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Differential search algorithm (DS) is a relatively new evolutionary algorithm inspired by the Brownian-like random-walkmovement
which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA,
PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,”
“DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global
optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are
employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original
algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution
for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential
search algorithm (CDS) is proposed in this paper. This new algorithm combines three new proposed search schemes including
“DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the
offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark
functions.

1. Introduction

Optimization problems play an important role in both engi-
neering design fields and the information theory. During
the past decade, many researchers have developed different
kinds of optimization computation algorithms to handle
optimization problems, such as simulated annealing (SA),
genetic algorithm (GA), differential evolution algorithm
(DE), particle swarm optimization algorithm (PSO), ant
colony optimization (ACO), biogeography based optimiza-
tion (BBO), and differential search algorithm (DS) [1–7].
These algorithms have been adopted by researches so far
and have been applied to solve many practical optimization
problems such as pattern recognition, antenna design, and
chaotic system [8–13].

Recently, differential search algorithm (DS) developed by
Civicioglu [7] is a population-based heuristic evolutionary
algorithm inspired by the Brownian-like random-walkmove-
mentwhich is used by an organism tomigrate.This algorithm
has been used to find the optimal solution in numerous prac-
tical navigational, geodetic, and astro-geodetic problems. In
the paper [7], the statistical tests realized for the comparison
of performances indicate that the problem-solving success

of DS algorithm in global optimization problem is better
than the success of the algorithms ABC [14], JDE [15], JADE
[16], SADE [17], EPSDE [18], GSA [19], PSO2011 [20], and
CMA-ES [21] used in this paper. However, there are still
some limitations in this algorithm. It is good at exploring
the search space and locating the region of global minimum,
but it is slow at exploitation of the solution. Therefore, its
convergence rate is also a problem in some cases. Accelerating
the convergence rate and enhancing the exploitation ability
of the algorithm have become two important problems and
goals in the algorithm research. However, this field of study is
still in its early days and a large number of future researches
are necessary in order to develop the effective algorithm for
optimization problems. Particularly, within our knowledge,
there is almost no paper concerning an improved heuristic
method for the DS algorithm.

In this paper, inspired by the mutation operation of the
DE algorithm, we propose four improved solution search
schemes to search the new space and enhance the con-
vergence rate of the original algorithm. However, in some
cases, these four improved solution search schemes are
trapped in local optimal solutions and they cannot find
the best solutions. In order to balance the exploration and
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exploitation of the original algorithm, this paper proposes
a high-efficiency composite DS algorithm (CDS). The new
algorithm combines three new proposed search schemes
with three control parameters in a random method to
generate the offspring. Experiments have been conducted on
23 benchmark functions chosen from previous literatures.
Experimental results indicate that our approach is effective
and efficient. Compared with different search schemes, CDS
performs better, or at least comparably, in terms of the quality
of the final solutions and the convergence rate.

The rest of this paper is organized as follows. In Section 2
we will review the basic DS. The proposed method is
reviewed in Section 3, respectively. Benchmark problems and
corresponding experimental results are given in Section 4. In
the last section we conclude this paper and point out some
future research directions.

2. Differential Search Algorithm

Differential search algorithm (DS) developed by Civicioglu
[7] is one of the most superior evolutionary algorithms.
The differential search algorithm is inspired by migration of
living beingswhich constitute superorganisms during climate
change of the year. In DS algorithm, the search space is
simulated as the food areas and each point in the search
space corresponds to an artificial-superorganism migration.
The goal of this migration is to find the global optimal
solution of the problem. During this process, the artificial-
superorganism checkswhich randomly selected positions can
be retained temporarily. If such a tested position is suitable to
be retained for some time, the artificial-superorganism uses
this migration model to settle at the discovered position and
then continues itsmigration from this position on.Main steps
of the DS algorithm are listed below.

The algorithm begins with a randomly initiated artificial-
organismwhich utilizes NP∗𝐷-dimension parameter vector
within constrains by the prescribedminimum andmaximum
bounds as follows:

⃗
𝑋min = {𝑥1,min, 𝑥2,min, . . . , 𝑥𝐷,min} ,

⃗
𝑋max = {𝑥1,max, 𝑥2,max, . . . , 𝑥𝐷,max} .

(1)

Therefore, we may generate the 𝑗th component of the 𝑖th
vector as

𝑥
𝑗,𝑖,0
= 𝑥
𝑗,min + rand𝑖,𝑗 [0, 1] ⋅ (𝑥𝑗,max − 𝑥𝑗,min) , (2)

where rand
𝑖,𝑗
[0, 1] is a uniform distribution random number

between 0 and 1. Consider 𝑖 = 1, . . . ,NP, and 𝑗 = 1, . . . , 𝐷.
After initialization, stopover vectors 𝑠

𝑖,𝐺
at the areas

are generated between the artificial-organisms that can be
described by a Brownian-like randomwalkmodel. In order to
calculate the stopover vectors, the algorithm creates a stopover
vector corresponding to each population individual or target
vector in the current population. The method for producing
the stopover vectors can be described as follows:

𝑠
𝑖,𝐺
= 𝑋
𝑖,𝐺
+ scale ⋅ (𝑋

𝑟
1
,𝐺
− 𝑋
𝑖,𝐺
) , (3)

where 𝑟
1
∈ [1, . . . ,NP] are randomly chosen integers, and

𝑟
1
̸= 𝑖. Scale controlled the size of change in the positions

of the individuals of the artificial-organisms. Note that the
value of scale is generated by a gamma random number gen-
erator controlled by a uniform distribution random number
between 0 and 1.

The search process of stopover site can be calculated by the
individuals of the artificial organisms of the superorganism.
This process can be described as follows:

𝑠
󸀠

𝑖,𝑗,𝐺
= {

𝑠
𝑖,𝑗,𝐺

if 𝑟
𝑖,𝑗
= 0

𝑋
𝑖,𝑗,𝐺

if 𝑟
𝑖,𝑗
= 1,

(4)

where 𝑗 = [1, . . . , 𝐷]; 𝑟
𝑖,𝑗

is an integer number either 1 or
0; 𝑠󸀠
𝑖,𝑗,𝐺

denotes the trail vector of the 𝑗th particle in the 𝑖th
dimension at the 𝐺th iteration.

Selection operation is used to choose the next population
(i.e., 𝐺 = 𝐺 + 1) between the stopover site population and
the artificial-organism population.The selection operation is
described as

𝑋
𝑖,𝐺+1
= 𝑠
𝑖,𝐺
, if 𝑓 (𝑠󸀠

𝑖,𝐺
) ≤ 𝑓 (𝑋

𝑖,𝐺
) ,

= 𝑋
𝑖,𝐺
, if 𝑓 (𝑠󸀠

𝑖,𝐺
) > 𝑓 (𝑋

𝑖,𝐺
) .

