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A data-driven predictive terminal iterative learning control (DDPTILC) approach is proposed for discrete-time nonlinear systems
with terminal tracking tasks, where only the terminal output tracking error instead of entire output trajectory tracking error is
available. The proposed DDPTILC scheme consists of an iterative learning control law, an iterative parameter estimation law, and
an iterative parameter prediction law. If the partial derivative of the controlled system with respect to control input is bounded,
then the proposed control approach guarantees the terminal tracking error convergence. Furthermore, the control performance is
improved by usingmore information of predictive terminal outputs, which are predicted along the iteration axis and used to update
the control law and estimation law. Rigorous analysis shows the monotonic convergence and bounded input and bounded output
(BIBO) stability of the DDPTILC. In addition, extensive simulations are provided to show the applicability and effectiveness of the
proposed approach.

1. Introduction

Iterative learning control (ILC) is able to refine the control
signals at current iteration by utilizing the input and output
(I/O) data of previous iterative operations. As a direct result,
the tracking error accuracy is improved as the number of
repetitions increases. ILC has attracted much attention in the
past three decades due to its simplicity and efficiency [1–3].

In practice, the ultimate control objective for many
practical plants, such as rapid thermal processing systems for
chemical vapor deposition (RTPCVD) [4], thermoforming
ovens [5], and station stop control of a train [6], is the termi-
nal state or terminal output instead of the entire trajectory of
the system output. And the only measurement available for
some plants [4, 5] is the terminal state or terminal output.
For such a control task, the conventional ILCmethods, which
need to handle the desired output trajectory in a given time
interval, are not applicable because the exact measurements

of all the system states or outputs over the entire finite time
interval are impossible [4] or unnecessary [6].

To overcome this problem, terminal iterative learning
control (TILC) [4–6] and point-to-point iterative learning
control (PTP-ILC) [7–9] are derived from ILC theory to
use intermediate point or terminal point of every run.
Recently, PTP-ILC and TILC are becoming a new research
direction of ILC both in theory and in practical applications.
The existing research results of PTP-ILC and TILC mainly
focus on contraction-mapping-based learning law [4, 6] and
optimization-based learning law [7–11].

Although the contraction-mapping-based TILCmethods
in [4, 6] are applicable for nonlinear systems, the proper
selection of the learning gain is not a trivial thing in practical
applications when there is little prior knowledge about
the controlled system. Another limitation is that the TILC
schemes proposed in [6] fix the learning gain through all
iterations without any tuning and thus lack flexibility and
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adaptability regarding the expansions of the controlled plant
and the exogenous uncertainties.

The optimal TILC [10, 11], where the explicit optimal
cost function is given andminimized to design optimization-
based TILC algorithm, can guarantee monotonic conver-
gence along the iteration axis. However, it depends on the
knowledge of a perfect model. If there is a lack of an accurate
model, the monotonic convergence is no longer guaranteed.

As we know, the scale of many industrial processes,
such as chemical industry, metallurgy, machinery, and trans-
portation, becomes increasingly large, and the production
technology and processes also become more and more
complex. As a direct result,modeling these processes by using
the first principles or identification methods becomes more
and more difficult. Apparently, it will meet many limitations
in practice when applying the conventional model-based
control approaches. On the other hand, however, many
industrial processes generate and store a huge amount of
process data containing some valuable state information of
the process operations and the equipment [12, 13], which
motivates us to study the data-driven control methods.

More recently, a general data-driven optimal terminal
iterative learning control approach, which is available for
both linear and nonlinear systems, is proposed in [14]. Only
the updated control input and the measured system output at
the terminal point are utilized for the controller design and
analysis. However, it is noted that the proposed approach in
[14] is only of one-order with respect to the control input
and the terminal tracking error. That is, only the I/O data
of the previous one iteration is used in that control approach
[14], which may reduce its robustness to iteration-dependent
disturbances and uncertainties in practical applications.

Model predictive control (MPC) has been introduced to
enhance the robustness of the ILC design [15, 16] by using
the predictive I/O data within a prespecified time horizon.
It is obvious that the more information is exploited, the
more flexible the controller design and the better control
performance may become. However, similar to the optimal
ILCmethods, the predictive ILC [15, 16] also requires that the
controlled plant is an exact known linear system, or, at least,
an approximate linear model of the controlled plant is known
a priori.

In this work, a data-driven predictive TILC (DDPTILC)
scheme is proposed by combining the advantages of data-
driven optimal TILC [14] and predictive control [17–19]. An
equivalent linear iteration-varying data model is developed
first for the repeatable nonlinear system with a terminal
tracking task. And then, the DDPTILC scheme is designed
based on the equivalent data model. The control scheme
consists of an iterative learning control law, a parameter
iterative estimation law, and a parameter iterative prediction
law and is updated iteratively by using the I/O data only.
In more detail, the DDPTILC first estimates and predicts
the partial derivatives of the controlled plant with respect
to control inputs in the iteration domain and then uses the
equivalent data model with estimated partial derivatives to
predict the terminal output within a prespecified prediction
iteration horizon; finally, it calculates the optimal control
sequence by minimizing a given objective function.

