample)
2

+ (𝑅 + 𝜀
2
+ V sin𝛼𝑡sample)

2

≤ (𝜀
3
+ 𝑅)

√(V cos𝛼𝑡sample)
2

+ (𝑅 + 𝜀
2
+ V sin𝛼𝑡sample)

2

− 𝑅 ≤ 𝜀
3

√|𝐵𝐷|
2
+ |𝑂𝐷|

2
− 𝑅 ≤ 𝜀

3
(use the Pythagorean theorem)

√|𝐵𝐷|
2
− 𝑅 ≤ 𝜀

3

|𝑂𝐵| − 𝑅 ≤ 𝜀3

𝑒
∗
(𝑡) ≤ 𝜀3.

(24)
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Y

e(x)

A

D

B

O R − 𝜀2 R R + 𝜀2 X

Figure 3: Illustration of the need for 𝜑
1
.

Since the vehicle moves on the outside of the circle, 𝑒(𝑡)∗ > 0.
Therefore, 𝜑safety ∧ 𝜑1 ⇒ 0 < 𝑒

∗
(𝑡) ≤ 𝜀

3
.

In the second step, we prove that 𝜑safety ∧ 𝜑2 ⇒ −𝜀
3
≤

𝑒
∗
(𝑡) ≤ 0 holds. In order to guarantee that |𝑒(𝑡)| ≤ 𝜀

3

in all cases inside the track of the circle, we consider the
most extreme case inside. First of all, suppose that the vehicle
moves on the inside of the circle shown in Figure 4. The
vehicle is very close to point 𝐴 at the time of the current
sampling, with 𝑒(𝑡) > −𝜀

2
, and then moves forward to 𝐵 with

𝜂 = −𝛼 at the next sampling, where the vehicle reaches the
farthest to the track.Weuse𝜑

2
to illustrate that−𝜑

3
≤ 𝑒(𝑡) < 0

holds for 𝐴
𝑀
. The derivations in (25) show that 𝑒∗(𝑡) ≥ −𝜀

3
.

Deriving from 𝜑
2
. Consider the following:

(𝑅 − 𝜀
2
)
2
+ V2𝑡2sample − 2 (𝑅 − 𝜀2) V𝑡sample sin𝛼 ≥ (𝑅 − 𝜀3)

2

√(𝑅 − 𝜀
2
)
2
+ V2𝑡2sample − 2 (𝑅 − 𝜀2) V |sin (−𝛼)| 𝑡sample

≥ 𝑅 − 𝜀
3

√|𝑂𝐴|
2
+ |𝐴𝐵|

2
− 2 |𝑂𝐴 ‖𝐴𝐵‖ sin (−𝛼)| ≥ 𝑅 − 𝜀3

√|𝑂𝐴|
2
+ |𝐴𝐵|

2
− 2 |𝑂𝐴| |𝐴𝐵| cos(𝜋

2
− 𝛼) ≥ 𝑅 − 𝜀

3

(use the Law of cosines)

|𝑂𝐵| ≥ 𝑅 − 𝜀3

𝑂𝐵 − 𝑅 ≥ −𝜀
3

𝑒
∗
(𝑡) ≥ −𝜀3.

(25)

Since the vehicle moves on the inside of the circle, 𝑒∗(𝑡) < 0.
Therefore, 𝜑safety ∧ 𝜑2 ⇒ −𝜀

3
≤ 𝑒
∗
(𝑡) ≤ 0.

Y

e(t)

A

B

O R − 𝜀2 R R + 𝜀2 X

Figure 4: Illustration of the need for 𝜑
2
.

A

D

C

B

Y󳰀

O󳰀

X󳰀

Y

O R − 𝜀2 R R + 𝜀2 X

Figure 5: Illustration of the need for 𝜑
3
.

In the third step, we prove that 𝜑safety ∧𝜑3 ⇒ 𝜂
∗
∈ [−𝛼, 𝛼]

holds. Constraint 𝜔𝑡sample ≤ 𝛼 is required to guarantee that
𝜂 is always in the interval [−𝛼, 𝛼]. First of all, we consider
the scenario shown in Figure 5. We build a coordinate frame
𝑋
󸀠
𝑂
󸀠
𝑌
󸀠 shown in Figure 5. If the vehicle reaches point 𝐴 in

the current sampling, the vehicle will steer to the left. The

angle 𝜂 < 0 (the angle between
󳨀→

𝐴𝐵 and
󳨀→

𝑂
󸀠
𝑋
󸀠), relative to the

coordinate frame𝑋󸀠𝑂󸀠𝑌󸀠, is 𝜂∗ = 𝜂+𝜔𝑡sample < 𝜔𝑡sample at the
next sampling. If𝜔𝑡sample ≤ 𝛼, then 𝜂

∗
= 𝜂+𝜔𝑡sample < 𝛼. If the

vehicle reaches point 𝐶 in the current sampling, the vehicle
will steer to the left. The angle 𝜂 > 0 (the angle between

󳨀→

𝐶𝐷

and
󳨀→

𝑂
󸀠
𝑋
󸀠), relative to the coordinate frame 𝑋󸀠𝑂󸀠𝑌󸀠, is 𝜂∗ =

𝜂 − 𝜔𝑡sample > −𝜔𝑡sample at the next sampling. If 𝜔𝑡sample ≤ 𝛼,
then −𝜔𝑡sample ≥ −𝛼, and we will get 𝜂∗ = 𝜂 − 𝜔𝑡sample > −𝛼.
We have proved that 𝜂∗ ∈ [−𝛼, 𝛼].

