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A constrained weak Nash-type equilibrium problem with multivalued payoff functions is introduced. By virtue of a nonlinear
scalarization function, some existence results are established. The results extend the corresponding one of Fu (2003). In particular,
if the payoff functions are singlevalued, our existence theorem extends the main results of Fu (2003) by relaxing the assumption of
convexity.

1. Introduction

For a long time, real valued functions have played a central
role in game theory. More recently, motivated by applications
to real-world situations, many authors have studied the
existence of solutions of Pareto equilibria of multiobjective
game with vector payoff functions; for example, see [1–4] and
the references therein. Notice that most payoffs may be one
collection of things from many collections of things in the
real world; reference [5] studied the constrained Nash-type
equilibrium problem with multivalued payoff functions and
proved the existence results.

In the paper, let 𝐼 be an index set, 𝑍
𝑖
a real topological

vector space, and𝑋
𝑖
(𝑖 ∈ 𝐼) aHausdorff topological space. Let

𝑋 = ∏
𝑖∈𝐼
𝑋
𝑖
and 𝑋𝑖 = ∏

𝑗∈𝐼,𝑗 ̸= 𝑖
𝑋
𝑗
. For each 𝑥 ∈ 𝑋, let 𝑥

𝑖
and

𝑥
𝑖 denote the 𝑖th coordinate of𝑥 and the projection of𝑥 on𝑋𝑖,

respectively. In the sequel, wemay write 𝑥 = (𝑥
𝑖
)
𝑖∈𝐼

= (𝑥
𝑖
, 𝑥
𝑖
).

For all 𝑖 ∈ 𝐼, let 𝐶
𝑖
be a convex, closed, and pointed cone

of 𝑍
𝑖
, with apex at the origin and with nonempty interior;

let 𝐹
𝑖
: 𝑋
𝑖
× 𝑋
𝑖
→ 2
𝑍𝑖 and 𝑆

𝑖
: 𝑋 → 2

𝑋𝑖 . We consider
a class of constrained weak Nash-type equilibrium problems
with multivalued payoff functions.

(𝐶𝑊𝑁𝐸𝑃) Finding an 𝑥 = (𝑥)
𝑖∈𝐼

∈ 𝑋 such that, for each
𝑖 ∈ 𝐼, 𝑢

𝑖
∈ 𝑆
𝑖
(𝑥), and 𝑧

𝑖
∈ 𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
), there exists 𝑧

𝑖
∈ 𝐹
𝑖
(𝑢
𝑖
, 𝑥
𝑖
)

satisfying
𝑧
𝑖
− 𝑧
𝑖
∉ − int𝐶

𝑖
. (1)

Then, 𝑥 is a solution of (𝐶𝑊𝑁𝐸𝑃).

The following problems are special cases of (𝐶𝑊𝑁𝐸𝑃).

(i) If, for each 𝑖 ∈ 𝐼, 𝐹
𝑖
is a singlevalued function, 𝑍

𝑖
=

𝑅, and 𝑆
𝑖
(𝑋) = 𝑋

𝑖
, (𝐶𝑊𝑁𝐸𝑃) reduces to the Nash

equilibrium problem [6].
(ii) Let 𝑋, 𝑌, and 𝑍 be real Hausdorff topological vector

spaces, and let 𝐶 and 𝐷 be two nonempty subsets of
𝑋 and 𝑌, respectively. Let 𝑃 ⊂ 𝑍 be a closed convex
and pointed cone with int𝑃 ̸= 0, let 𝑆 : 𝐶 × 𝐷 → 2

𝐶

and 𝑇 : 𝐶 × 𝐷 → 2
𝐷 be two set-valued mappings,

and let 𝑓, 𝑔 : 𝐶 × 𝐷 → 𝑍 be two vector-valued
mappings. The problem (𝐶𝑊𝑁𝐸𝑃) reduces to a class
of symmetric vector quasiequilibrium problems (for
short, SVQEP) that consists in finding (𝑥, 𝑦) ∈ 𝐶 × 𝐷

such that 𝑥 ∈ 𝑆(𝑥, 𝑦), 𝑦 ∈ 𝑇(𝑥, 𝑦), and

𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦) ∉ − int𝑃, ∀𝑥 ∈ 𝑆 (𝑥, 𝑦) ,

