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An improved filter-SQP algorithm with active set for constrained finite minimax problems is proposed. Firstly, an active constraint
subset is obtained by a pivoting operation procedure. Then, a new quadratic programming (QP) subproblem is constructed based
on the active constraint subset. The main search direction 𝑑

𝑘 is obtained by solving this (QP) subproblem which is feasible at per
iteration point and need not to consider the penalty function by using the filter technique. Under some suitable conditions, the
global convergence of our algorithm is established. Finally, some numerical results are reported to show the effectiveness of the
proposed algorithm.

1. Introduction

Many real life problems, such as engineering, economics,
management, finance, and other fields, can be described as
the minimax problems, which wants to obtain the objection
functionsminimumunder conditions of themaximumof the
functions (such as [1, 2]). In this paper, consider the following
constrained minimax optimization problems:

min
𝑥∈𝑅𝑛

𝐹 (𝑥)

s.t. 𝑔𝑖 (𝑥) ≤ 0, 𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚1} ,

(1)

where

𝐹 (𝑥) = max {𝑓𝑗 (𝑥) | 𝑗 ∈ 𝐽 = {1, 2, . . . , 𝑚}} , (2)

𝑓𝑗(𝑥), 𝑔𝑖(𝑥): 𝑅
𝑛

→ 𝑅, are continuously differentiable. For
convenience, we denote

𝐽 (𝑥) = {𝑗 ∈ 𝐽 | 𝑓𝑗 (𝑥) = 𝐹 (𝑥)} ,

𝐼 (𝑥) = {𝑖 ∈ 𝐼 | 𝑔𝑖 (𝑥) = 𝜑 (𝑥) ≜ max {𝑔𝑖 (𝑥) , 𝑖 ∈ 𝐼; 0}} .

(3)

Obviously, the objective function 𝐹(𝑥) is not necessarily
differentiable even if the 𝑓𝑗(𝑥), 𝑗 ∈ 𝐽 are all differen-
tiable. Consequently, the classical algorithms for smooth
optimization problems may fail to reach an optimum if
they are applied directly to the such constrained minimax
optimization problem (1). Taking into account the value of
minimax problems, many methods are proposed for solving
problem (1). For example, in [3, 4], the minimax optimiza-
tion problem is viewed as an unconstrained nonsmooth
optimization problem, which can be solved by the general
methods, such as subgradient methods, bundlemethods, and
cutting plane methods. The other type of methods which
solves the problem (1) is so called smoothingmethods, whose
approach is to transform the minimax problem (1) into
an equivalent smooth constrained nonlinear programming
problem as follows:

min 𝑧

s.t. 𝑓𝑗 (𝑥) ≤ 𝑧, 𝑗 ∈ 𝐽,

𝑔𝑖 (𝑥) ≤ 0, 𝑖 ∈ 𝐼,

(4)
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where 𝑧 ∈ 𝑅 is an artificial variable. Obviously, from the
problem (4), the Karush-Kuhn-Tucker (KKT) conditions of
(1) can be stated as follows:

∑

𝑖∈𝐼

𝜆𝑖∇𝑓𝑖 (𝑥) + ∑

𝑗∈𝐽

𝜇𝑗∇𝑔𝑗 (𝑥) = 0

𝜆𝑖 ≥ 0,

𝑓𝑖 (𝑥) − 𝐹 (𝑥) ≤ 0, 𝜆𝑖 (𝑓𝑖 (𝑥) − 𝐹 (𝑥)) = 0, 𝑖 ∈ 𝐼,

𝜇𝑗 ≥ 0, 𝑔𝑗 (𝑥) ≤ 0,

𝜇𝑗𝑔𝑗 (𝑥) = 0, 𝑗 ∈ 𝐽,

∑

𝑖∈𝐼

𝜆𝑖 = 1,

(5)

where 𝜆𝑖, 𝜇𝑗 are the corresponding vector. In view of the
equivalent relationship between the KKT point of (4) and
the stationary point of (1), many methods focus on finding
the stationary point of the problem (1), namely, solving (5).
And a lot of methods have been proposed to solve minimax
problem [5–13]. For finding the minima of convex functions
that are not necessarily differentiable, in [5–8], combining the
nonmonotone line search with the second-order correction
technique, which can effectively avoid Maratos effect, many
other effective algorithms for solving the minimax problems
are presented, such as [10–13].

