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Membrane algorithms are a new class of parallel algorithms, which attempt to incorporate some components of membrane
computing models for designing efficient optimization algorithms, such as the structure of the models and the way of
communication between cells. Although the importance of the parallelism of such algorithms has been well recognized, membrane
algorithms were usually implemented on the serial computing device central processing unit (CPU), which makes the algorithms
unable to work in an efficient way. In this work, we consider the implementation of membrane algorithms on the parallel computing
device graphics processing unit (GPU). In such implementation, all cells of membrane algorithms can work simultaneously.
Experimental results on two classical intractable problems, the point set matching problem and TSP, show that the GPU
implementation of membrane algorithms is much more efficient than CPU implementation in terms of runtime, especially for

solving problems with a high complexity.

1. Introduction

Membrane computing is an emergent branch of natural
computing initiated by Paun in 2000 [1], with the aim
of abstracting innovative computing models or ideas from
the living cells and higher order structures of living cells,
such as tissues and organs. The obtained models, called
P systems, are distributed and parallel computing devices.
Most variants of P systems were proved to be computa-
tionally complete (equivalent to Turing machines or other
equivalent computing devices; we also say that P systems
are universal) as number computing devices [2-4], language
generators [5, 6], and function computing devices [7, 8].
For general information on this area please refer to the
Handbook of Membrane Computing [9], and for the up-to-
date information refer to the membrane computing website
http://ppage.psystems.eu/.

P systems have been proved to be a rich framework for
handling many problems related to computing. Such systems
can theoretically solve presumably intractable problems in
a feasible time (solving NP-complete problems [10-12] or

even PSPACE-complete problems [13]). Actually, P systems
can also provide some new ideas for designing optimization
algorithms to obtain approximate solutions to the intractable
problems [14-22]. The optimization algorithms inspired by
P systems are usually called membrane algorithms (some
researchers also call membrane algorithms P systems based
optimization algorithms). The first membrane algorithm
was proposed by Nishida in 2004 [14], where the nested
structure and the communication mechanism between cells
were brought from P systems. Experimental results showed
that such an algorithm is effective and efficient for solving the
intractable problem, traveling salesman problem (TSP) [14].
Since then, many membrane algorithms have been proposed
for solving various optimization problems, such as knapsack
problem [15], point set matching problem [16], numerical
optimization problem [17], multiobjective optimization prob-
lem [18, 19], DNA sequence design problem [20], and many
practical problems [21, 22]. The dynamic behavior analysis of
membrane algorithms indicated that a membrane algorithm
has a stronger capacity of balancing exploration and exploita-
tion than its counterpart evolutionary algorithm in order to
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prevent premature convergence that might occur [23]. We
should stress that all membrane algorithms mentioned above
can work in a parallel way, in the sense that the evolution
of each cell can be performed simultaneously. Although the
importance of the parallelism of such algorithms has been
well recognized, membrane algorithms were usually imple-
mented on the serial computing device CPU, which makes the
algorithms unable to work as expected in a more efficient way.
To achieve this aim, this paper considers the implementation
of membrane algorithms on parallel computing devices.

The graphics processing units (GPUs) are a kind of
computing devices with high parallelism on numerical
operations, where massively parallel processors can support
several thousands of concurrent threads. The computational
power of GPUs has turned them into attractive platforms
for general-purpose scientific and engineering applications,
especially for tackling large scale numerical computing prob-
lems [24]. In this work, we will consider the implementation
of membrane algorithms on GPU with an attempt to make the
membrane algorithms work in a parallel way. Under the GPU
implementation of membrane algorithms presented here, the
work of a cell of membrane algorithms is achieved by a thread
of GPU, by which all the cells of a membrane algorithm
can evolve simultaneously through the concurrent threads
of GPU. The GPU implementation ensures that membrane
algorithms can work in a more efficient way, in the sense
that each operation of membrane algorithms is performed
in parallel as much as possible. Experimental results on
two classical intractable problems, the point set matching
problem and TSP, show that the GPU implementation of
membrane algorithms is effective and efficient. Compared
with the CPU implementation, the GPU implementation of
membrane algorithms consumes much less runtime for deal-
ing with the intractable problems, especially for large scale
numerical intractable problems. Software with a friendly
interface is also developed for GPU implementation of
membrane algorithms, which can provide a convenient tool
for the users to solve the intractable problems. We should
stress that the GPU implementation of P systems also exists,
for example, in Sevilla and Spain [25, 26]. A parallel simulator
for membrane computing models on GPU, called PMCGPU,
can be found in the website [27].