The proposed approach is a kind of data-driven con-
trol method, since the controller design requires only the
measured I/O data. Only the information about the lower
and upper bounds of the partial derivative of the nonlinear
discrete-time system with respect to control input is needed
to analyze the bounded input and bounded output (BIBO)
stability and terminal tracking error convergence. Numerical
simulations show that the proposed approach contributes a
better control performance and robustness by using the pre-
dictive information within a prespecified iteration horizon.

The rest of this paper is organized as follows. Section 2 is
the problem formulation. The DDPTILC scheme is designed
and analyzed in Section 3. Section 4 shows the monotonic
convergence of the DDPTILC scheme. Section 5 provides
numerical simulations to show the effectiveness of the
DDPTILC scheme. Finally, some conclusions are given in
Section 6.

2. Problem Formulation

Consider the following SISO discrete-time nonlinear system:

𝑦
𝑖 (𝑘 + 1) = 𝑓 (𝑦

𝑖 (𝑘) , 𝑢𝑖 (𝑘)) , (1)

where 𝑘 = 0, 1, . . . , 𝑁 is the sampling time index; 𝑁 is the
finite time interval of the run-to-run system; 𝑖 denotes the
system repetition number; 𝑦

𝑖
(𝑘) ∈ 𝑅 is the system output,

where only 𝑦
𝑖
(𝑁) is measurable at the end of every run;

𝑢
𝑖
(𝑘) ∈ 𝑅denotes the control input, which is time-invariant at

all sampling time in the same run, and 𝑓(⋅ ⋅ ⋅ ) is an unknown
scalar nonlinear function and continuously differentiable.

The relationship between the input and output sequences
can be expressed by the following equations:

𝑦
𝑖 (1) = 𝑓 (𝑦

𝑖 (0) , 𝑢𝑖) = 𝑔
1
(𝑦
𝑖 (0) , 𝑢𝑖) ,

𝑦
𝑖 (2) = 𝑓 (𝑦

𝑖 (1) , 𝑢𝑖) = 𝑓 (𝑔
1
(𝑦
𝑖 (0) , 𝑢𝑖) , 𝑢𝑖)

= 𝑔
2
(𝑦
𝑖 (0) , 𝑢𝑖) ,

...

𝑦
𝑖 (𝑁) = 𝑓 (𝑦

𝑖 (𝑁 − 1) , 𝑢𝑖) = 𝑓 (𝑔
𝑁−1

(𝑦
𝑖 (0) , 𝑢𝑖) , 𝑢𝑖)

= 𝑔
𝑁
(𝑦
𝑖 (0) , 𝑢𝑖) ,

(2)

where 𝑦
𝑖
(0) is the initial value of system (1), and 𝑔

1
(⋅ ⋅ ⋅ ),

𝑔
2
(⋅ ⋅ ⋅ ), . . . , 𝑔

𝑁
(⋅ ⋅ ⋅ ) are the corresponding nonlinear func-

tions and differentiable to all the arguments.
Define the terminal output difference between consecu-

tive two iterations as

Δ𝑦
𝑖 (𝑁) = 𝑦

𝑖 (𝑁) − 𝑦
𝑖−1 (𝑁) . (3)

Using (2) and mean value theorem, (3) is rewritten as

Δ𝑦
𝑖 (𝑁) = 𝑔

𝑁
(𝑦
𝑖 (0) , 𝑢𝑖) − 𝑔

𝑁
(𝑦
𝑖−1 (0) , 𝑢𝑖−1)

=
𝜕𝑔
∗

𝑁

𝜕𝑦
(𝜉
𝑖
) Δ𝑦
𝑖 (0) +

𝜕𝑔
∗

𝑁

𝜕𝑢
(𝜁
𝑖
) Δ𝑢
𝑖
,

(4)

where 𝜉
𝑖
∈ [𝑦𝑖−1(0) 𝑦

𝑖
(0)] and 𝜁

𝑖
∈ [𝑢𝑖−1 𝑢

𝑖].
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Two assumptions are exposed on system (1) to restrict our
discussion.

Assumption 1. The initial value 𝑦
𝑖
(0) is identical for every

iteration; that is, 𝑦
𝑖
(0) = const., 𝑖 = 1, 2, . . ..

Assumption 2. 𝜕𝑔∗
𝑁
/𝜕𝑢 has lower bound 𝛼

1
and upper bound

𝛼
2
, and 0 < 𝛼

1
< 𝛼
2
or𝛼
2
< 𝛼
1
< 0.Without loss of generality,

we only discuss the case of 0 < 𝛼
1
< 𝛼
2
in this paper.

In terms of Assumption 1, (4) becomes

Δ𝑦
𝑖 (𝑁) =

𝜕𝑔
∗

𝑁

𝜕𝑢
(𝜁
𝑖
) Δ𝑢
𝑖
= 𝜃
𝑖
Δ𝑢
𝑖
, (5)

where 𝜃
𝑖
= (𝜕𝑔
∗

𝑁
/𝜕𝑢)(𝜁

𝑖
), and 𝛼

1
≤ 𝜃
𝑖
≤ 𝛼
2
.