To solve the minimax problem efficiently and save time,
reduce computations, and reduce the number of iterations,
we aim for a fast convergent algorithm. It is well-known that
sequential quadratic programming (SQP) can be considered
one of the best nonlinear programming methods for smooth
constrained optimization problems (see, e.g., [14–20], etc.),
which outperforms every other nonlinear programming
method in terms of efficiency, accuracy, and percentage of
successful solutions over a large number of test problems.
Hence, some authors have directly applied SQP techniques
to minimax problems and got some satisfactory results (such
as [5, 9]). For typical SQPmethod, the main procedure in the
method for minimum problem

min {𝑓 (𝑥) | 𝑔𝑗 (𝑥) ≤ 0, 𝑗 ∈ 𝐽0} (6)

is to solve the following quadratic programming:

min ∇𝑓(𝑥)
𝑇
𝑑 +

1

2
𝑑
𝑇
𝐵𝑑

s.t. 𝑔𝑗 (𝑥) + ∇𝑔𝑗(𝑥)
𝑇
𝑑 ≤ 0, 𝑗 ∈ 𝐽0,

(7)

where 𝐽0 is an index set and 𝐵 is an approximation of
Hessian matrix of Lagrangian function. Since the objective
function 𝐹(𝑥) contains the max operator, it is continuous
but nondifferentiable even if every constrained function
𝑓𝑖(𝑥) (𝑖 ∈ 𝐼) is differentiable. Hence, this method may fail to
reach an optimum for the minimax problem. In view of this,
and combining with (4), in a similar way to [5], one considers

the following quadratic programming through introducing
an auxiliary variable 𝑧:

min 𝑧 +
1

2
𝑑
𝑇
𝐻𝑑

s.t. 𝑓𝑖 (𝑥) + ∇𝑓𝑖(𝑥)
𝑇
𝑑 ≤ 𝑧, 𝑖 ∈ 𝐼,

𝑔𝑗 (𝑥) + ∇𝑔𝑗(𝑥)
𝑇
𝑑 ≤ 0, 𝑗 ∈ 𝐽,

(8)

where 𝐻 is a symmetric positive definite matrix. However,
it is well-known that the solution 𝑑 of (8) may not be a
feasible descent direction and can not avoid the Maratos
effect. Recently, many researches have extended the popular
SQP scheme to the minimax problems (see [21–25], etc.).
Jian et al. [22] and Hu et al. [23] process pivoting operation
to generate an 𝜀-active constraint subset associated with the
current iteration point. At each iteration of their proposed
algorithm, a main search direction is obtained by solving a
reduced quadratic program which always has a solution.

As an alternative to merit function, in 2002, Fletcher
et al. [26] proposed the filter-SQP method for inequality
constrained optimization problems instead of classic merit
function SQP methods. This method main idea is that a
trial point was received if it improves either the objective
function or the constraint violation. Furthermore, the global
and superlinear local convergence of a trust region filter-SQP
method was shown in Ulbrich [27]. In recent years, filter
method got high importance andmany algorithms have been
paid [28–30], and so forth.

In this paper, an improved filter-SQP algorithm with
active set for constrained minimax problems (1) is proposed.
In the process of the iteration of our algorithm, an active
constraint subset first is obtained by a pivoting operation pro-
cedure, and then, we construct a new quadratic programming
(QP) subproblem based on the active constraint subset. In
order to obtain a main search direction 𝑑

𝑘 for (1), we only
need solve this (QP) subproblem which is feasible at per
iteration point, and need not to consider the penalty function
by using the filter technique. Furthermore, under some
mild conditions, the global convergence of our algorithm is
established.

The remaining part of this paper is organized as follows:
an improved filter-SQP algorithm is proposed in Section 2. In
Section 3, we prove that the algorithm is globally convergent.
Some preliminary numerical tests are reported in Section 4.
And concluding remarks are given in the last section.

2. Improved Filter-SQP Algorithm

As traditional filter technique, define the violation function
ℎ(𝑐(𝑥)) as follows:

ℎ (𝑐 (𝑥)) =
󵄩󵄩󵄩󵄩𝑐
+
(𝑥)

󵄩󵄩󵄩󵄩∞, (9)

where

𝑐𝑗 (𝑥) = 𝑓𝑗 (𝑥) − 𝐹 (𝑥) = 𝑓𝑗 (𝑥) − 𝑧 (let 𝑧 ≜ 𝐹 (𝑥)) ,

𝑐
+

𝑗
(𝑥) = max {0, 𝑐𝑗 (𝑥) , 𝑔𝑖 (𝑥)} , (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽) .

(10)
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It is easy to see that ℎ(𝑐(𝑥)) = 0 if and only if 𝑥 is a feasible
point.

Definition 1. A pair (ℎ(𝑐(𝑥
𝑘
)), 𝑧(𝑥

𝑘
)) is said to dominate

another pair (ℎ(𝑐(𝑥
𝑙
)), 𝑧(𝑥

𝑙
)) if and only if both ℎ(𝑐(𝑥

𝑘
)) ≤

ℎ(𝑐(𝑥
𝑙
)) and 𝑧(𝑥

𝑘
) ≤ 𝑧(𝑥

𝑙
).

Definition 2. A filter is a list of pairs (ℎ(𝑐(𝑥
𝑘
)), 𝑧(𝑥

𝑘
)) such

that no pair dominates any other. A pair (ℎ(𝑐(𝑥
𝑘
)), 𝑧(𝑥

𝑘
)) is

said to be acceptable for the filter if it is not dominated by any
point in the filter.