𝑔 (𝑥, 𝑦) − 𝑔 (𝑥, 𝑦) ∉ − int𝑃, ∀𝑦 ∈ 𝑇 (𝑥, 𝑦) ,

(2)

which was considered by Fu [7].

In this paper, we obtain the existence result for (𝐶𝑊𝑁𝐸𝑃).
Our existence theorem extends the main result of [6] from
singlevalued case to multivalued case. In particular, if the
payoff functions are singlevalued, our existence theorem
extends the corresponding result in [7] by relaxing the
assumption of convexity.
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The rest of the paper is organized as follows. In Section 2,
we state some notations and preliminary results for multival-
ued mappings. We recall the nonlinear scalarization function
and its properties. In Section 3, we show existence result for
(𝐶𝑊𝑁𝐸𝑃).

2. Preliminaries

Let us first recall some definitions of continuity for set-
valued mappings. Let 𝑋 and 𝑌 be two topological spaces.
𝑇 : 𝑋 → 2

𝑌 is a set-valued mapping. 𝑇 is said to be upper
semicontinuous at 𝑥

0
∈ 𝑋 if, for each open set 𝑉 containing

𝑇(𝑥
0
), there is an open set𝑈 containing 𝑥

0
such that, for each

𝑡 ∈ 𝑈, 𝑇(𝑡) ⊆ 𝑉. It is said to be upper semicontinuous if
it is upper semicontinuous at every point 𝑥 ∈ 𝑋. 𝑇 is said
to be lower semicontinuous at 𝑥

0
∈ 𝑋 if, for each open set

𝑉 with 𝑇(𝑥
0
) ∩ 𝑉 ̸= 0, there is an open set 𝑈 containing 𝑥

0

such that, for each 𝑡 ∈ 𝑈, 𝑇(𝑡) ∩ 𝑉 ̸= 0. It is said to be lower
semicontinuous on 𝑋 if it is lower semicontinuous at every
point 𝑥 ∈ 𝑋.𝑇 is said to be continuous at 𝑥

0
if it is both upper

semicontinuous and lower semicontinuous at 𝑥
0
. It is said to

be continuous on𝑋 if it is continuous at every point 𝑥 ∈ 𝑋.
From [7, Lemma 2], 𝑇 is l.s.c. at 𝑥 ∈ 𝑋 if and only if, for

any 𝑦 ∈ 𝑇(𝑥) and any net {𝑥
𝑛
}, 𝑥
𝑛
→ 𝑥, there is a net {𝑦

𝑛
}

such that 𝑦
𝑛
∈ 𝑇(𝑥

𝑛
) and 𝑦

𝑛
→ 𝑦. 𝑇 is closed if and only

if, for any net {𝑥
𝑛
}, 𝑥
𝑛
→ 𝑥, and any net {𝑦

𝑛
}, 𝑦
𝑛
∈ 𝑇(𝑥

𝑛
),

𝑦
𝑛
→ 𝑦, one has 𝑦 ∈ 𝑇(𝑥).