Based on (5), the terminal output prediction equation is
given as

𝑦
𝑖 (𝑁) = 𝑦

𝑖−1 (𝑁) + 𝜃
𝑖
Δ𝑢
𝑖
,

𝑦
𝑖+1 (𝑁) = 𝑦

𝑖 (𝑁) + 𝜃
𝑖+1

Δ𝑢
𝑖+1

= 𝑦
𝑖−1 (𝑁) + 𝜃

𝑖
Δ𝑢
𝑖
+ 𝜃
𝑖+1

Δ𝑢
𝑖+1

,

...
𝑦
𝑖+𝑁𝑦−1

(𝑁) = 𝑦
𝑖+𝑁𝑦−2

(𝑁) + 𝜃
𝑖+𝑁𝑦−1

Δ𝑢
𝑖+𝑁𝑦−1

= 𝑦
𝑖−1 (𝑁) + 𝜃

𝑖
Δ𝑢
𝑖
+ 𝜃
𝑖+1

Δ𝑢
𝑖+1

+ ⋅ ⋅ ⋅ + 𝜃
𝑖+𝑁𝑦−1

Δ𝑢
𝑖+𝑁𝑦−1

.

(6)
Let

Y
𝑖
= [𝑦
𝑖 (𝑁) , . . . , 𝑦𝑖+𝑁𝑦−1

(𝑁)]
𝑇

,

ΔU
𝑖
= [Δ𝑢

𝑖
, . . . , Δ𝑢

𝑖+𝑁𝑦−1
]
𝑇

, 𝐸 = [1, 1, . . . , 1]
𝑇
,

A
𝑖
=

[
[
[
[
[
[
[

[

𝜃
𝑖

0 ⋅ ⋅ ⋅ 0

𝜃
𝑖
𝜃
𝑖+1

0 ⋅ ⋅ ⋅ 0

𝜃
𝑖+1

d d
...

...
... d d 0

𝜃
𝑖
𝜃
𝑖+1

𝜃
𝑖+𝑁𝑦−2

𝜃
𝑖+𝑁𝑦−1

]
]
]
]
]
]
]

]

,

(7)

whereY
𝑖
andΔU

𝑖
denote the prediction vector of the terminal

output and predictive control input increment vector at
iteration 𝑖, respectively.𝑁

𝑦
is the prediction horizon.

Equation (6) can be rewritten in a compact form:
Y
𝑖
= 𝐸𝑦
𝑖−1 (𝑁) + A

𝑖
ΔU
𝑖
. (8)

Remark 3. It is noted that the prediction equation (8) is
obtained from (5), which constructs an iteration-related
linear relationship of control input and terminal output of
the original nonlinear system (1). It is a completely equivalent
transformation without any omitting, such as higher-order
terms.

The control objective is to track a given desired output
signal 𝑦∗

𝑖
(𝑁) at the single terminal point by generating an

optimal control signal 𝑢∗
𝑖
.

3. Data-Driven Predictive Terminal
ILC Design

Consider the following cost function of control input:

𝐽 =

𝑁𝑦−1

∑

𝑗=0

[(𝑦
∗

𝑖
(𝑁) − 𝑦

𝑖+𝑗
(𝑁))
2

+ 𝜆Δ𝑢
𝑖+𝑗

2
] , (9)

where 𝜆 > 0 is a weighting factor, and 𝑦
∗
(𝑁) is the desired

terminal output.

Remark 4. Note that 𝜆 is an important parameter.The proper
selection of 𝜆 can guarantee the stability and improve the
tracking performance.

Let Y∗
𝑖
= [𝑦
∗

𝑖
(𝑁), . . . , 𝑦

∗

𝑖+𝑁𝑦−1
(𝑁)]
𝑇; the cost function (9)

becomes

𝐽 = [Y∗
𝑖
− Y
𝑖
]
𝑇
[Y∗
𝑖
− Y
𝑖
] + 𝜆ΔU𝑇

𝑖
ΔU
𝑖
. (10)

Substituting (8) into (10) and using the optimality condi-
tion 𝜕𝐽/𝜕U

𝑖
= 0 yield the control law

ΔU
𝑖
= [A𝑇
𝑖
A
𝑖
+ 𝜆I]
−1

A𝑇
𝑖
[Y∗
𝑖
− 𝐸𝑦
𝑖−1 (𝑁)] , (11)

where I denotes the unit matrix.
According to the receding horizon principle, the control

input at current iteration 𝑖 is constructed as

𝑢
𝑖
= 𝑢
𝑖−1

+ g𝑇ΔU
𝑖
, (12)

where g = [1, 0, . . . , 0]
𝑇.