We useF𝑘 ≜ {(ℎ(𝑐(𝑥
𝑙
)), 𝑧(𝑥

𝑙
)) ∈ 𝑅

2
, 𝑙 < 𝑘} to denote the

set of iterations indices 𝑙 (𝑙 < 𝑘) such that (ℎ(𝑐(𝑥𝑙)), 𝑧(𝑥𝑙)) is
an entry in the current filter. Then, we say that a point 𝑥𝑘 is
acceptable for the filter if and only if

ℎ (𝑐 (𝑥
𝑘
)) ≤ (1 − 𝛾) ℎ (𝑐 (𝑥

𝑙
)) ,

or 𝑧 (𝑥
𝑘
) ≤ 𝑧 (𝑥

𝑙
) − 𝛾ℎ (𝑐 (𝑥

𝑙
)) ,

(11)

for all (ℎ(𝑐(𝑥
𝑙
)), 𝑧(𝑥

𝑙
)) ∈ F𝑘, where 𝛾 is close to zero.

We may also update the filter which means that the pair
(ℎ(𝑐(𝑥

𝑘
)), 𝑧(𝑥

𝑘
)) is added to the list of pairs in the filter, and

any pairs in the filter that are dominated by (ℎ(𝑐(𝑥
𝑘
)), 𝑧(𝑥

𝑘
))

are removed.
As a criterion for accepting or rejecting a trial step, we use

the filter technique combined with SQP method.

Algorithm A

Step 0. Given initial point 𝑥
0

∈ 𝑅
𝑛, a symmetric positive

definite matrix 𝐻0 ∈ 𝑅
𝑛×𝑛. Choose parameters 𝜀0 > 0, 𝛼 ∈

(0, 1/2), 𝜏 ∈ (2, 3), and 0 < 𝛾 < 𝛽 < 1. Set 𝑘 = 0, and
F0 = {(𝑢, +∞)} with some 𝑢 ≥ 𝛽ℎ(𝑐(𝑥

𝑘
)).

Step 1. Computation of an active constraint set is as follows.

Step 1.1. Set 𝑖 = 0 and 𝜀𝑘
𝑖

= 𝜀0.

Step 1.2. Generate an 𝜀-active constraint subset 𝐼(𝑥
𝑘
, 𝜀𝑘
𝑖

),
𝐽(𝑥
𝑘
, 𝜀𝑘
𝑖

) and matrix𝑀𝑘 by

𝐼 (𝑥
𝑘
, 𝜀𝑘
𝑖

) = {𝑖 ∈ 𝐼 | −𝜀𝑘
𝑖

≤ 𝑔𝑖 (𝑥
𝑘
) − 𝜑 (𝑥

𝑘
) ≤ 0} ,

𝐽 (𝑥
𝑘
, 𝜀𝑘
𝑖

) = {𝑗 ∈ 𝐽 | −𝜀𝑘
𝑖

≤ 𝑓𝑗 (𝑥
𝑘
) − 𝐹 (𝑥

𝑘
) ≤ 0} ,

𝑀𝑘 = (

−1

∇𝑓𝑗 (𝑥
𝑘
)

∇𝑔𝑖 (𝑥
𝑘
)

) , 𝑖 ∈ 𝐼 (𝑥
𝑘
, 𝜀𝑘
𝑖

) , 𝑗 ∈ 𝐽 (𝑥
𝑘
, 𝜀𝑘
𝑖

) .

(12)

Step 1.3. If det(𝑀𝑇
𝑘
𝑀𝑘) ≥ 𝜀𝑘

𝑖

, set

𝐼𝑘 = 𝐼 (𝑥
𝑘
, 𝜀𝑘
𝑖

) , 𝐽𝑘 = 𝐼 (𝑥
𝑘
, 𝜀𝑘
𝑖

) ,

𝐿𝑘 = 𝐼𝑘⋃𝐽𝑘;

(13)

go to Step 2; otherwise let 𝑖 = 𝑖 + 1, set 𝜀𝑘
𝑖

= 0.5𝜀𝑘
𝑖

, and repeat
Step 1.2.

Step 2. Compute (𝑑𝑘, 𝑧𝑘) by the quadratic problem (14) at 𝑥𝑘.
Consider

min 𝑧 +
1

2
𝑑
𝑇
𝐻𝑘𝑑

s.t. 𝑓𝑗 (𝑥
𝑘
) + ∇𝑓𝑗(𝑥

𝑘
)
𝑇

𝑑 − 𝐹 (𝑥
𝑘
) ≤ 𝑧, 𝑗 ∈ 𝐽𝑘,

𝑔𝑖 (𝑥
𝑘
) + ∇𝑔𝑖(𝑥

𝑘
)
𝑇

𝑑 ≤ 0, 𝑖 ∈ 𝐼𝑘.

(14)

Let (𝜆𝑘, 𝜇𝑘) be the corresponding KKT multipliers vector. If
𝑑
𝑘
= 0 then stop.

Step 3. Compute (𝑑
𝑘
, 𝑧̃𝑘) by the quadratic problem (15).