(5)

The standard differential search algorithm can be described
as in Procedure 1.

3. Improved Approach

3.1. Proposed IDS Algorithm. As we know, differential evo-
lution is a simple yet efficient evolutionary algorithm, first
introduced by Storn and Price [22]. Differential evolution
algorithm has captured much attention and has been applied
to solve many real-world problems. The crucial idea behind
DE is a scheme for producing trial vectors according to
the manipulation of target vector and difference vector. DE
algorithm combines simple arithmetical operators with the
classical operators of crossover, mutation, and selection to
generate a new population. Among these operators, muta-
tion part employs the mutation operation to produce a
mutant vector with respect to each individual in the current
population. Different kinds of strategies of DE have been
proposed based on the target vector selected and the number
of difference vectors used. In the standardDE algorithm, four
differential mutation strategies can be used with one of two
different crossover methods. They are listed in the following:

“DE/rand/1”
𝑉
𝑖,𝐺
= 𝑋
𝑟
1
,𝐺
+ 𝐹 ⋅ (𝑋

𝑟
2
,𝐺
− 𝑋
𝑟
3
,𝐺
) ; (6)

“DE/rand/2”
𝑉
𝑖,𝐺
= 𝑋
𝑟
1
,𝐺
+ 𝐹 ⋅ (𝑋

𝑟
2
,𝐺
− 𝑋
𝑟
3
,𝐺
) + 𝐹 ⋅ (𝑋

𝑟
4
,𝐺
− 𝑋
𝑟
5
,𝐺
) ;

(7)
“DE/current-to-rand/1”
𝑉
𝑖,𝐺
= 𝑋
𝑖,𝐺
+ 𝐹 ⋅ (𝑋

𝑟
1
,𝐺
− 𝑋
𝑖,𝐺
) + 𝐹 ⋅ (𝑋

𝑟
2
,𝐺
− 𝑋
𝑟
3
,𝐺
) ; (8)

“DE/current-to-rand/2”
𝑉
𝑖,𝐺
= 𝑋
𝑖,𝐺
+ 𝐹 ⋅ (𝑋

𝑟
1
,𝐺
− 𝑋
𝑖,𝐺
)

+ 𝐹 ⋅ (𝑋
𝑟
2
,𝐺
− 𝑋
𝑟
3
,𝐺
+ 𝑋
𝑟
4
,𝐺
− 𝑋
𝑟
5
,𝐺
) ,

(9)



Journal of Applied Mathematics 3

(1) begin
(2) Set the generation counter 𝐺 = 0; and randomly initialize a population of

NP ∗ 𝐷 individuals𝑋
𝑖
. Initialize the parameter 𝑝1, 𝑝2

(3) Evaluate the fitness for each individual in 𝑃.
(4) while stopping criteria is not satisfied do
(5) scale = randg(2 ∗ rand) ∗ (rand-rand)
(6) for 𝑖 = 1 to NP do
(7) select randomly 𝑎 ̸= 𝑖
(8) 𝑠

𝑖
= 𝑥
𝑖
+ scale × (𝑥

𝑎
− 𝑥
𝑖
)

(9) end
(10) 𝑟 = rand (NP,𝐷);
(11) If rand < rand then
(12) If rand < 𝑝1 then
(13) for 𝑖 = 1 to NP do
(14) 𝑟(𝑖,:) = 𝑟(𝑖,:) < rand
(15) end
(16) else
(17) for 𝑖 = 1 to NP do
(18) 𝑟(𝑖, randi(𝐷)) = 0
(19) end
(20) end
(21) else
(22) for 𝑖 = 1 to NP do
(23) 𝑑 = randi(𝐷, 1, ⌈𝑝2 ⋅ rand⌉)
(24) for 𝑗 = 1 to size (𝑑, 2) do
(25) 𝑟(𝑖, 𝑑(𝑗)) = 0
(26) end
(27) end
(28) end
(29) 𝑟 = 𝑟 > 0;
(30) 𝑠(𝑟) = 𝑋(𝑟);
(31) for 𝑖 = 1 to NP do
(32) Evaluate the offspring 𝑠

𝑖

(33) If 𝑠
𝑖
is better than𝑋

𝑖
then

(34) 𝑋
𝑖
= 𝑠
𝑖

(35) end if
(36) end for
(37) Memorize the best solution achieved so far
(38) end while
(39) end

Procedure 1: Algorithm description of Differential search algorithm.

where 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
5
∈ [1, . . . ,NP] are randomly chosen

integers and 𝑟
1
̸= 𝑟
2
̸= 𝑟
3
̸= 𝑟
4
̸= 𝑟
5
̸= 𝑖. 𝐹 is the

scaling factor controlling the amplification of the differential
evolution. 𝑋best,𝐺 is the best individual vector with the best
value in the population at generation 𝐺.

Based on DE algorithm and the property of DS, we
propose the following four novel search mechanisms to
improve DS:

“DS/rand/1”

𝑠
𝑖,𝐺
= 𝑋
𝑟
1
,𝐺
+ scale ⋅ (𝑋

𝑟
2
,𝐺
− 𝑋
𝑖,𝐺
) ; (10)

“DS/rand/2”

𝑠
𝑖,𝐺
= 𝑋
𝑟
1
,𝐺
+ scale ⋅ (𝑋

𝑟
2
,𝐺
− 𝑋
𝑖,𝐺
) + scale ⋅ (𝑋

𝑟
4
,𝐺
− 𝑋
𝑟
5
,𝐺
) ;

(11)

“DS/current-to-rand/1”

𝑠
𝑖,𝐺
= 𝑋
𝑖,𝐺
+ rand ⋅ (𝑋

𝑟
1
,𝐺
− 𝑋
𝑖,𝐺
) + scale ⋅ (𝑋

𝑟
2
,𝐺
− 𝑋
𝑟
3
,𝐺
) ;

(12)

“DS/current-to-rand/2”

𝑠
𝑖,𝐺
= 𝑋
𝑖,𝐺
+ rand ⋅ (𝑋

𝑟
1
,𝐺
− 𝑋
𝑖,𝐺
)

+ scale ⋅ (𝑋
𝑟
2
,𝐺
− 𝑋
𝑟
3
,𝐺
+ 𝑋
𝑟
4
,𝐺
− 𝑋
𝑟
5
,𝐺
) ,

(13)

where scale controls the size of change in the positions of the
individuals of the artificial-organisms.