Definition 1. Assume that 𝑋 is a Hausdorff topological space
and 𝑍 is a real topological vector space. Let 𝐸 be a nonempty
convex subset of 𝑋, let 𝐻 : 𝐸 → 2

𝑍 be a set-valued
mapping, and let 𝑃 ⊂ 𝑍 be a closed convex and pointed
cone with int𝑃 ̸= 0. 𝐻 is said to be generalized Luc’s quasi-
𝑃-convex on 𝐸 if, for every 𝑥

1
, 𝑥
2
∈ 𝐸, 𝜆 ∈ [0, 1], and

𝑦 ∈ 𝐻(𝜆𝑥
1
+(1−𝜆)𝑥

2
), there exist 𝑧

1
∈ 𝐻(𝑥

1
) and 𝑧

2
∈ 𝐻(𝑥

2
)

such that

𝑦 ∈ 𝑧 − 𝐶, 𝑧 ∈ 𝐶 (𝑧
1
, 𝑧
2
) , (3)

where𝐶(𝑧
1
, 𝑧
2
) is the set of all upper bounds of 𝑧

1
and 𝑧
2
; that

is,

𝐶 (𝑧
1
, 𝑧
2
) = {𝑧 ∈ 𝑍 | 𝑧

1
∈ 𝑧 − 𝑃, 𝑧

2
∈ 𝑧 − 𝑃} . (4)

Remark 2. Definition 1 is a generalization of the concept of
Luc’s quasi-𝑃-convexity in [8].

Nowwe recall the definition of the nonlinear scalarization
function [9, 10] as follows.

Definition 3. Let 𝑍 be a real topological vector space, and let
𝑃 ⊂ 𝑍 be a closed convex and pointed cone with 𝑒 ∈ int𝑃.
The nonlinear scalarization function 𝜉

𝑒
: 𝑍 → 𝑅 is defined

by

𝜉
𝑒
(𝑦) = min {𝑡 ∈ 𝑅 | 𝑦 ∈ 𝑡𝑒 − 𝑃} . (5)

Lemma 4 (see [9]). The nonlinear scalarization function has
the following main properties:

(i) 𝜉
𝑒
(⋅) is continuous and convex;

(ii) 𝜉
𝑒
(⋅) is subadditive; that is, 𝜉

𝑒
(𝑦
1
+𝑦
2
) ≤ 𝜉
𝑒
(𝑦
1
)+𝜉
𝑒
(𝑦
2
);

(iii) 𝜉
𝑒
(⋅) is strictly monotone; that is, if 𝑦

1
−𝑦
2
∈ int𝑃, then

𝜉
𝑒
(𝑦
1
) > 𝜉
𝑒
(𝑦
2
).

3. Existence for the Solution of (CWNEP)

Throughout this section, let 𝐸
𝑖
(𝑖 ∈ 𝐼) be a locally convex

Hausdorff topological vector space, and let 𝑍
𝑖
be a real

Hausdorff topological vector space. Let 𝑋
𝑖
be a nonempty,

compact convex subset of 𝑍
𝑖
, respectively. Let 𝐶

𝑖
⊂ 𝑍
𝑖
be

a closed convex and pointed cone with 𝑒
𝑖
∈ int𝐶

𝑖
. Suppose

that 𝑆
𝑖
: 𝑋 → 2

𝑋𝑖 is a continuous set-valued mapping with
compact convex values and𝐹

𝑖
: 𝑋
𝑖
×𝑋
𝑖
→ 2
𝑍𝑖 is a continuous

set-valued mapping with compact values. For every 𝑖 ∈ 𝐼, set
𝜉
𝑒𝑖
(𝐹
𝑖
(𝑥, 𝑦)) = ⋃

𝑢𝑖∈𝐹𝑖(𝑥,𝑦)
𝜉
𝑒𝑖
(𝑢
𝑖
).

Lemma 5 (see [11]). Let 𝐸 be a nonempty compact convex
subset of a locally convex Hausdorff topological space 𝑋. If
𝐺 : 𝐸 → 2

𝐸 is upper semicontinuous and, for each 𝑥 ∈ 𝐸,
𝐺(𝑥) is a nonempty, closed, and convex subset, then there exists
an 𝑥 ∈ 𝐸 such that 𝑥 ∈ 𝐺(𝑥).