Consider

min 𝑧 +
1

2
(𝑑
𝑘
+ 𝑑)
𝑇

𝐻𝑘 (𝑑
𝑘
+ 𝑑)

s.t. 𝑓𝑗 (𝑥
𝑘
+ 𝑑
𝑘
) + ∇𝑓𝑗(𝑥

𝑘
+ 𝑑
𝑘
)
𝑇

𝑑 − 𝐹 (𝑥
𝑘
+ 𝑑
𝑘
) ≤ 𝑧,

𝑔𝑖 (𝑥
𝑘
+ 𝑑
𝑘
) + ∇𝑔𝑖(𝑥

𝑘
+ 𝑑
𝑘
)
𝑇

𝑑 ≤ −
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘󵄩󵄩󵄩󵄩󵄩

𝜏

,

(15)

where 𝑗 ∈ 𝐽𝑘, 𝑖 ∈ 𝐼𝑘. Set (𝜆̃
𝑘
, 𝜇
𝑘
) as the corresponding KKT

multipliers vector. If ‖𝑑𝑘‖ > ‖𝑑
𝑘
‖, set 𝑑𝑘 = 0; otherwise, let

𝑑
𝑘
= 𝑑
𝑘
+ 𝑑
𝑘.

Step 4. Initial line search: set 𝛼𝑘,0 = 1, 𝑙 = 0.

Step 5. If 𝑥𝑘+1 = 𝑥
𝑘
+ 𝛼𝑘,𝑙𝑑

𝑘 is not acceptable for the filter, go
to Step 6; otherwise let 𝛼𝑘 = 𝛼𝑘,𝑙, 𝑥

𝑘+1
= 𝑥
𝑘
+ 𝛼𝑘𝑑

𝑘, and add
𝑥
𝑘+1 to the filter; go to Step 7.

Step 6. Set 𝛼𝑘,𝑙+1 = 𝛼𝑘,𝑙/2, 𝑙 = 𝑙 + 1, and go to Step 5.

Step 7. Update filterF𝑘 toF𝑘+1, and obtain𝐻𝑘+1 by updating
the positive definite matrix 𝐻𝑘 using some quasi-Newton
formulas. Set 𝑘 := 𝑘 + 1. Go back to Step 1.

Remark 3. In Step 1, by using the the pivoting operation POP,
we obtain an active set 𝐿𝑘 = 𝐼𝑘⋃𝐽𝑘 ⊆ 𝐼⋃ 𝐽. Based on the
𝜀-active constraint subset, we construct a new QP (14), which
is helpful for discussing the convergence of our algorithm.

Remark 4. Step 1.1–Step 1.3 and Step 4–Step 6 are called inner
circle iteration, while Step 1–Step 7 are called outer circle
steps.

3. Global Convergence of Algorithm

In this section, we analyze the convergence of the algorithm.
The following general assumptions are true throughout this
paper.

(H 1) The functions 𝑓𝑗(𝑥), 𝑗 ∈ 𝐽, 𝑔𝑖(𝑥), 𝑖 ∈ 𝐼, are
continuously differentiable.
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(H 2) ∀𝑥 ∈ 𝑅
𝑛, the set of vectors

{(
−1

∇𝑓𝑗 (𝑥)
) , 𝑗 ∈ 𝐽 (𝑥) ; (

0

∇𝑔𝑖 (𝑥)
) , 𝑖 ∈ 𝐼 (𝑥)} (16)

is linearly independent.

(H 3) There exist 𝑎, 𝑏 > 0, such that 𝑎‖𝑑‖
2

≤ 𝑑
𝑇
𝐻𝑘𝑑 ≤

𝑏‖𝑑‖
2, for all 𝑘 ∈ 𝑅 and 𝑑 ∈ 𝑅

𝑛.

Similar to Lemmas 2.1 and 2.3 in [22], the following
lemma holds which describes some beneficial properties of
the pivoting operation POP.

Lemma 5. Suppose that H 1–H 3 hold and let 𝑥𝑘 ∈ 𝑅
𝑛. Then

(1) the pivoting operation POP can be finished in a finite
number of computations; that is, there is no infinite
times of loop between Step 1.2 and Step 1.3;

(2) if the sequence {𝑥
𝑘
} of points is bounded, then there

exists a constant 𝜀 > 0 such that the associated sequence
{𝜀𝑘
𝑖

} of parameters generated by POP satisfies 𝜀𝑘
𝑖

≥ 𝜀 for
all 𝑘.

Lemma6. Suppose that H 1–H 3 hold, matrix𝐻𝑘 is symmetric
positive definite, and (𝑑

𝑘
, 𝑧𝑘) is an optimal solution of (14).

Then

(1) 𝑧𝑘 + (1/2)(𝑑
𝑘
)
𝑇
𝐻𝑘𝑑
𝑘
≤ 0, 𝑧𝑘 ≤ 0;

(2) if 𝑑𝑘 = 0, then 𝑥
𝑘 is a K-T point of problem (1);

(3) if 𝑑
𝑘

̸= 0, then 𝑧𝑘 < 0; moreover, 𝑑𝑘 is a descent
direction of 𝐹(𝑥) at point 𝑥𝑘.