When𝑁
𝑦
= 1, (12) becomes

𝑢
𝑖
= 𝑢
𝑖−1

+
𝜃
𝑖
(𝑦
∗

𝑖
(𝑁) − 𝑦

𝑖−1 (𝑁))

𝜃
𝑖

2
+ 𝜆

, (13)

which is same as the control law in [20].
SinceA

𝑖
in (12) contains unknownparameters 𝜃

𝑖
, 𝜃
𝑖+1

, and
𝜃
𝑖+𝑁𝑦−1

, the parameter estimation algorithm and prediction
algorithm should be developed. Here, the cost function of
parameter 𝜃

𝑖
is proposed as follows:

𝐽 (𝜃
𝑖
) =

󵄨󵄨󵄨󵄨𝑦𝑖−1(𝑁) − 𝑦
𝑖−2

(𝑁) − 𝜃
𝑖
Δ𝑢
𝑖−1

󵄨󵄨󵄨󵄨
2
+ 𝜇

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖
− 𝜃
𝑖−1

󵄨󵄨󵄨󵄨󵄨

2

, (14)

where 𝜇 > 0 is a weighting factor.
Minimizing (14) with respect to 𝜃

𝑖
gives the following

projection estimation algorithm:

𝜃
𝑖
= 𝜃
𝑖−1

+
𝜂Δ𝑢
𝑖−1

𝜇 + Δ𝑢
𝑖−1
2
[Δ𝑦
𝑖−1 (𝑁) − 𝜃

𝑖−1
Δ𝑢
𝑖−1

] , (15)

where 𝜇 > 0 is a weighting factor, and 0 < 𝜂 ≤ 1 is a step size
factor.

The other parameters 𝜃
𝑖+1

, . . . , 𝜃
𝑖+𝑁𝑦−1

cannot be directly
calculated from I/O data till iteration 𝑖 and thus need to
be predicted by certain prediction algorithm. There exist
many prediction methods, such as the Aström prediction
method [21], the self-tuning method [22], and the multilevel
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hierarchical forecasting method [23, 24]. According to the
simulation results in [23, 24], the multilevel hierarchical
forecasting method possesses the best predictive error. Thus,
the multilevel hierarchical forecasting method [23, 24] is
applied here to predict the unknown parameters.

Assume that the estimated values 𝜃
1
, . . . , 𝜃

𝑖
have been

calculated by (15) till iteration 𝑖. Using these estimated values,
an autoregressive (AR)model for prediction is constructed as

𝜃
𝑖+1

= 𝛾
1,𝑖
𝜃
𝑖
+ 𝛾
2,𝑖
𝜃
𝑖−1

+ ⋅ ⋅ ⋅ + 𝛾
𝑛𝑝,𝑖

𝜃
𝑖−𝑛𝑝+1

, (16)

where 𝛾
1,𝑖
, . . . , 𝛾

𝑛𝑝,𝑖
are coefficients, and 𝑛

𝑝
is the model order,

which is usually set to be 2∼7 [23, 24].
Using (16), prediction equation becomes

𝜃
𝑖+𝑗

= 𝛾
1,𝑖
𝜃
𝑖+𝑗−1

+ 𝛾
2,𝑖
𝜃
𝑖+𝑗−2

+ ⋅ ⋅ ⋅ + 𝛾
𝑛𝑝,𝑖

𝜃
𝑖+𝑗−𝑛𝑝

, (17)

where 𝑗 = 1, . . . , 𝑁
𝑦
− 1.

Define 𝛾
𝑖
= [𝛾
1,𝑖
, . . . , 𝛾

𝑛𝑝,𝑖
]
𝑇 and 𝜃̂

𝑖−1
= [𝜃
𝑖−1

, . . . , 𝜃
𝑖−𝑛𝑝

]
𝑇

.
𝛾
𝑖
are determined by following equation:

𝛾
𝑖
= 𝛾
𝑖−1

+
𝜃̂
𝑖−1

𝛿 +
󵄩󵄩󵄩󵄩󵄩
𝜃̂
𝑖−1

󵄩󵄩󵄩󵄩󵄩

2
[𝜃
𝑖
− 𝛾
𝑖−1

𝑇
𝜃̂
𝑖−1

] , (18)

where 𝛿 ∈ (0, 1] is a positive constant.
By integrating the control algorithm (12), the parameter

estimation algorithm (15), and the prediction algorithm (17)-
(18), the data-driven predictive terminal iterative learning
control scheme is constructed as follows:

𝜃
𝑖
= 𝜃
𝑖−1

+
𝜂Δ𝑢
𝑖−1

𝜇 + Δ𝑢
𝑖−1
2
[Δ𝑦
𝑖−1 (𝑁) − 𝜃

𝑖−1
Δ𝑢
𝑖−1

] , (19)

𝜃
𝑖
= 𝜃
1
, if 󵄨󵄨󵄨󵄨󵄨

𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀, or 󵄨󵄨󵄨󵄨Δ𝑢𝑖−1

󵄨󵄨󵄨󵄨 ≤ 𝜀

or sign (𝜃
𝑖
) ̸= sign (𝜃

1
) ,

(20)