The rest of the paper is organized as follows. In Section 2,
we present the GPU implementation procedure of membrane
algorithms. Experimental results on the point set match-
ing problem and TSP are presented in Section 3. Section 4
presents software for GPU implementation of membrane
algorithms. Finally, conclusions and remarks are presented in
Section 5.

2. Implementation of Membrane
Algorithms on GPU

In this section, we will present a GPU implementation
procedure of membrane algorithms. We first review its CPU
implementation procedure.

Let us recall that a membrane algorithm with a nested
structure mainly consists of the following four operations:
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FIGURE 1: The CPU implementation procedure of membrane algo-
rithms.

(1) initialize solutions in each of the m cells;
(2) update solutions in each of the m cells;
(3) exchange solutions between adjacent cells;

(4) select good solutions in each of the m cells.

Figure1 illustrates the CPU implementation procedure
of membrane algorithms with a nested structure. Under the
CPU implementation of membrane algorithms, one cell of the
algorithms starts to work only after the work of another cell is
finished during the four operations. This means that the cells
will evolve one by one during each of the four operations.

Therefore, each of the four operations is achieved in a
sequential manner under the CPU implementation. In fact, it
is not difficult to find that the four operations can be achieved
in a parallel manner, in the sense that the m cells evolve
simultaneously if a parallel computing device is used. The
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GPU implementation of membrane algorithms can achieve
such a parallelism of the four operations.

Briefly, a GPU consists of hundreds of blocks, and each
block can support several thousands of concurrent threads.
A GPU should work with the help of host CPU. Data can
be transferred between threads in the same block through
the shared memory in the block. But, the transferred data
should be very little due to the small size of the shared
memory. Data cannot be directly transferred between threads
in different blocks, but only through the host. Figure 2 depicts
the structure of a GPU. The proposed GPU implementation
procedure of membrane algorithms with a nested structure is
shown in Figure 3. Under the GPU implementation presented
here, the m cells will work in parallel instead of one by one
during the four operations. The parallelism of the m cells is
achieved based on an idea as follows: a thread of a GPU does
the work of a cell of membrane algorithms, so the m cells
can work in parallel through the concurrent threads. This
means that GPU has to create the same number of threads
as that of cells used by membrane algorithms during the
implementation on GPU. Note that, in the GPU implementa-
tion procedure of membrane algorithms, a synchronization
function has been used after each of the four operations.
Under the implementation on GPU, the work of each thread
may not be finished at the same time, so this function will
ensure that the next operation of membrane algorithms starts
only after the work of each of the m cells is finished for
the four operations. The parallel work of the cells under the
implementation on GPU enables membrane algorithms to
work in a more efficient way in terms of runtime, which
will be illustrated by simulation experiments in the following
section.

3. Experimental Results and Analysis

In this section, we will evaluate the performance of GPU
implementation of membrane algorithms through two classi-
cal intractable problems: the point set matching problem and
TSP. It is useful for readers to have some familiarity with such
two problems, so we here briefly recall them.

A point set matching problem can be formulated as
follows. Given two sets P = {p,,..., p,,} and Q = {q;,...,4,},
findamap f: P — Q,(P' ¢ P,Q" ¢ Q) such that the
following matching

Gobj
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objective value Gobj is minimized, where d(p,q) is the