Similar to DE, four mutation schemes are proposed in
this paper.The searchmethods “DS/rand/1” and “DS/rand/2”
are two strategies which bear stronger exploration capabilities
that can effectively maintain population diversity. Compared
with other strategies, the search schemes “DS/current to
rand/1” and “DS/current to rand/2” benefit from their fast
convergence by guiding the evolutionary search with the
random target. However, these two new strategies may lose
their diversity and their global exploration abilities. Com-
pared with the “DS/original/1,” we can find the advantages
of these four strategies. “DS/rand/1” and “DS/rand/2” are
random enough for exploration. “DS/current to rand/1” and
“DS/current to rand/2” can guide the search to a random
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Initial the population and
the parametersp1 and p2

Evaluate the fitness for
each individual

Parameter
 1scale

Parameter
scale 2

Parameter
scale 3

DS/rand/1 DS/rand2 DS/current to
rand/1

Calculate the
individual

Calculate the
individual

Calculate the
individual

Three search solutions are independently calculated,
and then the best solution will be retained in the next

generation

Using the random process to generate a new offspring
population

stopover site population and
Selection operator is used to choose the next

population between the
the artificial-organism population

Is termination criteria satisfied?

Yes
No

Output the best solution and
final population

Figure 1: Flowchart of the CDS algorithm.

direction. In the experiment section, we will use different
functions to test these five schemes so that we can show the
effective and efficient of these strategies.

3.2. CompositeDS. For successful application to optimization
problems, a population-based optimization should not only
find the global optimization solution but also have a faster
convergence speed. Based on the experiment results of these
five search schemes, we find the effectiveness of differential
search algorithm in solving global numerical problem that
depends on selected search schemes and its parameters.
However, some different problems need different search

schemes and different parameter values according to their
problems. From the experiment results in Section 4, we can
find that five search schemes show different advantages in
various directions such as diversity and convergence rate and
so on.

In order to obtain these goals and combine the advantages
of these different schemes, a composite differential search
algorithm (CDS) is proposed in this paper, which is used to
randomly combine several search schemes and some relative
parameters to produce the new offspring. The flowchart of
the CDS algorithm is shown in Figure 1. In this paper, we use
three search schemes and three control parameters to consist
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Table 1: Benchmark functions based on our experimental study for high-dimensional.

Test function Range Optimum

𝑓
01
=

𝑛

∑

𝑖=1

𝑥
2

𝑖
[−100, 100] 0

𝑓
02
=

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
+

𝑛

∏

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

[−10, 10] 0

𝑓
03
=

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

[−100, 100] 0

𝑓
04
= max

𝑖
{
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
, 1 ≤ 𝑖 ≤ 𝐷} [−100, 100] 0

𝑓
05
=

𝐷−1

∑

𝑖=1

[100(𝑥
𝑖+1
− 𝑥
2

𝑖
)
2
+ (𝑥
𝑖
− 1)
2
] [−30, 30] 0

𝑓
06
=

𝐷

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2

[−100, 100] 0

𝑓
07
=

𝐷

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random[0, 1) [−1.28, 1.28] 0

𝑓
08
=

𝐷

∑

𝑖=1

−𝑥
𝑖
sin(√󵄨󵄨󵄨

󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
) [−500, 500]

−418.9829
∗𝑛

𝑓
09
=

𝐷

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10] [−5.12, 5.12] 0

𝑓
10
= −20 exp(−0.2√ 1

𝐷

𝐷

∑

𝑖=1

𝑥
2

𝑖
) − exp( 1

𝐷

𝐷

∑

𝑖=1

cos 2𝜋𝑥
𝑖
) + 20 + 𝑒 [−32, 32] 0

𝑓
11
=

1

400

𝐷

∑

𝑖=1

𝑥
2

𝑖
−

𝐷

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1 [−600, 600] 0

𝑓
12
=

𝜋

𝐷

{10sin2 (𝜋𝑦
𝑖
) +

𝐷−1

∑

𝑖=1

(𝑦
𝑖
− 1)

2

[1 + 10sin2 (𝜋𝑦
𝑖
+ 1)] + (𝑦𝐷 − 1)

2

+

𝐷

∑

𝑖=1

𝑢 (𝑥
𝑖
, 10, 100, 4)}

𝑦
𝑖
= 1 +

𝑥
𝑖
+ 1

4

𝑢 (𝑥
𝑖
, 𝑎, 𝑘, 𝑚) =

{
{
{

{
{
{

{

𝑘(𝑥
𝑖
− 𝑎)
𝑚

𝑥
𝑖
> 𝑎

0 −𝑎 < 𝑥
𝑖
< 𝑎

𝑘(−𝑥
𝑖
− 𝑎)
𝑚
𝑥
𝑖
< −𝑎

[−50, 50] 0

𝑓
13
= 0.1{10sin2 (𝜋𝑦

𝑖
) +

𝐷−1

∑

𝑖=1

(𝑦
𝑖
− 1)
2
[1 + 10sin2 (𝜋𝑦

𝑖
+ 1)] + (𝑦𝐷 − 1)

2
} +

𝐷

∑

𝑖=1

𝑢(𝑥
𝑖
, 10, 100, 4) [−50, 50] 0

a pool to improve the global search ability and enhance the
convergence rate. In the algorithm, three search solutions
are independently calculated and then the best solution will
be retained in the next generation. The chosen three search
schemes are describe as follows:

“DS/rand/1,”
“DS/rand/2,”
“DE/current-to-rand/1.”

The values of scale are

scale1 = rand𝑔 (2 ∗ rand) ∗ (rand − rand)

scale2 = rand𝑔 (3 ∗ rand) ∗ (rand − rand)

scale3 = rand𝑔 (4 ∗ rand) ∗ (rand − rand) .

(14)

4. Experimental Results

To evaluate the performance of our algorithm, we applied it
to 23 standards benchmark functions in [23].These functions

have been widely used in the literature. Since we do not
make any modification of these functions, they are given in
Table 1. The first seven functions are unimodal functions.
The 𝑓

06
is the step function which has one minimum and

is discontinuous. Function 𝑓
07
is a noisy quadratic function.

The following seven functions are multimodal test functions.
For these functions, the number of local minima increases
exotically with the problem dimensions. Then, ten multi-
modal test functions with fixed dimension which have only a
few local search minima are used in our experimental study.
Tables 1 and 2 have shown the details of these functions. So
far, these problems have been widely used as benchmarks for
study with different methods by many researchers.

The algorithm is coded in MATLAB 7.9 and experiments
are made on a Pentium 3.0GHz processor with 4.0GB of
memory.

In this experiment, we set the number of particles to
be 100, and we set the p1 and p2 to be 0.3 ∗ rand. In
this strategy, all vectors for the update rule are selected
from the population at random and, then, it has no bias
to any special search directions and it chooses new search



6 Journal of Applied Mathematics

Table 2: Benchmark functions based on our experimental study for fixed function.

