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The concrete gravity dams are designed to perform satisfactorily during an earthquake since the consequence of failure is
catastrophic to the downstream communities. The foundation in a dam is usually modeled by a substructuring approach for the
purpose of seismic response analysis. However, the substructuring cannot be used for solving nonlinear dynamic problems that
may be encountered in dam-reservoir-foundation systems. For that reason, the time domain approach is preferred for such systems.
The deconvolved earthquake input model is preferred as it can remove the seismic scattering effects due to artificial boundaries of
the semi-infinite foundation domain. Deconvolution is a mathematical process that allows the adjustment of the amplitude and
frequency contents of a seismic ground motion applied at the base of the foundation in order to get the desired output at the
dam-foundation interface. It is observed that the existing procedures of deconvolution are not effective for all types of earthquake
records. A modified procedure has been proposed here for efficient deconvolution of all types of earthquake records including
high-frequency and low-frequency ground motions.

1. Introduction

The number and size of hydroelectric dams increased sig-
nificantly across Canada since 1910 [1]. Although concrete
gravity dams have been observed to perform well during an
earthquake, there are some incidents of such dams shaken
by strong earthquakes [2]. For example, Shih-Kang Dam
in Taiwan suffered complete loss of the reservoir during
Chi-Chi earthquake in September 1999 [3]. Hsifengkiang
dam in China and Koyna dam in India also sustained
significant damage in 1962 and 1967 earthquakes, respec-
tively [4, 5]. Therefore, monitoring and assessment of dam
performance are very important for ensuring dam safety
[6, 7]. To study the seismic performance of a concrete
gravity dam numerically, it is necessary to model the system
realistically by incorporating the effects of interaction among
dam, foundation, and reservoir. Chakrabarti and Chopra
[8] and Fenves and Chopra [9] studied the dam-foundation
interaction effect in the frequency domain using viscoelastic

half-space solutions to model the foundation. In many cases,
the analyticalmodels based on frequency domain analysis are
insufficient as they cannot be used to model nonlinear and
nonhomogenous geometrical and material properties of the
dam or foundation. In such cases, analysis must be done in
time domain.

Clough et al. [10] and Léger and Boughoufalah [11] stud-
ied a set of various models to simulate different earthquake
input mechanisms. In some cases, deconvolution of input
earthquake motion [12] was necessary. Deconvolution is a
mathematical process which allows the adjustment of the
amplitude and frequency content of an earthquake ground
motion to achieve the desired output motion observed by the
structure.The deconvolution is a signal processing technique
where one signal is usually obtained from another by point-
by-point division of the two signals in the Fourier domain,
by dividing the Fourier transforms of the two signals and
then inverse-transforming the result. Practically, Fourier
deconvolution in signal processing is an artificial way to
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reverse the result of a convolution occurring in the physical
domain, for example, to reverse the signal distortion effect of
an electrical filter or of the seismic wave propagating through
an elastic medium. Since the signal distortion is specific to
the physical medium through which the signal passes, the
deconvolution procedure to obtain the input signal from the
output or the distorted signal is domain specific.

Computer program SHAKE developed by Schnabel et
al. [13] for deconvolution of seismic ground motion was
used in many previous studies [11, 14, 15]. However, the
deconvolution process using the procedure used in SHAKE
is quite cumbersome as the response obtained through such
analysis is very sensitive to the values of the controlling
parameters such as the shear modulus and the equivalent
viscous damping ratio in case of flexible foundations [11].The
objective of this paper is to develop a new procedure for the
deconvolution of ground motions, which is applicable for all
types of ground motions. Luk et al. [14] and Polam et al.
[15] recommended different constraint models to represent
foundation models. In the present study, a similar approach
is undertaken and implemented using a commercial software
ABAQUS [16].

2. Seismic Wave Scattering in
Dam-Foundation System

To evaluate the response of a dam during a seismic event,
the ground motion acceleration is applied at the base of
the foundation, which propagates vertically through elastic
wave propagation mechanism until it reaches the top of
the foundation. The size of the foundation in a numerical
model is finite compared to the semi-infinite foundation
in the physical model. Hence, the seismic waves reflect
from the artificial boundaries due to the finite size of the
numerical model, which may alter the frequency contents
and amplitudes of a ground motion time history signal as the
wave propagates through the deformable foundation rock. To
account for such wave scattering effect, it is recommended to
use transmitting boundaries or deconvolved ground motion
records [17].