Theorem 6. Suppose that the following conditions hold:

(i) 𝑆
𝑖
: 𝑋 → 2

𝑋𝑖 is continuous with compact convex
values;

(ii) 𝐹
𝑖
: 𝑋
𝑖
× 𝑋
𝑖
→ 2
𝑍𝑖 are continuous with compact

values;
(iii) for each fixed 𝑥

𝑖
∈ 𝑋
𝑖
, 𝐹
𝑖
(⋅, 𝑥
𝑖
) is generalized Luc’s

quasi-𝐶
𝑖
-convex.

Then, there exists an 𝑥 ∈ 𝑋
𝑖
×𝑋
𝑖 such that, for each 𝑖 ∈ 𝐼, 𝑢

𝑖
∈

𝑆
𝑖
(𝑥), and 𝑧

𝑖
∈ 𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
), there exists 𝑧

𝑖
∈ 𝐹
𝑖
(𝑢
𝑖
, 𝑥
𝑖
) satisfying

𝑧
𝑖
− 𝑧
𝑖
∉ − int𝐶

𝑖
. (6)

Proof. We define a set-valued mapping 𝐴
𝑖
: 𝑋 → 2

𝑋𝑖 by

𝐴
𝑖 (𝑥) =

{

{

{

𝑢
𝑖
∈ 𝑆
𝑖 (𝑥) | max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝑢
𝑖
, 𝑥
𝑖
))

= min ⋃

𝑥𝑖∈𝑆𝑖(𝑥)

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
))

}

}

}

.

(7)

It follows from [12, pages 110–119, Propositions 6 and 21]
that max 𝜉

𝑒𝑖
(𝐹
𝑖
(⋅, 𝑥
𝑖
)) is upper semicontinuous for each fixed

𝑥
𝑖
∈ 𝑋
𝑖. By [12, page 112, Proposition 11], the set

⋃

𝜃∈𝑆(𝑥)

max 𝜉
𝑒𝑖
(𝐹 (𝜃, 𝑦)) (8)

is compact. Therefore, 𝐴
𝑖
(𝑥) is nonempty for every 𝑥 ∈ 𝑋.

Let

{𝑥
𝑛
} ∈ 𝑋, 𝑥

𝑛
󳨀→ 𝑥
0
,

𝑢
𝑖,𝑛
∈ 𝐴
𝑖
(𝑥
𝑛
) , 𝑢

𝑖,𝑛
󳨀→ 𝑢
𝑖,0
.

(9)
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Wemust show that 𝑢
𝑖,0
∈ 𝐴
𝑖
(𝑥
0
). First, note that 𝑢

𝑖,𝑛
∈ 𝐴
𝑖
(𝑥
𝑛
)

and then 𝑢
𝑖,𝑛
∈ 𝑆
𝑖
(𝑥
𝑛
). As 𝑆

𝑖
(⋅) is upper semicontinuous and

the set 𝑆
𝑖
(𝑥
0
) is compact, it follows that 𝑢

𝑖,0
∈ 𝑆
𝑖
(𝑥
0
). Suppose

that 𝑢
𝑖,0

∉ 𝐴
𝑖
(𝑥
0
). Then, there exists a vector 𝑤

𝑖,0
∈ 𝑆
𝑖
(𝑥
0
)

satisfying

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑤
𝑖,0
, 𝑥
𝑖

0
)) < max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝑢
𝑖,0
, 𝑥
𝑖

0
)) . (10)

As 𝑆
𝑖
(⋅) is lower semicontinuous, there exists 𝑤

𝑖,𝑛
∈ 𝑆
𝑖
(𝑥
𝑛
),

such that 𝑤
𝑖,𝑛

→ 𝑤
𝑖,0
. It follows from compactness of

𝐹
𝑖
(𝑤
𝑖,𝑛
, 𝑥
𝑖

𝑛
) that there exists 𝑧

𝑖,𝑛
∈ 𝐹
𝑖
(𝑤
𝑖,𝑛
, 𝑥
𝑖

𝑛
) such that

𝜉
𝑒𝑖
(𝑧
𝑖,𝑛
) = max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝑤
𝑖,𝑛
, 𝑥
𝑖

𝑛
)) . (11)

It follows from the upper semicontinuity of 𝐹
𝑖
(⋅, ⋅) and the

compactness of 𝑋𝑖 × 𝑋
𝑖
that 𝐹

𝑖
(𝑥
𝑖
, 𝑥
𝑖
) is compact. Hence, for

the net {𝑧
𝑖,𝑛
}, there exists a subnet of {𝑧

𝑖,𝑛
} converging to 𝑧

𝑖,0
.