Lemma 7. If 𝑑𝑘 ̸= 0, Step 4–Step 6 of Algorithm A are well
defined; that is, the inner loop Step 5-Step 6 terminates finitely.

Proof. By contradiction, if the conclusion is false, then Algo-
rithm A will run infinitely between Step 5 and Step 6, so we
have 𝛼𝑘,𝑙 → 0 (𝑙 → ∞) and the point 𝑥𝑘 + 𝛼𝑘,𝑙(𝑑

𝑘
+ 𝑑
𝑘
) is

not acceptable for the filter. The following two cases need to
be considered.

Case 1. Consider ℎ(𝑐(𝑥𝑘)) = 0.
From the definition of ℎ(𝑐(𝑥𝑘)), we can obtain

ℎ (𝑐 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
)))

= max {0, 𝑓𝑗 (𝑥
𝑘
) + 𝛼𝑘,𝑙∇𝑓𝑗(𝑥

𝑘
)
𝑇

𝑑
𝑘
− 𝑧𝑘 + 𝑜 (𝛼𝑘,𝑙) ,

𝑔𝑖 (𝑥
𝑘
) + 𝛼𝑘,𝑙∇𝑔𝑖(𝑥

𝑘
)
𝑇

𝑑
𝑘
+ 𝑜 (𝛼𝑘,𝑙)} .

(17)

Since 𝑑
𝑘 is a solution of the problem (14), then

∇𝑓𝑗(𝑥
𝑘
)
𝑇

𝑑
𝑘
< 0, ∇𝑔𝑖(𝑥

𝑘
)
𝑇

𝑑
𝑘
< 0. (18)

Together with 𝛼𝑘,𝑙 → 0, there exists a constant 𝛽, such that

ℎ (𝑐 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
)))

≤ max {0, 𝛽 (𝑓𝑗 (𝑥
𝑘
) − 𝑧𝑘, 𝑔𝑖 (𝑥

𝑘
))}

= 𝛽ℎ (𝑐 (𝑥
𝑘
)) ≜ (1 − 𝛾) ℎ (𝑐 (𝑥

𝑘
)) .

(19)

Moreover, for 𝑓𝑗(𝑥
𝑘
) − 𝐹(𝑥

𝑘
) < 0 and 1 − 𝛼𝑘,𝑙 > 0, we have

𝑓𝑗 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
)) − 𝐹 (𝑥

𝑘
)

= 𝑓𝑗 (𝑥
𝑘
) + 𝛼𝑘,𝑙∇𝑓𝑗(𝑥

𝑘
)
𝑇

𝑑
𝑘
+ 𝑜 (𝛼𝑘,𝑙) − 𝐹 (𝑥

𝑘
)

= 𝛼𝑘,𝑙 (𝑓𝑗 (𝑥
𝑘
) + ∇𝑓𝑗(𝑥

𝑘
)
𝑇

𝑑
𝑘
− 𝐹 (𝑥

𝑘
))

+ (1 − 𝛼𝑘,𝑙) (𝑓𝑗 (𝑥
𝑘
) − 𝐹 (𝑥

𝑘
)) + 𝑜 (𝛼𝑘,𝑙)

≤ 𝛼𝑘,𝑙𝑧𝑘 + 𝑜 (𝛼𝑘,𝑙) .

(20)

With (19) and (20), we conclude that 𝑥𝑘 + 𝛼𝑘,𝑙(𝑑
𝑘
+ 𝑑
𝑘
) must

be acceptable for the filter and 𝑥
𝑘, which is a contradiction.

Case 2. Consider ℎ(𝑐(𝑥𝑘)) > 0. Considering Taylor’s formula,
we have

𝑓𝑗 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
)) − 𝐹 (𝑥

𝑘
)

= 𝑓𝑗 (𝑥
𝑘
) + 𝛼𝑘,𝑙∇𝑓𝑗(𝑥

𝑘
)
𝑇

(𝑑
𝑘
+ 𝑑
𝑘
)

− 𝐹 (𝑥
𝑘
) +

𝛼
2

𝑘,𝑙

2
𝑑
𝑘𝑇

∇𝑓
2

𝑗
(𝑦) 𝑑
𝑘

≤
𝛼
2

𝑘,𝑙

2
𝑑
𝑘𝑇

∇𝑓
2

𝑗
(𝑦) 𝑑
𝑘
,

(21)

where 𝑦 denotes some point on the line segment from 𝑥
𝑘 to

𝑥
𝑘
+𝛼𝑘,𝑙(𝑑

𝑘
+𝑑
𝑘
). Since 𝑥𝑘 is acceptable for the filter, we have

ℎ (𝑐 (𝑥
𝑘
)) ≤ (1 − 𝛾) ℎ (𝑐 (𝑥

𝑙
)) , (22)

or

𝑧 (𝑥
𝑘
) ≤ 𝑧 (𝑥

𝑙
) − 𝛾ℎ (𝑐 (𝑥

𝑙
)) . (23)