𝛾
𝑖
= 𝛾
𝑖−1

+
𝜃̂
𝑖−1

𝛿 +
󵄩󵄩󵄩󵄩󵄩
𝜃̂
𝑖−1

󵄩󵄩󵄩󵄩󵄩

2
[𝜃
𝑖
− 𝛾
𝑖−1

𝑇
𝜃̂
𝑖−1

] , (21)

𝛾
𝑖
= 𝛾
1
, if 󵄩󵄩󵄩󵄩𝛾𝑖

󵄩󵄩󵄩󵄩 ≥ 𝑀, (22)

𝜃
𝑖+𝑗

= 𝛾
1,𝑖
𝜃
𝑖+𝑗−1

+ 𝛾
2,𝑖
𝜃
𝑖+𝑗−2

+ ⋅ ⋅ ⋅ + 𝛾
𝑛𝑝,𝑖

𝜃
𝑖+𝑗−𝑛𝑝

𝑗 = 1, 2, . . . , 𝑁
𝑦
− 1,

(23)

𝜃
𝑖+𝑗

= 𝜃
1
, if 󵄨󵄨󵄨󵄨󵄨

𝜃
𝑖+𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 or sign (𝜃

𝑖+𝑗
) ̸= sign (𝜃

1
) ,

𝑗 = 1, 2, . . . , 𝑁
𝑦
− 1,

(24)

ΔU
𝑖
= [Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

Â𝑇
𝑖
[Y∗
𝑖
− 𝐸𝑦
𝑖−1 (𝑁)] , (25)

𝑢
𝑖
= 𝑢
𝑖−1

+ g𝑇ΔU
𝑖
, (26)

where 𝜀 and 𝑀 are positive constants; Â
𝑖
and 𝜃

𝑖+𝑗
are the

estimated values of A
𝑖
(𝑘) and 𝜃

𝑖+𝑗
, 𝑗 = 1, . . . , (𝑁

𝑦
− 1),

respectively; 𝜆 > 0, 𝜇 > 0, 𝜂 ∈ (0, 1], 𝛿 ∈ (0, 1].

Remark 5. The initial value of partial derivative estimation
is generally set to be 𝜃

1
> 0, since 𝜃

𝑖
> 0 holds for many

practical industrial systems, such as temperature control
system, pressure control system. The proposed DDPTILC
scheme has 𝑁

𝑦
parameters to be estimated or predicted by

merely using the I/O data of the controlled system.

Remark 6. TheDDPTILC approach is proposed for unknown
discrete-time nonlinear systems. It requires merely the mea-
sured I/O data of the controlled plant for controller design,
and thus it is suitable for many practical industrial pro-
cesses. In contrast, the norm-optimal ILC [10, 11] and norm-
optimal predictive ILC [17] are limited to exactly known
linear systems, and the controller should be redesigned by
resolving a new complex Riccati equation if there is any little
modification or expansion of the controlled plant.

Remark 7. Compared with the optimal terminal iterative
learning control in [14], the DDPTILC approach utilizes
the predictive terminal output information within a pre-
specified iteration horizon and thus has better robustness
to the iteration-varying desired terminal output signal and
iteration-dependent uncertainties.

4. Convergence Analysis

In this section, we will discuss the stability and convergence
for the DDPTILC scheme (19)–(26).

Theorem8. If the discrete-time nonlinear system (1), satisfying
Assumptions 1–2, is controlled by DDPTILC scheme (19)–(26)
for 𝑦∗
𝑖
(𝑁) = 𝑦

∗
(𝑁), then there exists a constant 𝜆min > 0, such

that the following properties hold for any 𝜆 > 𝜆min.

(a) The tracking error of the system converges; that is,
lim
𝑖→∞

|𝑒
𝑖
(𝑁)| = lim

𝑖→∞
|𝑦
∗
(𝑁) − 𝑦

𝑖
(𝑁)| = 0.

(b) The system output 𝑦
𝑖
(𝑁) and the control input 𝑢

𝑖
are

bounded for all iterations.

Proof. There are three parts for the theorem proof, as shown
in the following details.

Firstly, We Will Prove the Boundedness of 𝜃
𝑖
. If |𝜃

𝑖
| ≤ 𝜀 or

|Δ𝑢
𝑖−1

| ≤ 𝜀 or sign(𝜃
𝑖
) ̸= sign(𝜃

1
), then the boundedness of

𝜃
𝑖
is obvious from (20). In the other case, define parameter

estimation error as 𝜃
𝑖
= 𝜃
𝑖
−𝜃
𝑖
. Subtracting 𝜃

𝑖
from both sides

of the parameter estimation algorithm (19) and using (5) yield

𝜃
𝑖
= 𝜃
𝑖−1

− 𝜃
𝑖
+ 𝜃
𝑖−1

+
𝜂Δ𝑢
𝑖−1

𝜇 + Δ𝑢
𝑖−1
2
[𝑦
𝑖−1 (𝑁) − 𝑦

𝑖−2 (𝑁) − 𝜃
𝑖−1

Δ𝑢
𝑖−1

]

= (1 −
𝜂Δ𝑢
𝑖−1

2

𝜇 + Δ𝑢
𝑖−1
2
)𝜃
𝑖−1

− 𝜃
𝑖
+ 𝜃
𝑖−1

.