3. Deconvolution of Seismic Ground Motion

In thismethod, first, a deconvolution analysis is performed to
determine the acceleration time history that can be applied
to the base of the foundation to reproduce the specified
free-field acceleration time history at the base of a dam
(Figure 1). The calibrated base acceleration history is then
applied to the base of the foundation to perform the seismic
analysis. Deconvolution analysis can be performed using a
mathematical process as described in [12], which is explained
below. Deconvolution analysis allows the adjustment of the
amplitude and frequency contents of an earthquake ground
motion applied at the base of the foundation to achieve the
desired output ground acceleration at the dam-foundation
interface. Initially, the ground acceleration applied at the

OH(t)
TH(t)

MIH(t)
IH(t)

Dam

Foundation mass density ≠ 0

Deconvolution

Figure 1: Representation of deconvolution procedure.

base of the foundation is assumed to be the same as the
free-field ground acceleration. The acceleration time history
at the top surface (i.e., dam-foundation interface) is then
estimated by solving the wave propagation problem of the
dam-foundation system using the finite element analysis
technique.This estimated or reproduced ground acceleration
at a reference point on the dam-foundation interface is
then compared to the original free-field ground acceleration
after transforming both signals into the frequency domain
using Fourier analysis. Fast Fourier transform (FFT) and
Inverse Fast Fourier transform (IFFT) algorithms developed
by [18] allow the transformation of time domain signal into
a frequency domain signal or visa-versa, respectively. FFT of
a time series yields complex Fourier amplitude values for a
set of discrete frequencies. The complex Fourier amplitudes
are then converted into absolute values to obtain the Fourier
amplitude spectrum. On the other hand, IFFT of a set of
complex Fourier amplitudes for a set of discrete frequencies
yields a time domain signal.

As mentioned earlier, the free-field acceleration or any
arbitrary signal is initially applied at the base of the foun-
dation, and, by solving the wave propagation problem, the
acceleration signal at a selected point at the top of the foun-
dation is obtained.The synthesized and free-field acceleration
signals at the top of the foundation are then compared in the
frequency domain, and a correction factor for each frequency
is computed using the ratio of the Fourier amplitudes of the
synthesized and free-field ground acceleration signals in a
given iteration. The acceleration signal applied at the base
of the foundation is modified using the correction factor for
each frequency. The modified acceleration history is then
transformed back into time domain acceleration signal by
employing IFFT, and the analysis of the wave propagation
analysis for the foundation system is repeated with the
modified ground acceleration applied at the base of the
foundation. The procedure is iterated until the original free-
field ground motion at the top of the foundation closely
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matches the reproduced ground motion record generated
by using the modified ground motion applied at the base
of the foundation. The resulting ground motion at the
foundation-base would be called the deconvolved ground
motion that should be used in the dynamic analysis of the
dam-foundation system.

4. Modified Deconvolution Procedure

The existing iterative procedure for deconvolution as dis-
cussed in the previous section does not produce appro-
priate results for high-frequency ground motion records
as will be shown later. However, it works quite well for
the low-frequency ground motion records in some cases.
To overcome such limitation, a modified procedure has
been proposed in this section. Figure 2 shows a flowchart
for the modified deconvolution procedure. Similar to the
existing procedure, here, the reproduced acceleration history
at the top of the foundation is compared to the free-field
acceleration, both converted to frequency domain using
Fourier analysis. However, the correction factors to adjust
the deconvolved signal are determined differently. Instead
of adjusting the Fourier amplitudes at different frequencies,
the response spectral ordinates at different frequencies are
adjusted.The response spectra of the reproduced acceleration
time history and the input ground motion (i.e., original
free-field acceleration) are computed for the discrete set of
frequencies. The correction factors are calculated for each
frequency by the ratio of the target response spectrum
amplitude TSa(𝑗) to the response spectrum amplitude RSa(𝑗)
of the reproduced acceleration history:

CF (𝑗) =
TSa (𝑗)
RSa (𝑗)
. (1)

This correction factor is then applied to the frequency domain
acceleration signal applied at the base of the foundation. The
complex Fourier coefficients (real part 𝑎(𝑗) and the imaginary
part 𝑏(𝑗)) of the acceleration at the foundation-base are
modified using (2). The modified acceleration signal is then
transformed back to time domain using IFFT.The analysis of
the dam-foundation system is carried out with the modified
time history of ground acceleration applied at the base of the
foundation. The procedure is iterated until the reproduced
ground motion at the base of the dam closely matches the
original free-field ground motion. The response spectrum of
the reproduced ground motion at the top of the foundation
should match the target spectrum.

The response spectrum produces the plots of the max-
imum response acceleration for all possible linear single
degree of freedom systems to a given ground motion for a
given level of damping (assumed 5% in this analysis). The
correction factors calculated through an iterative process
with the existing deconvolution procedure (Section 3) con-
tain errors due the approximate nature of FFT and IFFT.
Therefore, the error is compounded as the iterations advance.
The modified procedure compares the output response with
the target response spectrum rather than the absolute values

Table 1: Material properties.