Therefore, 𝜑safety ∧ 𝜑1 ∧ 𝜑2 ∧ 𝜑3 ⇒ 𝜑
∗

safety is proved.
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e(x)

A

B
B󳰀

Y

O R − 𝜀2 R R + 𝜀2 X

Figure 6: Illustration of the need for 𝜑
4
.

Theorem 12. If 𝜑
4
holds for 𝐴

𝑀
, then the property of 𝜑

𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠

is an invariance of 𝐴
𝑀
; that is, 𝜑

𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠
∧ 𝜑
4
⇒ 𝜑
∗

𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠
.

Proof. In order to ensure that the vehicle moves forward
infinitely often, we avoid the situation of always steering to
left after steering to right, and steering to right after steering
to left.We consider the scenario shown in Figure 6.The center
of the vehicle is very close to pointA in the current sampling,
and 𝑒(𝑡) < 𝜀

2
, with the velocity direction approximate parallel

to the direction of the tangent of point 𝐴, shown as a dashed
line. The vehicle steers to the left, moves along the arc

_
𝐴𝐵,

and we look at
_
𝐴𝐵 as a straight line 𝐴𝐵. Suppose that 𝜂 = 𝛼,

𝑒(𝑡) < 𝜀
1
at the next sampling and that the vehicle switches to

the forward mode. From 𝜑
4
, we can derive the following:

𝑅 − 𝜀
1
≤ |𝑂𝐵| ≤ 𝑅 + 𝜀1 (𝑅 > 𝜀3 > 𝜀2 > 𝜀1)

−𝜀
1
≤ |𝑂𝐵| − 𝑅 ≤ −𝜀1

−𝜀
1
≤ 𝑒
∗
(𝑡) ≤ −𝜀1

󵄨󵄨󵄨󵄨
𝑒
∗
(𝑡)
󵄨󵄨󵄨󵄨
≤ −𝜀
1
.

(26)

6. Analysis of Constraints

In this section, we analyze the parameters of ourAGV system.
We rewrite the constraints as shown in (27).

Rewrite Constraints. Consider the following:

𝜑
1
≜ V2𝑡2sample + 𝜀

2

2
+ 2𝜀
2
V sin𝛼𝑡sample

≤ 𝜀
2

3
+ 2𝑅 (𝜀

3
− 𝜀
2
− V sin𝛼𝑡sample)

𝜑
2
≜ (𝑅 − 𝜀

2
− V𝑡sample)

2

+ 2 (𝑅 − 𝜀
2
) V𝑡sample (1 − sin𝛼)

≥ (𝑅 − 𝜀
3
)
2

𝜑
3
≜ 𝜔𝑡sample ≤ 𝛼.

(27)

We assume that the value range of V is from Vmin to Vmax, 𝑡sample
is from 𝑡min to 𝑡max, 𝛼 is from 𝛼min to 𝛼max, 𝜀1 is from 𝜀

1min
to

𝜀
1max

, 𝜀
2
is from 𝜀

2min
to 𝜀
2max

, 𝜀
3
is from 𝜀

3min
to 𝜀
3max

, 𝑅 is from
𝑅min to 𝑅max, and 𝜔 is from 𝜔min to 𝜔max. The inequalities
shown in (28) need to be met to ensure that the parameter
constraints hold.

Inequalities Needed for the Parameter Constraints. Consider
the following:

V2max𝑡
2

max + 𝜀
2

2max
+ 2𝜀
2max

Vmax sin𝛼max𝑡max

≤ 𝜀
2

3min
+ 2𝑅min (𝜀3min

− 𝜀
2max

− Vmax sin𝛼max𝑡max)

(𝑅max − 𝜀3min
)
2

≤ (𝑅min − 𝜀2max
− Vmax𝑡max)

2

+ 2 (𝑅min − 𝜀2max
) Vmin𝑡min (1 − sin𝛼max)

𝜔max𝑡max ≤ 𝛼min

(𝑅max − 𝜀1min
)
2

≤ V2min𝑡
2

sample + (𝑅min − 𝜀2max
)
2

+ 2 (𝑅min − 𝜀2max
) Vmin sin𝛼min𝑡min

(𝑅min + 𝜀1min
)
2

≥ V2max𝑡
2

max + (𝑅max − 𝜀2min
)
2

+ 2 (𝑅max − 𝜀2min
) Vmax sin𝛼max𝑡max.