Test function 𝐷 Range Optimum

𝑓
14
= [

1

500

+

25

∑

𝑗=1

1

𝑗 + ∑
2

𝑖=1
(𝑥
𝑖
− 𝑎
𝑖𝑗
)
6
]

−1

2 [−65.53, 65.53] 0.998004

𝑓
15
=

11

∑

𝑖=1

[𝑎
𝑖
−

𝑥
1
(𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
𝑖
)

𝑏
2

𝑖
+ 𝑏
1
𝑥
3
+ 𝑥
4

]

2

4 [−5, 5] 0.0003075

𝑓
16
= 4𝑥
2

1
− 2.1𝑥

4

𝑖
+

1

3

𝑥
6

1
+ 𝑥
1
𝑥
2
− 4𝑥
2

2
+ 4𝑥
4

2
2 [−5, 5] −1.0316285

𝑓
17
= (𝑥
2
−

5.1

4𝜋
2
𝑥
2

1
+

5

𝜋

𝑥
1
− 6)

2

+ 10 (1 −

1

8𝜋

) cos 𝑥
1
+ 10 2 [−5, 10] ∗ [0, 15] 0.398

𝑓
18
= ⌊1 + (𝑥

1
+ 𝑥
2
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Figure 2: Comparison of performance of six algorithms for mini-
mization of 𝑓

01
with dimension 30.

directions in a random manner. The maximum number of
fitness function evaluations is 100000, 300000, and 500000
for 𝑓
1
–𝑓
13

with 10, 30, and 50 dimensions, respectively, and
is 10000 for𝑓

14
–𝑓
23
. For all test functions, the algorithms

carry out 30 independent runs each starting from a random
population with different random seeds.

4.1. Comparison of Different Search Schemes. To investigate
the performance of the different search schemes employed

on the effectiveness of the differential search algorithm,
five search schemes are proposed in the original DS.
Four schemes, namely, DS/original/1, DS/rand/1, DS/rand/2,
DS/current to rand/1, and DS/current to rand/2 are used in
our experiments. These functions were studied at 𝐷 = 10,
𝐷 = 30, and 𝐷 = 50. Some representative convergence
graphs are shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
and 13. As can be seen in Table 3, for the 10𝐷 problem, it is
interesting to note that DS/rand/1 outperforms DS/original/1
on thirteen functions (𝑓

01
–𝑓
13
). The DS/rand/1 can find the

global optimization value on 6 functions (𝑓
06
, 𝑓
08
, 𝑓
09
, 𝑓
10
,

𝑓
11
, 𝑓
12
, and 𝑓

13
). On three functions (𝑓

01
, 𝑓
02
, and 𝑓

07
), the

DS/rand/1 can find the nearest global optimization solution.
For the rest of the problems, the DS/rand/1 cannot find
the best solutions within the maximum function evaluation.
Comparedwith theDS/original/1, DS/rand/2 can give a better
solution on all functions.This scheme also can find the global
optimization value on six functions (𝑓

06
, 𝑓
08
, 𝑓
09
, 𝑓
10
, 𝑓
11
,

𝑓
12
, and 𝑓

13
). But this method cannot beat the DS/rand/1.

For 𝑓
05
, the DS/rand/2 search scheme can provide a better

solution than the DS/rand/1 method. For 𝑓
01
, 𝑓
02
, 𝑓
03
, 𝑓
04
,

and 𝑓
06
, the DS/rand/1 search scheme can own better search

performance than DS/rand/2. For the DS/current to rand/1
and the DS/current to rand/2 schemes, these two schemes
outperform other search schemes. The experiment results
are shown in Table 4 for 30𝐷; as can be seen in Table 4,
DS/rand/1 can provide the highest accuracy on functions
𝑓
01
, 𝑓
02
, 𝑓
04
, and 𝑓

05
. For 𝑓

03
, the DS/current to rand/2 can

obtain better solutions. For 𝑓
06
, all search schemes can find

the optimal solution.The searchmethodDS/current to rand/1
can performbetter on function𝑓

07
. Formultimodal functions
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Table 3: Comparisons of different search schemes for 10D.

𝐹
DS/original/1 DS/rand/1 DS/rand/2 DS/current to rand/1 DS/current to rand/2
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

𝑓
01

2.3558𝑒 − 010

(2.8234𝑒 − 010)
4.1354e − 046
(7.6284e − 046)

4.9124𝑒 − 043

(6.9672𝑒 − 043)
2.8575𝑒 − 037

(7.4424𝑒 − 037)
8.4320𝑒 − 036

(8.0751𝑒 − 036)

𝑓
02

1.0358𝑒 − 006

(9.0345𝑒 − 007)
2.7832e − 026
(2.5461e − 026)

2.6303𝑒 − 024

(2.1985𝑒 − 024)
6.5910𝑒 − 021

(7.0243𝑒 − 021)
9.4820𝑒 − 020

(6.9772𝑒 − 020)
𝑓
03 1.6872 (1.3868) 0.2733 (0.2685) 0.4707 (0.2919) 0.0141 (0.0199) 0.0128 (0.0137)

𝑓
04 0.2350 (0.0706) 3.2952𝑒 − 005

(1.6684𝑒 − 005)
5.5161𝑒 − 005

(3.0459𝑒 − 005)
1.0130e − 005
(1.0257e − 005)

1.9844𝑒 − 005

(1.7062𝑒 − 005)
𝑓
05 0.2244 (0.3258) 0.1781 (0.2966) 0.1137 (0.3661) 0.0558 (0.0900) 0.0889 (0.1523)
𝑓
06 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

𝑓
07 0.0052 (0.0026) 0.0022 (8.5176𝑒 − 004) 0.0026 (7.5113𝑒 − 004) 0.0016

(8.2560e − 004) 0.0019 (7.0409𝑒 − 004)

𝑓
08

−4.1898𝑒 + 03

(0.0026)
−4.1898e + 03
(1.8828e − 012)

−4.1898e + 03
(1.8828e − 012)

−4.1898e + 03
(1.7862e − 012)

−4.1898e + 03
(1.7359e − 012)

𝑓
09 0.3075 (0.4777) 0 (0) 0 (0) 0 (0) 0 (0)

𝑓
10

3.5531𝑒 − 005

(2.6080𝑒 − 005) 4.4409e − 015 (0) 4.4409e − 015 (0) 4.4409e − 015 (0) 4.4409e − 015 (0)

𝑓
11 0.0032 (0.0048) 0 (0) 0 (0) 1.6701𝑒 − 009

(4.2692𝑒 − 009)
7.3047𝑒 − 008

(1.0674𝑒 − 007)

𝑓
12

4.2526𝑒 − 011

(5.4059𝑒 − 011)
4.7116e − 032
(1.1332e − 047)

4.7116e − 032
(1.1332e − 047)

4.7116e − 032
(1.1332e − 047)

4.7116e − 032
(1.1332e − 047)

𝑓
13

7.9206𝑒 − 011

(6.3888𝑒 − 011)
1.3498e − 032
(2.8330e − 048)

1.3498e − 032
(2.8330e − 048)

1.3498e − 032
(2.8330e − 048)

1.3498e − 032
(2.8330e − 048)

Table 4: Comparisons of different schemes for 30𝐷.