Without loss of generality, assume 𝑧
𝑖,𝑛

→ 𝑧
𝑖,0
. Now we prove

that

𝜉
𝑒𝑖
(𝑧
𝑖,0
) = max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝑤
𝑖,0
, 𝑥
𝑖

0
)) . (12)

Since themapping𝐹
𝑖
(⋅, ⋅) is upper semicontinuous and the set

𝐹
𝑖
(𝑤
𝑖,0
, 𝑥
𝑖

0
) is compact, we have 𝜉

𝑒𝑖
(𝑧
𝑖,0
) ∈ 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑤
𝑖,0
, 𝑥
𝑖

0
)).

Now, suppose that 𝜉
𝑒𝑖
(𝑧
𝑖,0
) ̸= max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝑤
𝑖,0
, 𝑥
𝑖

0
)).

Namely, there exists V
𝑖,0

∈ 𝐹
𝑖
(𝑤
𝑖,0
, 𝑥
𝑖

0
) such that

𝜉
𝑒𝑖
(V
𝑖,0
) > 𝜉

𝑒𝑖
(𝑧
𝑖,0
). As 𝐹

𝑖
(⋅, ⋅) is lower semicontinuous,

there exists V
𝑖,𝑛

∈ 𝐹
𝑖
(𝑤
𝑖,𝑛
, 𝑥
𝑖

𝑛
) such that V

𝑖,𝑛
→ V
𝑖,0
. Since

𝜉
𝑒𝑖
(⋅) is continuous, for 𝑛 large enough,

𝜉
𝑒𝑖
(V
𝑖,𝑛
) > 𝜉
𝑒𝑖
(𝑧
𝑖,𝑛
) , (13)

which is a contradiction to (11).
From the compactness of 𝐹

𝑖
(𝑢
𝑖,𝑛
, 𝑥
𝑖

𝑛
), we take 𝑧̃

𝑖,𝑛
∈

𝐹(𝑢
𝑖,𝑛
, 𝑥
𝑖

𝑛
) such that

𝜉
𝑒𝑖
(𝑧̃
𝑖,𝑛
) = max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝑢
𝑖,𝑛
, 𝑥
𝑖

𝑛
)) . (14)

By the compactness of 𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
), we can choose a converging

subnet of {𝑧̃
𝑖,𝑛
}, which is denoted without loss of generality

by the original net {𝑧̃
𝑖,𝑛
}. Assume 𝑧̃

𝑖,𝑛
→ 𝑧̃
𝑖,0
. Similar to the

preceding proof, we have

𝜉
𝑒𝑖
(𝑧̃
𝑖,0
) = max 𝜉

𝑒𝑖
(𝐹 (𝑢
𝑖,0
, 𝑥
𝑖

0
)) . (15)

Then, by (10), 𝜉
𝑒𝑖
(𝑧
𝑖,0
) < 𝜉
𝑒𝑖
(𝑧̃
𝑖,0
).