(28)

It is obvious that the parameters 𝜀
1max

, 𝜀
3max

, and 𝜔min do
not appear in the constraint inequalities. Therefore, we
increase 𝜀

1
and 𝜀
3
from the minimum and decrease 𝜔 from

the maximum. We do not know the exact values of such
parameters as V, 𝑡sample, 𝜔, and can measure their values only
by operating the vehicle. Errors cannot be avoided when we
obtain these parameters. We can write the predicate logic
formula asserting safety 𝜑safety as follows:

∀𝛼 ∈ [𝛼min, 𝛼max] ,

∀𝜀
1
≥ 𝜀
1min

, ∀𝜀
2
∈ [𝜀
2min

, 𝜀
2max

] , ∀𝜀
3
≥ 𝜀
3min

∀𝑅 ∈ [𝑅min, 𝑅max] :

𝜑safety ∧ 𝜑1 ∧ 𝜑2 ∧ 𝜑3 󳨐⇒ 𝜑
∗

safety.

(29)

Parameters V and 𝜔 can be viewed as the internal variables of
the vehicle.

7. Conclusion

In this paper, we havemodeled anAGV systemusing a hybrid
I/O system and investigated a two-dimensional problem
where the vehicle moves in a circular orbit. We derived and
proved the constraints of the parameters of the AGV system
so that the vehicle always move forward closely following
the circular track and never moves backward. We have also
analyzed the constraints of the parameters and the range of
the parameters. Future research can extend this formulation
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from circular track to arbitrary complex curves, consider
slopes or hilly terrains, and reason about multiple vehicle
systems.
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116, Birkhäuser Boston, Boston, Mass, USA, 2005.

[2] A. Fehnker, F. Vaandrager, and M. Zhang, “Modeling and
verifying a Lego car using hybrid I/O automata,” in Proceedings
of the 3rd International Conference on Quality Software (QSIC
’03), pp. 280–289, IEEE Computer Society, 2003.

[3] L. Balbis, A. W. Ordys, M. J. Grimble, and Y. Pang, “Tutorial
introduction to the modelling and control of hybrid systems,”
International Journal of Modelling, Identification and Control,
vol. 2, no. 4, pp. 259–272, 2007.

[4] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,”
Information and Computation, vol. 185, no. 1, pp. 105–157, 2003.

[5] T. A. Henzinger, “Theory of hybrid automata,” in Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science
(LICS ’96), pp. 278–292, IEEE Computer Society, July 1996.

[6] J. Lygeros, G. Pappas, and S. Sastry, “An introduction to hybrid
systems modeling, analysis and control,” in Proceedings of the
1st Nonlinear Control Network Pedagogical School, pp. 307–329,
Athens, Greece, 1999.

[7] A. Balluchi, L. Benvenuti, M. D. D. I. Benedetto, S. Member, C.
Pinello, and A. Luigi, “Automotive engine control and hybrid
systems: challenges and opportunities,” Proceedings of the IEEE,
vol. 88, no. 7, pp. 888–912, 2000.

[8] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular
specification of hybrid systems in charon,” in Hybrid Systems:
Computation and Control, N. Lynch and B. Krogh, Eds., vol.
1790 of Lecture Notes in Computer Science, pp. 6–19, Springer,
Berlin, Germany, 2000.

[9] M. Song, T. Tarn, and N. Xi, “Integration of task scheduling,
action planning, and control in roboticmanufacturing systems,”
Proceedings of the IEEE, vol. 88, no. 7, pp. 1097–1107, 2000.

[10] M.Katara, “Hybridmodels formobile computing,” inCoordina-
tion Languages andModels, A. Porto andG. C. Roman, Eds., vol.
1906 of LectureNotes in Computer Science, pp. 216–231, Springer,
Berlin, Germany, 2000.

[11] B. Lennartson, M. Tittus, B. Egardt, and S. Pettersson, “Hybrid
systems in process control,” IEEEControl SystemsMagazine, vol.
16, no. 5, pp. 45–56, 1996.

[12] N. A. Lynch and M. R. Tuttle, “An introduction to input/output
automata,” CWI Quarterly, vol. 2, no. 3, pp. 219–246, 1989.

[13] T.Muller,Automated GuidedVehicles, IFS, Kempston, UK, 1983.

[14] T. Le-Anh and M. B. M. de Koster, “A review of design and
control of automated guided vehicle systems,” European Journal
of Operational Research, vol. 171, no. 1, pp. 1–23, 2006.

[15] I. F. A. Vis, “Survey of research in the design and control
of automated guided vehicle systems,” European Journal of
Operational Research, vol. 170, no. 3, pp. 677–709, 2006.

[16] W. Kang, N. Xi, and J. Tan, “Analysis and design of non-time
based motion controller for mobile robots,” in Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA ’99), pp. 2964–2969, May 1999.

[17] J. Tan, N. Xi, andW. Kang, “Non-time based tracking controller
for mobile robots,” in Proceedings of the 1999 IEEE Canadian
Conference on Electrical and Computer Engineering, pp. 919–
924, May 1999.

[18] R. Milner, Communication and Concurrency, Prentice-Hall,
1989.

[19] D. Park, “Concurrency and automata on infinite sequences,”
in Theoretical Computer Science, P. Deussen, Ed., vol. 104 of
Lecture Notes in Computer Science, pp. 167–183, Springer, Berlin,
Germany, 1981.