𝐹
DS/original/1 DS/rand/1 DS/rand/2 DS/current to

rand/1
DS/current to

rand/2
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

𝑓
01

2.2615𝑒 − 007

(2.7476𝑒 − 007)
4.8642e − 050
(5.8982e − 050)

2.7065𝑒 − 046

(3.3764𝑒 − 046)
8.9539𝑒 − 022

(2.3306𝑒 − 021)
1.9725𝑒 − 029

(4.8562𝑒 − 029)

𝑓
02

5.4923𝑒 − 006

(3.0819𝑒 − 006)
2.9127e − 030
(2.0084e − 030)

7.0042𝑒 − 028

(7.3930𝑒 − 028)
4.7959𝑒 − 018

(1.1047𝑒 − 017)
2.2565𝑒 − 020

(3.0711𝑒 − 020)

𝑓
03 43.3209 (13.0610) 931.1284 (356.2153) 1.3430𝑒 + 003

(566.5445) 16.3851 (7.4977) 15.8489 (8.3607)

𝑓
04 1.6862 (0.6287) 0.0117 (0.0100) 0.0142 (0.0065) 1.0787 (0.4760) 0.4105 (0.1242)
𝑓
05 17.9165 (16.1629) 7.3142 (18.4437) 12.3902 (26.8529) 31.6675 (25.9994) 40.8267 (34.9220)
𝑓
06 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

𝑓
07 0.0104 (0.0018) 0.0080 (0.0026) 0.0087 (0.0020) 0.0031

(8.7208e − 004) 0.0035 (0.0011)

𝑓
08

−1.2546𝑒 + 004

(49.1418)
−1.2569e + 04
(1.8828e − 012)

−1.2569e + 04
(1.8828e − 012)

−1.2569e + 04
(3.5724e − 12)

−1.2569𝑒 + 04

(1.0397𝑒 − 10)
𝑓
09 5.0455 (1.7970) 0 (0) 0 (0) 0 (0) 0 (0)

𝑓
10

6.0497𝑒 − 005

(3.0925𝑒 − 05) 7.9936e − 015 (0) 7.9936e − 015 (0) 5.0772𝑒 − 012

(8.7825𝑒 − 12)
1.7941𝑒 − 014

(4.0729𝑒 − 15)

𝑓
11

1.7329𝑒 − 007

(2.2580𝑒 − 007) 0 (0) 0 (0) 9.8994𝑒 − 013

(3.8340𝑒 − 012) 0 (0)

𝑓
12

5.8453𝑒 − 010

(1.6621𝑒 − 009)
1.5705e − 032
(2.8330e − 048)

1.5705e − 032
(2.8330e − 048)

1.2823𝑒 − 025

(2.4757𝑒 − 025)
1.0572𝑒 − 031

(2.7593𝑒 − 031)

𝑓
13

8.7037𝑒 − 009

(1.1884𝑒 − 008)
1.3498e − 032
(2.8330e − 048)

1.3498e − 032
(2.8330e − 048)

1.1804𝑒 − 024

(1.5019𝑒 − 024)
8.1287𝑒 − 031

(2.4528𝑒 − 030)
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Figure 4: Comparison of performance of six algorithms for mini-
mization of 𝑓
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with dimension 30.

𝑓
08
–𝑓
13
, the DS/rand/1 and DS/rand/2 can also find the

optimal solution on these complex functions. DS/current to
rand/1 andDS/current to rand/2 can provide closer to optimal
solution on multimodal optimization functions,; however,
they perform a little worse than DS/rand/1 and DS/rand/2.
For 50𝐷 problems, the experiment results are shown in
Table 5; as is shown in Table 5, while solving the unimodial
optimization problem, DS/rand/1 can give a better solution
than other schemes for functions𝑓

01
,𝑓
02
, and𝑓

05
. For𝑓

03
and

𝑓
07
, DS/current to rand/2 outperforms the other algorithms,
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Figure 6: Comparison of performance of six algorithms for mini-
mization of 𝑓
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with dimension 30.

but they are a little far from the global optimums. For the 𝑓
04
,

DS/rand/2 has a better solution. For multimodal functions
𝑓
08
–𝑓
13

with many local minima, the final results are more
important because this function can reflect the algorithm’s
ability to escape from poor local optima and obtain the
near-global optimum.The DS/rand/1 and DS/rand/2 provide
better solutions than other algorithms except for 𝑓

09
. As can

be seen in Tables 3–5, the results show that DS/rand/1 and
DS/rand/2 perform much better in most cases than other
schemes.
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4.2. Sensitivities to Population Size. Performance of DS is
always sensitive to the selected population size. If the pop-
ulation is too small, the diversity of possible movements is
poor and then the algorithm may be easily trapped in a local
optimum. On the other hand, if the population size is too
large,DS exhausts the fitness evaluations very quicklywithout
being able to locate the optimum. Therefore, the choice of
the best population size of DS is always critical for different
problems.

To investigate the sensitivity of the proposed algorithm to
variations of population size, some experiments are repeated
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Figure 10: Comparison of performance of six algorithms for
minimization of 𝑓

11
with dimension 30.

for NP = 50 and NP = 150. The experimental results are
given in Tables 6 and 7 for five search schemes at dimension
𝐷 = 30. For NP = 50, the performances of DS/rand/1
and DS/rand/2 are significantly superior to that of other
algorithms according to the experimental results shown in
Table 6, since the DS/rand/1 and DS/rand/2 are better than
other algorithms except for the 𝑓

03
and 𝑓

07
. For 𝑓

12
and

𝑓
13
, all algorithms can locate the near-global optimum over

all 50 runs. When the population increases to NP = 100,
DS/rand/1 andDS/rand/2 can obtain values higher thanNP =
50. We can find that DS/rand/1 and DS/rand/2 are faster
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Table 5: Comparisons of different schemes for 50𝐷.