It follows from the continuity of 𝜉
𝑒𝑖
(⋅) that 𝜉

𝑒𝑖
(𝑧
𝑖,𝑛
) →

𝜉
𝑒𝑖
(𝑧
𝑖,0
) and 𝜉

𝑒𝑖
(𝑧̃
𝑖,𝑛
) → 𝜉

𝑒𝑖
(𝑧̃
𝑖,0
).Therefore, 𝜉

𝑒𝑖
(𝑧
𝑖,𝑛
) < 𝜉
𝑒𝑖
(𝑧̃
𝑖,𝑛
),

when 𝑛 is large enough. It is said that

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑤
𝑖,𝑛
, 𝑥
𝑖

𝑛
)) < max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝑢
𝑖,𝑛
, 𝑥
𝑖

𝑛
)) . (16)

By the definition of 𝐴
𝑖
(⋅) and 𝑢

𝑖,𝑛
∈ 𝐴
𝑖
(𝑥
𝑛
), we have

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑢
𝑖,𝑛
, 𝑥
𝑖

𝑛
)) = min ⋃

𝑥𝑖,𝑛∈𝑆𝑖(𝑥𝑛)

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑥
𝑖,𝑛
, 𝑥
𝑖

𝑛
)) .

(17)

This, however, contradicts the fact 𝑢
𝑖,𝑛

∈ 𝐴
𝑖
(𝑥
𝑛
). Therefore,

the mapping 𝐴
𝑖
(⋅) is closed.

Let 𝑢
𝑖,1
, 𝑢
𝑖,2
∈ 𝐴
𝑖
(𝑥), 𝜆 ∈ (0, 1), and

𝛼
0
= min ⋃

𝜃𝑖∈𝑆𝑖(𝑥)

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝜃
𝑖
, 𝑥
𝑖
)) . (18)

From the definition of 𝐴
𝑖
(⋅), we have 𝑢

𝑖,1
, 𝑢
𝑖,2
∈ 𝑆
𝑖
(𝑥) and

max 𝜉
𝑒𝑖
(𝐹 (𝑢
𝑖,1
, 𝑥
𝑖
)) = max 𝜉

𝑒𝑖
(𝐹 (𝑢
𝑖,2
, 𝑥
𝑖
)) = 𝛼

0
. (19)

As 𝑆
𝑖
(𝑥) is convex-valued, 𝜆𝑢

𝑖,1
+ (1 − 𝜆)𝑢

𝑖,2
∈ 𝑆
𝑖
(𝑥).

According to the generalized Luc’s quasi-𝐶
𝑖
-convexity of

𝐹
𝑖
(⋅, 𝑥
𝑖
), we get that, for all 𝑧󸀠

𝑖
∈ 𝐹
𝑖
(𝜆𝑢
𝑖,1
+(1−𝜆)𝑢

𝑖,2
, 𝑥
𝑖
), there

exist 𝑧
𝑖,1
∈ 𝐹
𝑖
(𝑢
𝑖,1
, 𝑥
𝑖
) and 𝑧

𝑖,2
∈ 𝐹
𝑖
(𝑢
𝑖,2
, 𝑥
𝑖
) such that

𝑧
󸀠

𝑖
∈ 𝑧
𝑖
− 𝐶
𝑖
, ∀𝑧

𝑖
∈ 𝐶 (𝑧

𝑖,1
, 𝑧
𝑖,2
) . (20)

Without loss of generality, suppose 𝑙
1
= 𝜉
𝑒𝑖
(𝑧
𝑖,1
) and 𝑙

2
=

𝜉
𝑒𝑖
(𝑧
𝑖,2
), 𝑙
1
≥ 𝑙
2
; we have 𝑧

𝑖,1
∈ 𝑙
1
𝑒
𝑖
− 𝐶
𝑖
and 𝑧
𝑖,2
∈ 𝑙
2
𝑒
𝑖
− 𝐶
𝑖
⊂

𝑙
1
𝑒
𝑖
− 𝐶
𝑖
. From (20), 𝑧󸀠

𝑖
∈ 𝑙
1
𝑒
𝑖
− 𝐶
𝑖
. By the monotonicity of

𝜉
𝑒𝑖
(⋅),

𝜉
𝑒𝑖
(𝑧
󸀠

𝑖
) ≤ 𝜉
𝑒𝑖
(𝑙
1
𝑒
𝑖
) = 𝑙
1
. (21)

As

𝑙
1
≤ max (max 𝜉

𝑒𝑖
(𝐹 (𝑢
𝑖,1
, 𝑥
𝑖
)) ,max 𝜉

𝑒𝑖
(𝐹 (𝑢
𝑖,2
, 𝑥
𝑖
))) = 𝛼

0
.