Similar to Case 1, we can also get the relation

ℎ (𝑐 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
))) ≤ (1 − 𝛾) ℎ (𝑐 (𝑥

𝑘
)) . (24)

From the assumption, 𝑥𝑘 + 𝛼𝑘,𝑙(𝑑
𝑘
+ 𝑑
𝑘
) is not acceptable for

the filter, and we have

ℎ (𝑐 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
))) > (1 − 𝛾) ℎ (𝑐 (𝑥

𝑙
)) , (25)

𝑧 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
)) > 𝑧 (𝑥

𝑙
) − 𝛾ℎ (𝑐 (𝑥

𝑙
)) . (26)
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For the point 𝑥𝑘, if it holds that (22), by 𝛼𝑘,𝑙 → 0 and (18),
we have

ℎ (𝑐 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
)))

≤ max {0, (𝑓𝑗 (𝑥
𝑘
) − 𝑧𝑘, 𝑔𝑖 (𝑥

𝑘
))}

= ℎ (𝑐 (𝑥
𝑘
)) ≤ (1 − 𝛾) ℎ (𝑐 (𝑥

𝑙
)) ,

(27)

which contradicts (25). If inequality (23) holds, by 𝛼𝑘,𝑙 → 0

and (18), we have

𝑧 (𝑥
𝑘
+ 𝛼𝑘,𝑙 (𝑑

𝑘
+ 𝑑
𝑘
)) ≤ 𝑧𝑘 ≤ 𝑧 (𝑥

𝑙
) − 𝛾ℎ (𝑐 (𝑥

𝑙
)) ,

(28)

which contradicts (26). From the above analysis, the desired
conclusion holds.

Lemma 8. Suppose that infinite points are added to the filter;
then lim𝑘→∞ℎ(𝑐(𝑥

𝑘
)) = 0.

In the following of this section, we will show the global
convergence of the algorithm.

Theorem 9. Suppose that H 1–H 3 hold; let {𝑥
𝑘
} be the

sequence of iterates produced by Algorithm A. The algorithm
either stops at the KKT point 𝑥

𝑘 of the problem (1) in finite
number of steps or generates an infinite sequence {𝑥

𝑘
} of points

such that each accumulation point 𝑥∗ of {𝑥𝑘} is the KKT point
of problem (1).

Proof. The first statement is easy to show, the only stopping
point being in Step 1. Thus, assume that the algorithm
generates an infinite sequence {𝑥

𝑘
}, and since {𝑑

𝑘
, 𝑧𝑘, 𝜆
𝑘
, 𝜇
𝑘
}

is bounded under all above-mentioned assumptions, we can
assume without loss of generality that there exists an infinite
index set 𝐾 such that

𝑥
𝑘
󳨀→ 𝑥
∗
, 𝐻𝑘 󳨀→ 𝐻∗, 𝑑

𝑘
󳨀→ 𝑑
∗
, 𝑧𝑘 󳨀→ 𝑧∗,

𝜆
𝑘
󳨀→ 𝜆
∗
, 𝜇
𝑘
󳨀→ 𝜇
∗
, 𝑘 ∈ 𝐾.

(29)

Obviously, according to Lemma 6, it is only necessary to
prove that 𝑑∗ = 0.

Let𝐾1 = {𝑘 ∈ 𝐾 | 𝑧𝑘 +(1/2)𝑑
𝑘𝑇

𝐻𝑘𝑑
𝑘
> 0} ⊆ 𝐾; two cases

need to be considered.

Case 1. 𝐾1 is an infinite index set. Suppose by contradiction
that 𝑑∗ ̸= 0; since

𝑓𝑗 (𝑥
𝑘
) + ∇𝑓𝑗(𝑥

𝑘
)
𝑇

𝑑
𝑘
− 𝐹 (𝑥

𝑘
) ≤ 𝑧𝑘, 𝑗 ∈ 𝐽,

𝑔𝑖 (𝑥
𝑘
) + ∇𝑔𝑖(𝑥

𝑘
)
𝑇

𝑑
𝑘
≤ 0, 𝑖 ∈ 𝐼,

(30)

in view of 𝑘 ∈ 𝐾, 𝑘 → ∞, we obtain

𝑓𝑗 (𝑥
∗
) + ∇𝑓𝑗(𝑥

∗
)
𝑇
𝑑
∗
− 𝐹 (𝑥

∗
) ≤ 𝑧∗, 𝑗 ∈ 𝐽,

𝑔𝑖 (𝑥
∗
) + ∇𝑔𝑖(𝑥

∗
)
𝑇
𝑑
∗
≤ 0, 𝑖 ∈ 𝐼.