𝐹
DS/original/1 DS/rand/1 DS/rand/2 DS/current to

rand/1
DS/current to

rand/2
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

𝑓
01

1.6310𝑒 − 005

(1.2662𝑒 − 005)
1.2837e − 054
(1.7623e − 054)

2.2293𝑒 − 050

(3.4395𝑒 − 050)
4.0249𝑒 − 016

(8.6977𝑒 − 016)
4.9414𝑒 − 024

(5.9120𝑒 − 024)

𝑓
02

3.0789𝑒 − 005

(1.1049𝑒 − 005)
1.1757e − 033
(1.1452e − 033)

5.6476𝑒 − 031

(5.2712𝑒 − 031)
5.3804𝑒 − 016

(5.1135𝑒 − 016)
9.7757𝑒 − 019

(9.9765𝑒 − 019)

𝑓
03 166.2852 (47.9112) 5.0333𝑒 + 03

(1.7113𝑒 + 03)
8.0260𝑒 + 03

(2.3708𝑒 + 03) 103.8671 (32.2863) 92.9566 (25.0034)

𝑓
04 3.7643 (0.5088) 1.5477 (0.8361) 0.9776 (1.2725) 3.6342 (0.8480) 2.7460 (0.5450)
𝑓
05 109.8978 (41.1906) 45.0618 (37.5075) 53.0212 (35.5623) 86.9502 (36.1520) 108.7941 (40.4535)
𝑓
06 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
𝑓
07 0.0175 (0.0042) 0.0124 (0.0026) 0.0125 (0.0024) 0.0068 (0.0022) 0.0068 (0.0018)

𝑓
08

−2.0696𝑒 + 04

(130.9369)
−2.0949e + 04
(7.5313e − 12)

−2.0949e + 04
(7.5313e − 012)

−2.0949𝑒 + 04

(7.1137𝑒 − 010)
−2.0949𝑒 + 04

(8.5767𝑒 − 009)

𝑓
09 10.7632 (1.7425) 0.0663 (0.2569) 0.0663 (0.2569) 3.4343𝑒 − 015

(7.2457𝑒 − 015)
3.5527e − 016
(1.3760e − 015)

𝑓
10

2.6408𝑒 − 004

(1.0382𝑒 − 004)
8.2305e − 015
(9.1731e − 16) 7.9936e − 015 (0) 8.5383𝑒 − 010

(6.0168𝑒 − 010)
3.2371𝑒 − 013

(2.5385𝑒 − 013)

𝑓
11

9.6302𝑒 − 006

(5.9119𝑒 − 006) 0 (0) 0 (0) 0.0023 (0.0040) 6.5715𝑒 − 004

(0.0025)

𝑓
12

9.1415𝑒 − 009

(7.6863𝑒 − 009)
9.4233e − 033
(1.4165e − 048)

9.4233e − 033
(1.4165e − 048)

5.0418𝑒 − 020

(8.3674𝑒 − 020)
1.0849𝑒 − 026

(2.4721𝑒 − 026)

𝑓
13

4.1252𝑒 − 007

(3.0875𝑒 − 007)
1.3498e − 032
(2.8330e − 048)

1.3498e − 032
(2.8330e − 048)

5.4875𝑒 − 017

(1.9201𝑒 − 016)
9.2927𝑒 − 025

(1.9463𝑒 − 024)

Table 6: Comparisons of different schemes with population size 50.

𝐹
DS/original/1 DS/rand/1 DS/rand/2 DS/current to

rand/1
DS/current to

rand/2
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

𝑓
01

2.0914𝑒 − 015

(2.6079𝑒 − 015)
7.7011e − 102
(9.2672e − 102)

2.7581𝑒 − 095

(6.0508𝑒 − 095)
3.7710𝑒 − 043

(1.3868𝑒 − 042)
1.1331𝑒 − 057

(4.1221𝑒 − 057)

𝑓
02

4.7037𝑒 − 012

(3.7353𝑒 − 012)
7.3457e − 061
(5.8919e − 061)

1.9472𝑒 − 056

(1.9189𝑒 − 056)
6.5250𝑒 − 035

(1.3700𝑒 − 034)
7.1128𝑒 − 040

(8.8854𝑒 − 040)
𝑓
03 14.8940 (7.6726) 33.0264 (16.4273) 59.7994 (37.5156) 11.0305 (4.7774) 3.5511 (2.3166)
𝑓
04 2.4420 (0.5466) 3.5091 (2.3410) 0.2884 (0.3909) 3.3452 (1.3393) 1.5449 (0.5293)
𝑓
05 14.7717 (23.5488) 8.6311 (19.1644) 18.3336 (29.3195) 43.8933 (33.3687) 52.1674 (29.2545)
𝑓
06 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

𝑓
07 0.0099 (0.0032) 0.0047

(9.4232𝑒 − 004) 0.0060 (0.0016) 0.0032 (0.0013) 0.0034 (0.0012)

𝑓
08

−1.2569𝑒 + 04

(5.0912𝑒 − 009)
−1.2530𝑒 + 04

(57.7920)
−1.2569e + 04
(1.8828e − 012)

−1.2569𝑒 + 04

(2.5261𝑒 − 012)
−1.2569𝑒 + 04

(2.2278𝑒 − 012)
𝑓
09 0.1329 (0.3501) 0.5970 (1.0503) 0.1990 (0.5578) 0 (0) 0 (0)

𝑓
10

2.6201𝑒 − 009

(1.6822𝑒 − 009)
7.2831e − 015
(1.4710e − 015) 7.9936𝑒 − 015 (0) 0.0621 (0.2405) 1.1309𝑒 − 014

(3.1396𝑒 − 015)

𝑓
11

4.9590𝑒 − 016

(8.4121𝑒 − 016) 0 (0) 0 (0) 0.0029 (0.0114) 0 (0)

𝑓
12

1.0090𝑒 − 018

(1.2563𝑒 − 018)
1.5705e − 032
(2.8330e − 048)

1.5705e − 032
(2.8330e − 048)

1.5705e − 032
(2.8330e − 048)

1.5705e − 032
(2.8330e − 048)

𝑓
13

2.8327𝑒 − 017

(4.0493𝑒 − 017)
1.3498e − 032
(2.8330e − 048)

1.3498e − 032
(2.8330e − 048)

2.6243e − 032
(4.9023e − 032)

1.3498e − 032
(2.8330e − 048)
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Table 7: Comparisons of different schemes with population size 150.

𝐹
DS/original/1 DS/rand/1 DS/rand/2 DS/current to

rand/1
DS/current to

rand/2
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

𝑓
01

1.5722𝑒 − 004

(1.2224𝑒 − 004)
3.0028e − 032
(2.9420e − 032)

8.9889𝑒 − 030

(7.0452𝑒 − 030)
1.8911𝑒 − 016

(2.2287𝑒 − 016)
1.0279𝑒 − 019

(2.7982𝑒 − 019)

𝑓
02

5.8298𝑒 − 004

(3.7871𝑒 − 004)
7.1419e − 020
(3.3572e − 020)

2.7142𝑒 − 018

(1.0027𝑒 − 018)
3.3349𝑒 − 012

(5.4473𝑒 − 012)
8.9033𝑒 − 014

(9.4785𝑒 − 014)

𝑓
03 64.9635 (15.6465) 2.8743𝑒 + 003

(894.1078)
4.2360𝑒 + 03

(1.0469𝑒 + 003) 21.7178 (8.9633) 18.7298 (5.6650)

𝑓
04 1.7494 (0.3367) 0.1340 (0.0298) 0.1697 (0.0380) 0.5319 (0.2686) 0.2483 (0.1518)
𝑓
05 23.9970 (8.9851) 18.6080 (27.1287) 9.8861 (14.1526) 50.9432 (31.0728) 33.1652 (26.2450)
𝑓
06 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