(22)

therefore, 𝜉
𝑒𝑖
(𝑧
󸀠

𝑖
) ≤ 𝛼
0
.

Since

𝑧
󸀠

𝑖
∈ 𝐹
𝑖
(𝜆𝑢
𝑖,1
+ (1 − 𝜆) 𝑢𝑖,2, 𝑥

𝑖
) (23)

is arbitrary, we have

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝜆𝑢
𝑖,1
+ (1 − 𝜆) 𝑢𝑖,2, 𝑥

𝑖
)) ≤ 𝛼

0
. (24)

By the fact that 𝐹
𝑖
(𝜆𝑢
𝑖,1
+ (1 − 𝜆)𝑢

𝑖,2
, 𝑥
𝑖
) is compact and 𝜉

𝑒𝑖
(⋅)

is continuous, there exists

𝑧̃
𝑖
∈ 𝐹
𝑖
(𝜆𝑢
𝑖,1
+ (1 − 𝜆) 𝑢𝑖,1, 𝑥

𝑖
) (25)

such that

𝜉
𝑒𝑖
(𝑧̃
𝑖
) = max 𝜉

𝑒𝑖
(𝐹
𝑖
(𝜆𝑢
𝑖,1
+ (1 − 𝜆) 𝑢𝑖,2, 𝑥

𝑖
)) . (26)

Thus, 𝜉
𝑒𝑖
(𝑧̃
𝑖
) ≤ 𝛼
0
. It follows from the definition of 𝛼

0
that

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝜆𝑢
𝑖,1
+ (1 − 𝜆) 𝑢𝑖,2, 𝑥

𝑖
)) = 𝛼

0
. (27)

Thus, 𝜆𝑢
𝑖,1
+(1−𝜆)𝑢

𝑖,2
∈ 𝐴
𝑖
(𝑥); namely,𝐴

𝑖
(𝑥) is a convex set.

Define 𝐴 : 𝑋 → 2
𝑋 by 𝐴(𝑥) = Π

𝑖∈𝐼
𝐴
𝑖
(𝑥), ∀𝑥 ∈ 𝑋.

Therefore, 𝐴(𝑥) is a nonempty, convex, and closed subset of
𝑋 for each 𝑥 ∈ 𝑋. Since 𝐴

𝑖
(⋅) is closed, so is 𝐴(⋅), and since

𝐴(𝑥) ⊆ 𝑋, 𝑋 is compact, by [12, page 111, Corollary 9], 𝐴(⋅)
is upper semicontinuous. By Lemma 5, there exists a point
𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐴(𝑥).
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By the definition of 𝐴(⋅), we have

𝑥
𝑖
∈ 𝑆
𝑖 (𝑥) ,

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
)) ≥ max 𝜉

𝑒𝑖
(𝐹 (𝑥
𝑖
, 𝑥
𝑖
))

∀𝑥
𝑖
∈ 𝑆
𝑖 (𝑥) , 𝑖 ∈ 𝐼.

(28)

From (28), ∀𝑧
𝑖
∈ 𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
),

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
)) ≥ 𝜉

𝑒𝑖
(𝑧
𝑖
) . (29)

By the compactness of 𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
) and the continuity of

𝜉
𝑒𝑖
(⋅), there exists 𝑧

𝑖
∈ 𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
), such that 𝜉

𝑒𝑖
(𝑧
𝑖
) =

max 𝜉
𝑒𝑖
(𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
)). Thus, for all 𝑧