Material Concrete Rock
Elastic modulus (MPa) 3.45 × 104 2.76 × 104

Poisson’s ratio 0.2 0.33
Unit weight (kN/m3) 23.5 25.9

of the Fourier amplitudes, which are an approximate repre-
sentation of the complex-valuedFourier spectrum. Large civil
infrastructure such as a dam is usually designed or evaluated
using a given response spectrum specified in the relevant
code of practice. The modified deconvolution procedure
ensures that the errors introduced during the FFT and IFFT
are minimized, as the correction factors are calculated for
each frequency by the ratio of the target response spec-
trum amplitude TSa(𝑗) to the response spectrum amplitude
RSa(𝑗) of the reproduced acceleration history. This modified
deconvolution procedure is very effective compared to the
existing deconvolution procedure. A case study is presented
in Section 7 to demonstrate the effectiveness of the modified
deconvolution procedure.

To determine the closeness of the response spectrum of
reproduced ground motion to the free-field ground motion,
the coefficient of determination (𝑅2), as defined in the texts
in statistics, has been utilized. A value of 1 for 𝑅2 represents a
perfect match of the two data series which are represented
here by the spectra of the original and the reproduced
ground accelerations. The proposed modified deconvolution
procedure is found to work very well for both high- and low-
frequency ground motions:

𝑎 (𝑗)modified = 𝑎 (𝑗) ∗ CF (𝑗)

𝑏 (𝑗)modified = 𝑏 (𝑗) ∗ CF (𝑗) .
(2)

5. Finite Element Model and Constraints

Two geometrically different monoliths of concrete gravity
dams have been considered here to study the seismic wave
scattering in dam-foundation systems. Figure 3 shows the
two geometric configurations, G-1 and G-2, which are con-
sidered here. G-1 represents a geometrical configuration
which is commonly used for dams. However, G-2 has an
irregular foundation.These kinds of irregular foundations are
popular in large surface toe hydroelectric projects located on
good-quality foundation rock [19, 20]. The assumed material
properties are summarized in Table 1. Five percent material
damping is considered in the analysis with Rayleigh damping
assumptions. The hydrodynamic interaction is modeled by
added mass model considering incompressible water. The
dam and foundation are modeled using four-noded bilin-
ear plain-strain finite elements. To perform the deconvo-
lution procedure, the soil must act as a one-dimensional
soil column. To simulate the one-dimensional soil column
behavior, a set of constraints needs to be applied on the
boundaries. Figure 4 shows the representation of constraints
which allow the shear deformations in foundation to simulate
the propagation ofwaves but they do not allow the foundation
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Step 1: Select target
acceleration history, TH(t)

Step 3: Response spectrum of
TH(t), RST(t)

Step 6: Record the acceleration
history at the top of the
foundation, OH(t)

Step 5: Apply TH(t) at the
base of foundation, IH(t)

Step 7: Response spectrum of
OH(t), RSO(t)

Step 11: Apply the deduced correction
factors in Step 9 to the Fourier spectrum
FI (Hz) to obtain the modified Fourier
spectrum, MFI (Hz)

Step 12: Perform inverse FFT to
MFI to obtain modified input
history, MIH(t)

Step 13: Apply the MIH(t) at the base of
the foundation and record acceleration
history at the top of the foundation, MOH(t)

Step 14: Compare TH and MOH with a response

structure

RSFT (Hz)/RSFO (Hz)
Step 10: Fourier spectrum of IH(t),
FI (Hz)

Step 4: Compute the response
spectrum of TH(t) at similar
frequencies as of FT (Hz), RSFT (Hz)

Step 8: Compute the response
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Step 2: Fourier spectrum of TH(t),
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Figure 3: Dam-foundation system: (a) Geometry G-1 and (b) Geometry G-2.
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Figure 4: Representation of constraints.

to deform in bending mode. Foundation size should be
sufficiently large to accommodate the local displacements
near the dam. Based on the study by Bayraktar et al. [21], the
size of the foundation is assumed to be three times the height
of the dam or 3H, which is almost equal to 300m on each side
of the dam in this case.