𝑓
07 0.0135 (0.0046) 0.0112 (0.0024) 0.0118 (0.0019) 0.0034

(8.6636e − 004) 0.0044 (0.0015)

𝑓
08

−1.2209𝑒 + 004

(193.5436)
−1.2569e + 04
(1.8828e − 012)

−1.2569e + 04
(1.8828e − 012)

−1.2569𝑒 + 04

(9.3662𝑒 − 004)
−1.2569𝑒 + 04

(0.0354)

𝑓
09 9.4868 (1.2681) 0 (0) 0 (0) 3.7046𝑒 − 011

(9.9032𝑒 − 011)
7.1731𝑒 − 008

(2.5004𝑒 − 007)

𝑓
10

0.0017
(6.3671𝑒 − 004)

8.7041e − 015
(1.4710e − 015)

1.4388𝑒 − 014

(3.3435𝑒 − 015)
3.0953𝑒 − 009

(3.3465𝑒 − 009)
3.3529𝑒 − 011

(2.1616𝑒 − 011)

𝑓
11

8.5273𝑒 − 005

(5.6899𝑒 − 005) 0 (0) 0 (0) 2.0576𝑒 − 015

(7.1610𝑒 − 015)
7.5495𝑒 − 016

(2.9239𝑒 − 015)

𝑓
12

1.4976𝑒 − 007

(1.2099𝑒 − 007)
1.5705e − 032
(2.8330e − 048)

1.3626𝑒 − 031

(1.3531𝑒 − 031)
2.9735𝑒 − 018

(4.6641𝑒 − 018)
8.8589𝑒 − 023

(1.3653𝑒 − 022)

𝑓
13

4.7327𝑒 − 006

(3.8476𝑒 − 006)
1.6374e − 032
(3.5683e − 033)

8.2275𝑒 − 031

(1.0420𝑒 − 030)
1.5548𝑒 − 016

(3.7989𝑒 − 016)
2.1502𝑒 − 021

(3.5186𝑒 − 021)
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Figure 11: Comparison of performance of six algorithms for
minimization of 𝑓

12
with dimension 30.

than DS/current to rand/1 and DS/current to rand/2 on these
functions. ForNP = 150 in Table 7, DS/rand/1 andDS/rand/2
are able to obtain a significantly better performance than
other schemes on 11 functions.
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Figure 12: Comparison of performance of six algorithms for
minimization of 𝑓

13
with dimension 30.

4.3. Comparison of CDS with Enhanced Differential Search
Algorithm. The performances of CDS are compared with
those of original DS and DS with “DS/rand/1”. In CDS,
the population size is 40. The maximum number of fitness



12 Journal of Applied Mathematics

Table 8: Comparisons of CDS with DS/original/1 and DS/rand/1.

𝐹 𝐷
DS/original/1 DS/rand/1 CDS
Mean (std) Mean (std) Mean (std)

𝑓
01

10 2.3558𝑒 − 010

(2.8234𝑒 − 010)
4.1354𝑒 − 046

(7.6284𝑒 − 046)
1.6712e − 067
(3.4629e − 067)

30 2.2615𝑒 − 007

(2.7476𝑒 − 007)
4.8642𝑒 − 050

(5.8982𝑒 − 050)
1.6645e − 082
(3.9759e − 082)

50 1.6310𝑒 − 005

(1.2662𝑒 − 005)
1.2837𝑒 − 054

(1.7623𝑒 − 054)
4.0148e − 098
(7.8156e − 098)

𝑓
02

10 1.0358𝑒 − 006

(9.0345𝑒 − 007)
2.7832𝑒 − 026

(2.5461𝑒 − 026)
1.8086e − 038
(1.7428e − 038)

30 5.4923𝑒 − 006

(3.0819𝑒 − 006)
2.9127𝑒 − 030

(2.0084𝑒 − 030)
2.0469e − 047
(1.2285e − 047)

50 3.0789𝑒 − 005

(1.1049𝑒 − 005)
1.1757𝑒 − 033

(1.1452𝑒 − 033)
2.2422e − 055
(2.1011e − 055)

𝑓
03

10 1.6872 (1.3868) 0.2733 (0.2685) 6.0309e − 006
(1.1497e − 005)

30 43.3209 (13.0610) 931.1284 (356.2153) 2.8232 (2.0270)

50 166.2852 (47.9112) 5.0333𝑒 + 03

(1.7113𝑒 + 03) 56.4185 (52.1054)

𝑓
04

10 0.2350 (0.0706) 3.2952𝑒 − 005

(1.6684𝑒 − 005)
2.0296e − 013
(2.1747e − 013)

30 1.6862 (0.6287) 0.0117 (0.0100) 3.3495e − 011
(5.1641e − 011)

50 3.7643 (0.5088) 1.5477 (0.8361) 0.0829 (0.0980)

𝑓
05

10 0.2244 (0.3258) 0.1781 (0.2966) 0.0430 (0.1053)
30 17.9165 (16.1629) 7.3142 (18.4437) 18.5197 (5.3463)
50 109.8978 (41.1906) 45.0618 (37.5075) 65.8609 (25.7663)

𝑓
06

10 0 (0) 0 (0) 0 (0)
30 0 (0) 0 (0) 0 (0)
50 0 (0) 0 (0) 0 (0)

𝑓
07

10 0.0052 (0.0026) 0.0022
(8.5176𝑒 − 004)

0.0015
(3.2425e − 004)

30 0.0104 (0.0018) 0.0080 (0.0026) 0.0031
(9.0754e − 004)

50 0.0175 (0.0042) 0.0124 (0.0026) 0.0039 (0.0011)

𝑓
08

10 −4.1898𝑒 + 03

(0.0026)
−4.1898𝑒 + 03

(1.8828𝑒 − 012)
−4.1898e + 03
(9.5869e − 013)

30 −1.2546𝑒 + 004

(49.1418)
−1.2569𝑒 + 04

(1.8828𝑒 − 012)
−1.2569e + 004
(1.9174e − 012)

50 −2.0696𝑒 + 04

(130.9369)
−2.0949𝑒 + 04

(7.5313𝑒 − 12)
−2.0949e + 004
(3.8348e − 012)

𝑓
09

10 0.3075 (0.4777) 0 (0) 0 (0)
30 5.0455 (1.7970) 0 (0) 0 (0)
50 10.7632 (1.7425) 0.0663 (0.2569) 0 (0)

𝑓
10

10 3.5531𝑒 − 005

(2.6080e-005) 4.4409𝑒 − 015 (0) 3.0198e − 015
(1.8346e − 015)

30 6.0497𝑒 − 005

(3.0925𝑒 − 005) 7.9936𝑒 − 015 (0) 4.4409e − 015 (0)

50 2.6408𝑒 − 004

(1.0382𝑒 − 004)
8.2305𝑒 − 015

(9.1731𝑒 − 16)
4.7962e − 015
(1.1235e − 015)
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Table 8: Continued.