(27)



Journal of Applied Mathematics 5

FromAssumption 2, we have |−𝜃
𝑖
+𝜃
𝑖−1

| ≤ 𝛼
2
−𝛼
1
. Taking

absolute value on both sides of (27) yields

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
𝜂Δ𝑢
𝑖−1

2

𝜇 + Δ𝑢
𝑖−1
2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖−1

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨−𝜃𝑖 + 𝜃

𝑖−1

󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
𝜂Δ𝑢
𝑖−1

2

𝜇 + Δ𝑢
𝑖−1
2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖−1

󵄨󵄨󵄨󵄨󵄨
+ 𝛼
2
− 𝛼
1
.

(28)

Since 𝜇 > 0 and 𝜂 ∈ (0, 1], there exists a positive constant 𝑑
1

such that the following inequality holds:

0 < 1 −
𝜂Δ𝑢
𝑖−1

2

𝜇 + Δ𝑢
𝑖−1
2
≤ 𝑑
1
< 1. (29)

Noting that (28) and (29), we have

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝑑
1

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖−1

󵄨󵄨󵄨󵄨󵄨
+ 𝛼
2
− 𝛼
1

≤ 𝑑
2

1

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖−2

󵄨󵄨󵄨󵄨󵄨
+ 𝑑
1
(𝛼
2
− 𝛼
1
) + (𝛼

2
− 𝛼
1
)

≤ ⋅ ⋅ ⋅ ≤ 𝑑
𝑖−1

1

󵄨󵄨󵄨󵄨󵄨
𝜃
1

󵄨󵄨󵄨󵄨󵄨
+

𝛼
2
− 𝛼
1

1 − 𝑑
1

.

(30)

This means 𝜃
𝑖
is bounded. Since 𝜃

𝑖
is bounded, the

boundedness of 𝜃
𝑖
can be guaranteed. The boundedness of

the prediction values 𝜃
𝑖+𝑗
, 𝑗 = 1, . . . , (𝑁

𝑦
− 1), is the direct

results of algorithms (21)–(24).

Secondly, We Will Prove Convergence of the Tracking Error.
Define terminal tracking error as 𝑒

𝑖
(𝑁) = 𝑦

∗
(𝑁) − 𝑦

𝑖
(𝑁).

Substituting (5) into tracking error equation and using (25)-
(26), we have

𝑒
𝑖 (𝑁) = 𝑦

∗
(𝑁) − 𝑦

𝑖 (𝑁)

= 𝑦
∗
(𝑁) − 𝑦

𝑖−1 (𝑁) − 𝜃
𝑖
Δ𝑢
𝑖

= 𝑦
∗
(𝑁) − 𝑦

𝑖−1 (𝑁) − 𝜃
𝑖
g𝑇[Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

× Â𝑇
𝑖
[Y∗
𝑖
− 𝐸𝑦
𝑖−1 (𝑁)]

= 𝑦
∗
(𝑁) − 𝑦

𝑖−1 (𝑁) − 𝜃
𝑖
g𝑇[Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

× Â𝑇
𝑖
𝐸 [𝑦
∗
(𝑁) − 𝑦

𝑖−1 (𝑁)]

= (1 − 𝜃
𝑖
g𝑇[Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

Â𝑇
𝑖
𝐸) 𝑒
𝑖−1 (𝑁) .

(31)

Taking absolute value on both sides of (31) yields

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑁)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨
(1 − 𝜃

𝑖
g𝑇[Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

Â𝑇
𝑖
𝐸)

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑖−1 (𝑁)
󵄨󵄨󵄨󵄨 . (32)

Let P = [Â𝑇
𝑖
Â
𝑖
+𝜆I]. Since Â𝑇

𝑖
Â
𝑖
is a semipositive definite

matrix, thus P and P−1 are positive definite matrix for any
𝜆 > 0.

Since P−1 = P∗/ det(P), where P∗ = [

[

𝑃11 ⋅⋅⋅ 𝑃𝑁𝑦1

... d
...

𝑃1𝑁𝑦
⋅⋅⋅ 𝑃𝑁𝑦𝑁𝑦

]

]

is

adjoint matrix of P and 𝑃
𝑖𝑗
is the algebraic cofactor of P, the

following equation holds:

g𝑇[Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

Â𝑇
𝑖
𝐸

= g𝑇P−1Â𝑇
𝑖
𝐸 = g𝑇 P∗

det (P)
Â𝑇
𝑖
𝐸

=
𝑁
𝑦
𝜃
𝑖
𝑃
11

det (P)
+

(𝑁
𝑦
− 1) 𝜃

𝑖+1
𝑃
21

det (P)
+ ⋅ ⋅ ⋅ +

𝜃
𝑖+𝑁𝑦−1

𝑃
𝑁𝑦1

det (P)
.