(31)

It is shown that the following corresponding quadratic
programming subproblem (32) at 𝑥∗

min 𝑧 +
1

2
𝑑
𝑇
𝐻∗𝑑

s.t. 𝑓𝑗 (𝑥
∗
) + ∇𝑓𝑗(𝑥

∗
)
𝑇
𝑑 − 𝐹 (𝑥

∗
) ≤ 𝑧, 𝑗 ∈ 𝐽,

𝑔𝑖 (𝑥
∗
) + ∇𝑔𝑖(𝑥

∗
)
𝑇
𝑑 ≤ 0, 𝑖 ∈ 𝐼,

(32)

has a nonempty feasible set. Moreover, from 𝑑
∗

̸= 0 and
Theorem 2.4 in [9], it is not difficult to show that (𝑧∗, 𝑑

∗
) is

the unique solution of (32). So, it holds that

𝑧∗ < 0, ∇𝑓𝑗(𝑥
∗
)
𝑇
𝑑
∗
≤ 𝑧∗ < 0, 𝑗 ∈ 𝐽 (𝑥

∗
) ,

∇𝑔𝑖(𝑥
∗
)
𝑇
𝑑
∗
< 0, 𝑖 ∈ 𝐼 (𝑥

∗
) .

(33)

Considering the KKT conditions of the problem (14), we have

𝜆
∗

𝑗
∇𝑓𝑗(𝑥

∗
)
𝑇
𝑑
=
𝑑
∗𝑇

𝐻∗𝑑
∗
= 𝜆
∗

𝑗
(𝑓𝑗 (𝑥

∗
) − 𝐹 (𝑥

∗
) − 𝑧∗)

𝑧∗ + 𝑑
∗𝑇

𝐻∗𝑑
∗
= 𝑧∗ (1 − 𝜆

∗

𝑗
) < 0,

(34)

which contradicts the definition of𝐾1.

Case 2. 𝐾1 is a finite index set. That means it holds 𝑧𝑘 <

−(1/2)𝑑
𝑘𝑇

𝐻𝑘𝑑
𝑘 for large enough 𝑘. There exists a constant

𝛼 > 0, for 𝛼 ∈ (0, 𝛼); we have

𝐹 (𝑥
𝑘
) − 𝑓𝑗 (𝑥

𝑘
+ 𝛼 (𝑑

𝑘
+ 𝑑
𝑘
))

= −𝑓𝑗 (𝑥
𝑘
) − 𝛼∇𝑓𝑗(𝑥

𝑘
)
𝑇

𝑑
𝑘
− 𝑜 (𝛼) + 𝐹 (𝑥

𝑘
)

≥ −𝛼(𝑓𝑗 (𝑥
𝑘
) + ∇𝑓𝑗(𝑥

𝑘
)
𝑇

𝑑
𝑘
− 𝐹 (𝑥

𝑘
))

− (1 − 𝛼) (𝑓𝑗 (𝑥
𝑘
) − 𝐹 (𝑥

𝑘
)) + 𝑜 (𝛼)

≥ −𝛼𝑧𝑘 + 𝑜 (𝛼) ≥
𝛼

2
𝑑
𝑘𝑇

𝐻𝑘𝑑
𝑘
.

(35)

Then, for some integer 𝑖0, we have

∞ >

∞

∑

𝑘=𝑖
0

(𝐹 (𝑥
𝑘
) − 𝑓𝑗 (𝑥

𝑘
+ 𝛼 (𝑑

𝑘
+ 𝑑
𝑘
))) ≥

∞

∑

𝑘=𝑖
0

𝑎𝛼

2

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘󵄩󵄩󵄩󵄩󵄩

2

.

(36)

That means ‖𝑑
𝑘
‖
2

→ 0. Thereby, 𝑥
∗ is a KKT point of

problem (1).

4. Numerical Experiments

In this section, we select some problems in [9, 10] to show
the efficiency of our algorithm in Section 2. Some preliminary
numerical experiments are tested on an Intel(R) Celeron(R)
CPU2.40GHz computer.The code of the proposed algorithm
is written by usingMATLAB 7.0 and utilized the optimization
toolbox to solve the quadratic programming (14) and (15).The
results show that the proposed algorithm is efficient.
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During the numerical experiments, it is chosen at random
some parameters as follows.

(1) Consider 𝜀0 = 0.5,𝛼 = 0.25, 𝛾 = 0.1,𝛽 = 0.2, 𝜏 = 2.25,
and𝐻0 = 𝐼, the 𝑛 × 𝑛 unit matrix.