𝐹 𝐷
DS/original/1 DS/rand/1 CDS
Mean (std) Mean (std) Mean (std)

𝑓
11

10 0.0032 (0.0048) 0 (0) 0 (0)

30 1.7329𝑒 − 007

(2.2580𝑒 − 007) 0 (0) 0 (0)

50 9.6302𝑒 − 006

(5.9119𝑒 − 006) 0 (0) 0 (0)

𝑓
12

10 4.2526𝑒 − 011

(5.4059𝑒 − 011)
4.7116𝑒 − 032

(1.1332𝑒 − 047) 4.7116e − 032 (0)

30 5.8453𝑒 − 010

(1.6621𝑒 − 009)
1.5705𝑒 − 032

(2.8330𝑒 − 048)
1.5705e − 032
(2.8330e − 048)

50 9.1415𝑒 − 009

(7.6863𝑒 − 009)
9.4233𝑒 − 033

(1.4165𝑒 − 048)
9.4233e − 033
(1.4165e − 048)

𝑓
13

10 7.9206𝑒 − 011

(6.3888𝑒 − 011)
1.3498𝑒 − 032

(2.8330𝑒 − 048)
1.3498e − 032
(2.8330e − 048)

30 8.7037𝑒 − 009

(1.1884𝑒 − 008)
1.3498𝑒 − 032

(2.8330𝑒 − 048)
1.3498e − 032
(2.8330e − 048)

50 4.1252𝑒 − 007

(3.0875𝑒 − 007)
1.3498𝑒 − 032

(2.8330𝑒 − 048)
1.3498e − 032
(2.8330e − 048)
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Figure 13: Comparison of performance of six algorithms for
minimization of 𝑓

15
with fixed dimension.

function evaluations is 100000, 300000, and 500000 for
𝑓
1
–𝑓
13

with 10, 30, and 50 dimensions, respectively. The
parameters𝑝1 and𝑝2 are set to be 0.3∗rand. CDS can inherit
the bright sides of the three search schemes. The mean and
standard deviation results of CDS with other algorithms are
shown in Table 8. As can be seen in Table 8, the results of CDS
can obtain much better results than original DS and DS with
“DS/rand/1” for all benchmarks with 10𝐷.There is no dispute
that amore precise exploitation can enhance the performance
of the algorithms. For 30𝐷 problem, CDS owns a very fast
convergence rate and can give a better solution than original

DS and DS with “DS/rand/1” for 12 functions, except for
𝑓
05
. For the function 𝑓

05
, the “DS/rand/1” can provide better

solutions than original DS and CDS. For 50𝐷 problems, both
CDS and “DS/rand/1” could search the optimal solution on
some functions (𝑓

06
, 𝑓
08
, 𝑓
09
, 𝑓
11
, 𝑓
12
, and 𝑓

13
). In addition,

CDS have much better performances than DS and DS with
“DS/rand/1” on the functions 𝑓

01
, 𝑓
02
, 𝑓
03
, 𝑓
04
, and 𝑓

07
.

However, for the 𝑓
05
, the “DS/rand/1” can obtain a better

solution than other algorithms.Therefore, it is concluded that
CDS is more effective than DS and “DS/rand/1” for high-
dimensional classical benchmark functions. In particular,
CDS exhibits an overall higher convergence speed and better
robustness than the two competitors under some conditions.
We also can conclude that the combination operator of
these methods has the ability to accelerate DS, especially
for the higher dimensionality. In addition, the graphs of
Figures 2–12 show that CDS has improved the conver-
gence characteristics of the original algorithm, regardless to
dimension.

4.4. Comparison of CDS with Enhanced Differential Search
Algorithm in Fixed Dimension. In this section, we will
compare our algorithm with enhanced differential search
algorithm for fixed functions. The experimental results are
listed in Table 9. As can be seen in Table 9, for 𝑓

14
, 𝑓
16
, and

𝑓
17
, with only a few local minima, the dimension of the

function is also small. In this case, it is hard to judge the
performances of individual algorithms. All algorithms were
able to find optimal solutions for these two functions. For𝑓

15
,

𝑓
18
, 𝑓
19
, and 𝑓

20
, the CDS can provide better solutions than

DS and “DS/rand/1”. For 𝑓
21
–𝑓
23
, the CDS can provide all

the better solution.The algorithm performs superiorly better
than DS and DS with “DS/rand/1”. The graphs of Figure 13
show that the convergence progresses of different search
schemes and CDS for 𝑓

15
.
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Table 9: The mean and convergence iteration of the functions in Table 2.

𝐹 𝐷
DS/original/1 DS/rand/1 CDS
Mean (std) Mean (std) Mean (std)

𝑓
14

2 0.9980
(3.0790𝑒 − 009)

0.9980
(9.0649e − 017)

0.9980
(1.2820𝑒 − 016)

𝑓
15

4 0.0013
(4.5585𝑒 − 004)

0.0012
(2.5461𝑒 − 026)

8.7526e − 004
(1.8474e − 004)

𝑓
16

2 −1.0316
(6.5526𝑒 − 008)

−1.0316
(5.2049𝑒 − 010)

−1.0316
(5.9300e − 015)

𝑓
17

2 0.3979
(6.2820𝑒 − 007) 0.3979 (0) 0.3979 (0)

𝑓
18

2 3.0006
(7.2153𝑒 − 004) 3 (1.0977𝑒 − 004) 3 (2.8723e − 008)

𝑓
19

3 −3.8628
(8.4380𝑒 − 006)

−3.8628
(3.7942𝑒 − 010)

−3.8628
(1.1014e − 013)

𝑓
20

6 −3.3152 (0.0052) −3.3220
(1.0041𝑒 − 005)

−3.3220
(2.4649e − 006)

𝑓
21

4 −10.0655 (0.0847) −10.0114 (0.2982) −10.1409 (0.0200)
𝑓
22

4 −10.2986 (0.1112) −10.3320 (0.0919) −10.3980 (0.0063)
𝑓
23

4 −10.3675 (0.0994) −10.4213 (0.2538) −10.5233 (0.0183)

5. Conclusions

In this paper, we propose four different search schemes.
Although these new schemes could not find better solutions
than the original algorithm for only a few functions, these
new schemes could have a faster convergence rate and better
diversity than the original algorithm. In order to further
enhance the exploitation of the algorithm,we combined three
new schemes with three control parameters in a random
method to consist a new algorithm (CDS). To verify the
performance of CDS, 23 benchmark functions chosen from
literature are employed. The results show that the proposed
CDS algorithm clearly outperforms the basic DS and the new
proposed schemes. In this paper, we only consider the global
optimization. The algorithm can be extended to solve other
problems such as constrained optimization problems.
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