(33)

Equation (33) is bounded as 𝜃
𝑖
is bounded for all itera-

tions, and its upper bound is a constant independent of 𝑖.
Since P is a positive definite matrix, det(P) > 0 is a

monic polynomial in 𝜆 of degree 𝑁
𝑦
, 𝑃
11

> 0 is a monic
polynomial in 𝜆 of degree𝑁

𝑦
− 1, and 𝑃

𝑖1
(𝑖 = 2, 3, . . . , 𝑁

𝑦
) is

a monic polynomial in 𝜆 of degree (𝑁
𝑦
−2). Thus there exists

a constant 𝜆min > 0, such that (33) has the same positive sign
as 𝑃
11
/ det(P) for any 𝜆 ≥ 𝜆min. In the sequel, there exists a

positive constant 𝑑
2
such that

0 < 1 − 𝜃
𝑖
g𝑇[Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

Â𝑇
𝑖
𝐸 ≤ 𝑑

2
< 1. (34)

Combining (32) and (34) gives

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑁)
󵄨󵄨󵄨󵄨 ≤ 𝑑
2

󵄨󵄨󵄨󵄨𝑒𝑖−1 (𝑁)
󵄨󵄨󵄨󵄨 ≤ ⋅ ⋅ ⋅ ≤ 𝑑

𝑖−1

2

󵄨󵄨󵄨󵄨𝑒1 (𝑁)
󵄨󵄨󵄨󵄨 .

(35)

Therefore lim
𝑖→∞

|𝑒
𝑖
(𝑁)| = 0.

Finally, We Will Prove the Boundedness of the System Output
𝑦
𝑖
(𝑁) and the Control Input 𝑢

𝑖
. Since 𝑦

∗
(𝑁) is a constant,

𝑦
𝑖
(𝑁) is bounded.
In following, we prove the boundedness of control input

sequence. From (25) and (26), we have

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨
g𝑇[Â𝑇
𝑖
Â
𝑖
+ 𝜆I]
−1

Â𝑇
𝑖
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑖−1 (𝑁)
󵄨󵄨󵄨󵄨 ≤ 𝜒

󵄨󵄨󵄨󵄨𝑒𝑖−1 (𝑁)
󵄨󵄨󵄨󵄨 ,

(36)

where 𝜒 is a bounded constant since Â
𝑖
is bounded.

Using (36) recursively, it gives

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨Δ𝑢𝑖−1
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨Δ𝑢2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

≤ 𝜒 (
󵄨󵄨󵄨󵄨𝑒𝑖−1 (𝑁)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒𝑖−2 (𝑁)

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑒1 (𝑁)

󵄨󵄨󵄨󵄨) + |𝑢 (1)|

≤ 𝜒 (𝑑
𝑖−2

2

󵄨󵄨󵄨󵄨𝑒1 (𝑁)
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 𝑑

2

󵄨󵄨󵄨󵄨𝑒1 (𝑁)
󵄨󵄨󵄨󵄨) + |𝑢 (1)|

≤ 𝜒
𝑑
2

󵄨󵄨󵄨󵄨𝑒1 (𝑁)
󵄨󵄨󵄨󵄨

1 − 𝑑
2

+ |𝑢 (1)| .

(37)

This equation implies that 𝑢
𝑖
is bounded.
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Figure 1: Simulation comparison between TILC and DDPTILC (Case 1).

5. Simulations

In this section, the effectiveness of the proposed DDPTILC
approach is illustrated through numerical simulations. The
mathematical model is assumed to be unavailable for con-
troller design and just serves as the I/O data generator for the
train stop system to be controlled.

Consider an ethanol fermentation process [25], whose
mechanistic model in the form of differential algebraic
equations (DAE) is described as follows [26]:

𝑑𝑥
1

𝑑𝑡
= 𝐶𝑥
1
−

𝑥
1

𝑥
4

𝑢,

𝑑𝑥
2

𝑑𝑡
= −10𝐶𝑥

1
−

150 − 𝑥
2

𝑥
4

𝑢,

𝑑𝑥
3

𝑑𝑡
= 𝐷𝑥
1
−

𝑥
3

𝑥
4

𝑢,

𝑑𝑥
4

𝑑𝑡
= 𝑢,

𝑦 = 𝑥
3
,

(38)

where 𝑥
1
is the cell mass concentration; 𝑥

2
is the substrate

concentration; 𝑥
3
is the product concentration; 𝑥

4
is the

liquid volume of the reactor; and𝐶 and𝐷 are two parameters.
𝑥
4
is limited by the 200 L vessel size. The initial condition is

specified as [𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0), 𝑥
4
(0)] = [1, 150, 0, 10]. The

batch length 𝑡
𝑓
is fixed to be 63 hours and divided into𝑁 = 10

equal stages; that is, sampling time is 6.3 hours. The feed
rate into the reactor is used for control and constrained by
0 ≤ 𝑢 ≤ 12(1/ℎ). There is no outflow, so the feed rate must be
chosen so that the batch volume does not exceed the physical
volume of the reactor.

In order to assess the control performance more exten-
sively, three cases are considered in the following simulations.
Case 1 is an idea one; the desired output and the system
parameters are iteration-invariant. Case 2 is used to verify the
good tracking performance of the proposedDDPTILCwhere
the desired output is iteration-varying. Case 3 is used to verify
the good tracking performance of the proposed DDPTILC
where the system parameters are iteration-varying.