𝑖
∈ 𝐹(𝑥

𝑖
, 𝑥
𝑖
), there exists

𝑧
𝑖
∈ 𝐹
𝑖
(𝑥
𝑖
, 𝑥
𝑖
) such that 𝜉

𝑒𝑖
(𝑧
𝑖
) ≤ 𝜉
𝑒𝑖
(𝑧
𝑖
). Then, it follows from

the subadditivity of 𝜉
𝑒𝑖
(⋅) that

𝜉
𝑒𝑖
(𝑧
𝑖
− 𝑧
𝑖
) ≥ 0. (30)

By Lemma 4, we get

𝑧
𝑖
− 𝑧
𝑖
∉ − int𝑃. (31)

So 𝑥 is a solution of (CWNEP) and this completes the proof.

Let 𝑋, 𝑌, and 𝑍 be real Hausdorff topological vector
spaces, and let 𝐶 and 𝐷 be two compact subsets of 𝑋 and 𝑌,
respectively.

Corollary 7. Let 𝑋, 𝑌, and 𝑍 be real Hausdorff topological
vector spaces, and let 𝐶 and 𝐷 be two nonempty subsets of 𝑋
and 𝑌, respectively. Let 𝑃 ⊂ 𝑍 be a closed convex and pointed
cone with int𝑃 ̸= 0. Assume that

(1) 𝑆 : 𝐶 ×𝐷 → 2
𝐶 and 𝑇 : 𝐶 ×𝐷 → 2

𝐷 are continuous
and compact, and for each (𝑥, 𝑦) ∈ 𝐶 × 𝐷, 𝑆(𝑥, 𝑦) and
𝑇(𝑥, 𝑦) are nonempty, closed convex subsets;

(2) 𝑓, 𝑔 : 𝐶 × 𝐷 → 𝑍 are continuous;
(3) for any fixed 𝑦 ∈ 𝐷, 𝑓(⋅, 𝑦) is Luc’s quasi-𝑃-convex; for

any fixed 𝑥 ∈ 𝐶, 𝑔(𝑥, ⋅) is Luc’s quasi-𝑃-convex.
Then there exists (𝑥, 𝑦) ∈ 𝐶 × 𝐷 such that 𝑥 ∈ 𝑆(𝑥, 𝑦), 𝑦 ∈

𝑇(𝑥, 𝑦), and

𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦) ∉ − int𝑃, ∀𝑥 ∈ 𝑆 (𝑥, 𝑦) ,

𝑔 (𝑥, 𝑦) − 𝑔 (𝑥, 𝑦) ∉ − int𝑃, ∀𝑦 ∈ 𝑇 (𝑥, 𝑦) .

(32)

Remark 8. Since both the class of properly quasi-𝑃-convex
functions and the class of 𝑃-convex functions (see [7])
are larger than the class of Luc’s quasi-𝑃-convex functions,
Corollary 7 improves [7, Theorem].

Example 9. Suppose that 𝑋 = 𝑌 = 𝑅, 𝐶 = 𝐷 = [0, 1], and
𝑃 = 𝑅

3

+
and let 𝑆 : 𝐶 × 𝐷 → 2

𝐶 and 𝑇 : 𝐶 × 𝐷 → 2
𝐷 be

defined as 𝑆(𝑥, 𝑦) = 𝐶 and 𝑇(𝑥, 𝑦) = 𝐷, respectively. For all
(𝑥, 𝑦) ∈ 𝑅

2, let

𝑓 (𝑥, 𝑦) = (𝑥
2
, 1 − 𝑥

2
, 𝑦) ,

𝑔 (𝑥, y) = (x, y2, 1 − y2) .
(33)

It is clear that themappings𝑓 and 𝑔 are not properly quasi-𝑃-
convex (see [7]), but all the conditions of Corollary 7 hold. It
is easy to see from [7] that both the class of properly quasi-𝑃-
convex functions and the class of𝑃-convex functions (see [7])
are larger than the class of Luc’s quasi-𝑃-convex functions,
and then Corollary 7 improves [7, Theorem].
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