(2) 𝐻𝑘 is updated by the BFGS formula similar to [15].
Consider

𝐻𝑘+1 = 𝐻𝑘 −
𝐻𝑘𝑠𝑘(𝐻𝑘𝑠𝑘)

𝑇

𝑠𝑇
𝑘
𝐻𝑘𝑠𝑘

+
𝜂𝑘𝜂
𝑇

𝑘

𝑠𝑇
𝑘
𝜂𝑘

, (37)

where

𝑠𝑘 = 𝑥
𝑘+1

− 𝑥
𝑘
, 𝜂𝑘 = 𝜃𝑘𝛾𝑘 + (1 − 𝜃𝑘)𝐻𝑘𝑠𝑘,

𝛾𝑘 = ∇𝑥𝐿 (𝑥
𝑘+1

, 𝜆
𝑘
, 𝜇
𝑘
) − ∇𝑥𝐿 (𝑥

𝑘
, 𝜆
𝑘
, 𝜇
𝑘
) ,

∇𝑥𝐿 (𝑥
𝑘
, 𝜆
𝑘
, 𝜇
𝑘
) = ∑

𝑖∈𝐼

𝜆𝑖∇𝑓𝑖 (𝑥) + ∑

𝑗∈𝐽

𝜇𝑗∇𝑔𝑗 (𝑥) ,

𝜃𝑘 =

{{

{{

{

1, 𝑠
𝑇

𝑘
𝛾𝑘 ≥ 0.2𝑠

𝑇

𝑘
𝐻𝑘𝑠𝑘,

0.8𝑠
𝑇

𝑘
𝐻𝑘𝑠𝑘

𝑠𝑇
𝑘
𝐻𝑘𝑠𝑘 − 𝑠𝑇

𝑘
𝛾𝑘

, 𝑠
𝑇

𝑘
𝛾𝑘 < 0.2𝑠

𝑇

𝑘
𝐻𝑘𝑠𝑘.

(38)

(3) In the implementation, the stopping criterion of Step
2 is changed to 𝐼𝑓‖𝑑

𝑘
‖ ≤ 10

−6 STOP.

The algorithm has been tested on some problems from
[9, 10]. The results are summarized in Tables 1 and 2. The
columns of this table have the following meanings:

No.: the number of the test problem in [9, 10];
𝑛: the dimension of the problem;
𝑚: the number of objective functions;
𝑚1: the number of inequality constraints;
NT: the number of iterations;
IP: the initial point;
LWM: the proposed Algorithm A;
XUE: the method in [9];
RNM: the method in [10];
ZZM: the method in [21];
FV: the final value of the objective function.

In Table 2, the performance of algorithm LWM is com-
pared with other algorithms. For problem 1 and 2, the results
we get are a little better than those in [9] if we choose
appropriate initial point. From the iteration results for test
problems 3 to 7, it seems that ourmethod is a bitmore efficient
than that in [10, 21] if the number of iterations is considered.

5. Concluding Remarks

In this paper, we propose a filter method combining this
method with sequential quadratic programming algorithm
for inequality constrained minimax problems. With the help

Table 1: The information of numerical experiments.

No. 𝑛, 𝑚, 𝑚
1
, IP

1 (problem 1 in [9]) 2, 3, 0, (1, 5)
𝑇

2 (problem 4 in [9]) 2, 3, 0, (3, 1)
𝑇

3 (problem 1 in [10]) 2, 3, 2, (0, 0)
𝑇

4 (problem 2 in [10]) 2, 6, 2, (1, 3)
𝑇

5 (problem 4 in [10]) 2, 3, 2, (4, 2)
𝑇

6 (problem 5 in [10]) 4, 4, 3, (0, 1, 1, 0)
𝑇

7 (problem 6 in [10]) 2, 3, 2, (0, 1)
𝑇

Table 2: Test results obtained by Algorithm A and other relearnt
algorithms.

No. Method NT FV

1 (problem 1 in [9])
LWM 9 1.952224
XUE 11 1.952224
ZZM 11 1.952224

2 (problem 4 in [9])
LWM 11 0.616234
XUE 15 0.616234
ZZM 11 0.616234

3 (problem 1 in [10])
LWM 5 1.952224
RNM 10 1.952224
ZZM 10 1.952224

4 (problem 2 in [10])
LWM 10 0.616432
RNM 15 0.616234
ZZM 12 0.616234

5 (problem 4 in [10])
LWM 8 2.250000
RNM 15 2.250000
ZZM 11 2.250000

6 (problem 5 in [10])
LWM 21 −44.000000
RNM 23 −44.000000
ZZM 23 −43.998000

7 (problem 6 in [10])
LWM 4 2.000000
RNM 4 2.000000
ZZM 4 2.000000

of the pivoting operation procedure, an active constraint
subset is first obtained. At each iteration, a main search
direction is obtained by solving only one quadratic program-
ming subproblem which is feasible at per iteration point
and need not to consider the penalty function by using the
filter technique. Then, a correction direction is yielded by
solving another quadratic programming to avoid Maratos
effect and guarantee the global convergence properties under
mild conditions.The preliminary numerical results also show
that the proposed algorithm is effective.

However, to show that our algorithm is global convergent,
we suppose some rigorous conditions such as the hypotheses
H 2-H 3. We hope that we can get rid of them in our future
work. In addition, it is noted that there are still some problems
worthy further discussion such as studying the algorithm
with inequality and equality constraints. And we can get
the main search direction by other techniques, for example,
sequential systems of linear equations technique.
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