Euclidean distance between points p and g; My, N,y are the

sizes of P and P'; and k is a penalty factor.
The TSP raises the following question. Given a list of n
cities p;, 1 <i <n, findaroute p; p; --- p; p; (ie. this route

visits each city exactly once and returns to the origin city),
such that the total distance Dist of this route is minimized:

n—-1
Dist = 3 d(py py,,) + d(py, 1) @)
k=1

where d(p;, p;) is the Euclidean distance between cities p; and
pj-
! The membrane algorithm proposed in [16] will be
adopted to test the performance of GPU implementation. The
number of generations is set as 100, the updating number of
each cell is 8 in one generation, and the other parameters are
the same as those suggested in [16]. Each test is executed 5
times. All simulations reported in this work are conducted
on a PC with a 3.40 GHz Intel Core i7-2600K CPU, Windows
XP Professional SP3 64 bit operating system, and NVIDIA
GeForce GTX 560 Ti graphics card (it uses the GF114 GPU
which offers a maximum of 384 cores). Note that the runtime
of GPU implementation reported in the following subsec-
tions contains all times that implementing a membrane
algorithm on GPU takes, including data reorganization, host-
to-GPU data transfer, and GPU-to-host data transfer.

3.1. Experiments on the Point Set Matching Problem. In the
experiments, the point set matching problem is created as
follows: a point set P consisting of n points is generated
randomly in the region {(x,y) | 0 < x,y < 256+/n/10},
and the observed Q is generated by adding the Gaussian noise
with a variance o = 10 to set P.

Figure 4 presents the runtime of CPU and GPU imple-
mentation of the membrane algorithm having 200 cells
on the point set matching problem with different sizes of
point set. As shown in Figure 4, the GPU implementation
of membrane algorithm is effective and efficient. The GPU
implementation outperforms the CPU implementation on
the point set matching problem, in the sense that it consumes
much less runtime than CPU implementation, especially for
point set with a large size. The runtime of CPU and that
of GPU implementation will both increase as the size of
point set increases. The runtime of CPU implementation will
dramatically increase with an increment of the size of point
set, while the increment on runtime of GPU implementation
is quite slight with an increment of the size of point set.
Note that membrane algorithm will perform initializing,
updating, exchanging, and selecting operations for the point
set matching problem in each cell, and the cells used by the
membrane algorithm will be performed in parallel under
the GPU implementation instead of one by one under the
CPU implementation. So, the runtime will not increase
dramatically as the size of point set increases.

Table 1 shows the runtime of CPU and GPU implemen-
tation of the membrane algorithm with different numbers
of cells on the point set matching problem having 200
points. The GPU implementation of membrane algorithm
outperforms the CPU implementation, in the sense that it can
make membrane algorithm with a large number of cells work
in a more efficient way. The runtime of CPU implementation
will dramatically increase as the number of cells used by the
membrane algorithm increases, while the implementation
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FIGURE 3: The GPU implementation procedure of membrane
algorithms.
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TaBLE 1: Runtime (s) of CPU and GPU implementation of the
membrane algorithm with different numbers of cells on point set
matching problem having 200 points.

Number of cells Platform
CPU GPU
100 1078.44 103.88
150 1597.06 104.70
200 2082.39 105.30
250 2689.92 106.55
300 3202.36 107.41
350 3599.05 109.38
400 4156.70 111.13
450 4471.67 115.64
500 4988.42 115.66
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FiGURE 4: Runtime (s) of CPU and GPU implementation of the
membrane algorithm having 200 cells on the point set matching
problem with different sizes of point set.

on GPU almost has the same runtime as the number of
cells increases. The slight increment on runtime of GPU
implementation is partially caused by the increasing overhead
generated by the control of the synchronization of cells as the
number of cells increases.

3.2. Experiments on the TSP. In the experiments, each TSP
is chosen from the TSP benchmark problems in TSPLIB pro-
posed by Reinelt [28]. These benchmark problems have been
widely used for testing the performance of an optimization
algorithm.

Figure 5 shows the runtime of CPU and GPU implemen-
tation of the membrane algorithm having 200 cells on the
TSP with different numbers of cities. It is not difficult to find
that on TSP there is a similar result as that of the point set
matching problem. The GPU implementation of membrane
algorithms outperforms the CPU implementation on the TSP
in terms of runtime. The GPU implementation will consume
much less runtime than CPU implementation, especially on
TSP with a large number of cities.
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FIGURE 5: Runtime (s) of CPU and GPU implementation of
the membrane algorithm having 200 cells on TSP with different
numbers of cities.