For the purpose of comparison, the data-driven TILC
approach proposed in [14] is also simulated on the ethanol
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Figure 2: Simulation comparison between TILC and DDPTILC (Case 2).

fermentation process. The TILC approach in [14] is given as
follows:

𝜃
𝑖
= 𝜃
𝑖−1

+
𝜂Δ𝑢
𝑖−1

𝜇 + Δ𝑢
𝑖−1
2
[Δ𝑦
𝑖−1 (𝑁) − 𝜃

𝑖−1
Δ𝑢
𝑖−1

] ,

𝜃
𝑖
= 𝜃
1
, if 󵄨󵄨󵄨󵄨󵄨

𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 or 󵄨󵄨󵄨󵄨Δ𝑢𝑖−1

󵄨󵄨󵄨󵄨 ≤ 𝜀

or sign (𝜃
𝑖
) ̸= sign (𝜃

1
) ,

𝑢
𝑖
= 𝑢
𝑖−1

+
𝜌𝜃
𝑖

𝜆 + 𝜃2
𝑖

𝑒
𝑖−1 (𝑁) .

(39)

In general, the tracking error convergence can be guaran-
teed using the same controller forms and the same controller
parameters to different plants provided that the controller
parameters are selected in the proper scopes. This is shown
in the simulation by using the same controller parameters in
the three cases. The parameters of the proposed DDPTILC
approach are 𝑁

𝑦
= 3, 𝜃

1
= −1, 𝜀 = 0.01, 𝑀 = 10, 𝛿 =

0.1, 𝜌 = 1, 𝜆 = 50, 𝜂 = 0.1, 𝜇 = 1 in the following three
cases. And the parameters of the TILC approach (39) are
𝜃
1
= −1, 𝜀 = 0.01, 𝜌 = 1, 𝜆 = 50, 𝜂 = 0.1, 𝜇 = 1 in the

following three cases.

Case 1. The system parameters and the desired output are
iteration-invariant; that is, 𝐶 = 0.408𝑥

2
/(1 + 𝑥

3
/16)(0.22 +

𝑥
2
), 𝐷 = 𝑥

2
/(1 + 𝑥

3
/71.5)(0.44 + 𝑥

2
), and 𝑦

∗
(𝑁) =

103.53 were selected from the literature [25]. The sim-
ulation results are shown in Figure 1. Figure 1(a) shows
the convergence of the terminal tracking error. The hori-
zon is the iteration number and the vertical axis is the
absolute values of terminal tracking errors. Figures 1(b)
and 1(c) show the profile of control inputs with respect
to the iterations and the entire outputs in the first three
iterations.

The simulation results show that two TILC approaches
guarantee convergence of the terminal tracking error and
BIBO stability. It is obvious that the proposed DDPTILC has
a faster convergence rate than that of the TILC approach.

Case 2. System parameters are same as that in Case 1. The
desired output is iteration-varying; that is, 𝑦∗(𝑁) = 103.53 +

10 sin(𝑖/100), where 𝑖 denotes the iteration number. The
simulation results are shown in Figure 2. Figure 2(a) shows
the convergence of the terminal tracking error. Figures 2(b)
and 2(c) show the profile of control inputs with respect to the
iterations and the entire outputs in the first three iterations.
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Figure 3: Simulation comparison between TILC and DDPTILC (Case 3).

It is shown that the terminal tracking errors by using two
TILC approach converge to a small region when the desired
output is iteration-varying. And the DDPTILC approach
gives the better terminal tracking performance as shown in
Figure 2(a).
Case 3. The desired output is same as that of Case 1. System
parameters are iteration-varying; that is, 𝐶 = 0.408(1 +

0.01 sin(2𝜋𝑖/20))𝑥
2
/(1 + 𝑥

3
/16)(0.22 + 𝑥

2
), 𝐷 = 𝑥

2
/(1 +

𝑥
3
/71.5)(0.44(1 + 0.01𝜋𝑖/20) + 𝑥

2
), where 𝑖 denotes the iter-

ation number. The simulation results are shown in Figure 3.
Figure 3(a) shows the convergence of the terminal tracking
error. Figures 3(b) and 3(c) show the profile of control inputs
with respect to the iterations and the entire outputs in the first
three iterations.

It is shown that the terminal tracking errors by using
two TILC approach converge to a small region when the
system parameters are iteration-varying. And the DDPTILC
approach gives the better terminal tracking performance as
shown in Figure 3(a).

6. Conclusions

This paper presents a new data-driven predictive terminal
ILC for a class of discrete-time nonlinear systems only using

the terminal output tracking error instead of the whole
output trajectory tracking error.The controller designmerely
depends on the measured I/O data of the plant without
requiring plant model information. Rigorous mathematical
analysis is developed to illustrate the effectiveness of the pro-
posed approach. Extensive simulation results show the data-
driven nature, as well as effectiveness and the applicability, of
the proposed predictive terminal ILC further.
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