TABLE 2: Runtime (s) of CPU and GPU implementation of the
membrane algorithm with different numbers of cells on TSP
benchmark problem with 493 cities.

Number of cells Platform

CPU GPU
100 5.13 2.24
150 7.66 2.34
200 10.17 2.41
250 12.75 2.50
300 15.31 2.56
350 17.75 2.63
400 20.44 2.69
450 22.83 2.77
500 25.56 2.83

Table 2 shows the runtime of CPU and GPU implemen-
tation of the membrane algorithm with different numbers
of cells on the TSP benchmark problem with 493 cities. As
shown in Table 2, on TSP the runtime of CPU implementa-
tion of membrane algorithms will increase with an increment
of the number of cells, while the implementation on GPU
will almost consume the same runtime as the number of
cells increases. Different from the case of point set matching
problems, the runtime of CPU implementation of membrane
algorithms on TSP does not dramatically increase with an
increment of the number of cells. This result is mainly caused
by the fact that the time consumed by each cell is quite
little since the operations in each cell hold a low complexity
for the TSP with 200 cities. So, the total runtime of CPU
implementation will only increase slightly with an increment
of the number of cells.

Compared with the simulation results on the point set
matching problem, we can find that the GPU implementation
of membrane algorithms is quite efficient for tackling large
scale intractable problems, while it is not good at dealing with
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FIGURE 6: An interface of the software for GPU implementation of
membrane algorithms with a nested structure.

intractable problems with a small size. The reason for this
is that the cells of membrane algorithms working in parallel
can save only a little runtime under GPU implementation,
since the computational complexity in each cell is very low
for intractable problems with a small size. At the same time,
under GPU implementation the data should be transferred
repeatedly between GPU and host, which will consume some
additional runtime. Therefore, the GPU implementation of
membrane algorithms will not work in a more efficient way
than CPU implementation for solving intractable problems
with a small size.

4. Software with a Friendly Interface

For the GPU implementation of membrane algorithms,
we have to write a new programming code for different
intractable problems, which is quite inconvenient for the
users. Therefore, software with a friendly interface (termed
MAGPU) has been developed, which can provide the users
with a convenient tool to implement membrane algorithms
with a nested structure on GPU. This software can be found
on the website https://github.com/warmheart0/magpu/.

This software mainly contains the following functions:
(1) the setting of a few parameters, including the generation
number, number of cells, and updating number of each cell
in one generation; (2) the choice of experimental data and
updating strategy of each cell (it also allows the users to define
their own updating strategy); (3) the saving and showing
of experimental results; (4) the saving and comparing of
runtimes of several experiments; (5) the calculation of a few
measurement indexes, such as mean and variance. Figure 6
presents an interface of the software for GPU implementation
of membrane algorithms with a nested structure.

5. Conclusions and Remarks

In this paper, the implementation of membrane algorithms
on a parallel computing device GPU was carried out. The
GPU implementation can achieve the parallelism of mem-
brane algorithms, which makes membrane algorithms work
in a more efficient way in terms of runtime. Experimental



results on the point set matching problem and TSP show
that the GPU implementation of membrane algorithms
outperforms the CPU implementation, in the sense that it
consumes much less runtime.

Although the GPU implementation of membrane algo-
rithms has shown a good performance in terms of runtime,
many problems remain to be solved for the GPU imple-
mentation presented in this work. Among these problems,
an interesting one is to further reduce the runtime of GPU
implementation of membrane algorithms. In the presented
GPU implementation, the data transfer between host and
GPU will be performed a large number of times, which takes
alot of runtime. Therefore, a possible solution is to reduce the
number of data transfer times between host CPU and GPU. It
is conjectured that the runtime of GPU implementation can
be greatly reduced by improving the GPU implementation
procedure such that only a small number of date transfer
times are performed between host and GPU.

In order to provide the users with a convenient tool to
implement membrane algorithms on GPU, software with a
friendly interface has been developed. This software is only
a simple version and many functions need to be improved or
added, which is an interesting work that deserves to be further
investigated.
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