6. Selection of Seismic Ground Motions

Two different suites of ground motion records contain-
ing high-frequency and low-frequency contents have been
considered here. They contain both simulated and actual
ground motion records. The simulated records have been
chosen based on those developed in Tremblay et al. [22],
while the ground records of past earthquakes have been
obtained from the PEER database at the University of
California, Berkeley [23]. The first suite of high-frequency
ground motion includes the following records: (i) simulated
record for Eastern Canada having a magnitude of M6 and a

distance of 30 km, (ii) simulated record for Eastern Canada
having a magnitude of M7 and a distance of 70 km, and
(iii) San Fernando 1971 earthquake record. These ground
motion records are referred to here as M number 1, M
number 2, and M number 3, respectively. The horizontal
and vertical components of the ground motions are denoted
here by H and V, respectively (Figures 5(a) and 5(b)). The
second suite of low-frequency ground motions includes the
following records: (i) Friuli 1976 earthquake record, (ii)
Livermore 1980 earthquake record, and (iii) simulated record
for Western Canada having a magnitude of M6.5 and a
distance of 30 km. These ground motion records are referred
to here as V number 1, V number 2, and V number 3,
respectively (Figures 5(c) and 5(d)). The horizontal com-
ponents of the high-frequency ground motions have been
scaled according to an expected level of seismic hazard (with
2% probability of exceedance in 50 years) that corresponds
to Montreal (Eastern Canada). On the other hand, the
horizontal components of the low-frequency groundmotions
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Figure 5: Response spectra for the ground motion records: (a) Montreal-horizontal components, (b) Montreal-vertical components, (c)
Vancouver-horizontal components, and (d) Vancouver-vertical components.

have been scaled according to an expected level of seismic
hazard that corresponds to Vancouver (Western Canada).
The vertical components of all ground motions have been
scaled to two-thirds of the respective horizontal components.
Figure 5 shows the scaled response spectra of the ground
motions.The time periods of the dam-foundation systems for
Geometries G-1 and G-2 are found to be 0.628 s and 0.67 s,
respectively.

7. Performance of the Modified
Deconvolution Procedure

Figures 6, 7, and 8 present the results of the different
deconvolved ground acceleration time history by modified
(MDP) and existing deconvolution procedures (EDP) for
dam-foundation system, G-1. It is observed from the results
that the MDP works very well for both high-frequency and
low-frequency ground motions. However, EDP produces
acceptable results only in the cases of some low-frequency
ground motions, such as V number 1 and V number 2,
but does not work in other cases, such as V number 3. To
demonstrate the effectiveness of MDP compared to EDP,

the results of deconvolution have been discussed for the
following earthquake records: M number 3 representing a
high-frequency record and V number 2 and V number 3
representing low-frequency records.

Figure 6 shows the response spectra of the original record
along with those generated from the deconvolved records. As
indicated by Figures 6(a) and 6(b), forM number 3, theMDP
spectra match very closely with the spectra of the free-field
(original) ground motion for both horizontal and vertical
components, while the EDP spectra do not match very well.
Figures 6(c) and 6(d) show the comparison of the original
spectra for V number 2 with the MDP and EDP spectra for
the horizontal and vertical components. In this case, both
MDP and EDP spectra are observed to be close to the spectra
of the original ground motion. Figures 6(e) and 6(f) show
the comparison of the original spectra for V number 3 with
the MDP and EDP spectra for the horizontal and vertical
components. In this case, MDP spectra match very closely
with the spectra of the free-field (original) ground motion,
while the EDP spectra do not match very well. This is similar
to what has been observed in the case of M number 3 record.

Figure 7 shows the values of the coefficient of determi-
nation (𝑅2) for different iterations for MDP and EDP in the
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Figure 6: Response spectra of the original and deconvolved ground motions for G-1 in Montreal: (a) M number 3(H); (b) M number 3(V);
(c) V number 2(H); (d) V number 2(V); (e) V number 3(H); and (f) V number 3(V).

case ofM number 3 groundmotion.Themaximum values 𝑅2
achieved forM number 3(H) byMDP and EDP are 0.984 and
0.898, respectively (Figure 7(a)), while those for M number
3(V) are 0.982 and 0.958, respectively (Figure 7(b)). It is
observed that, for MDP, the value of 𝑅2 approaches relatively
more smoothly and converges well in both cases, while the
𝑅2 values for EDP fluctuate at different iterations and the
convergence is poor.Themaximum values of 𝑅2 achieved for
V number 2(H) by MDP and EDP are found to be 0.993 and
0.995 (Figure 7(c)), respectively, while those for V number
2(V) are 0.999 and 0.997 (Figure 7(d)), respectively. In the
case of V number 2 ground motion, the results obtained
by both MDP and EDP are satisfactory, and the 𝑅2 values
converge very smoothly in both cases. However, in case of

V number 3 ground motion, the results obtained from EDP
are not satisfactory. The maximum values of 𝑅2 achieved
for V number 3(H) by MDP and EDP are 0.958 and 0.887,
respectively (Figure 7(e)), while those for V number 3(V) are
0.966 and 0.822, respectively (Figure 7(f)).

From the above results, it can be concluded that the
performance of EDP in the cases of low-frequency ground
motions is better than that in the cases of high-frequency
ground motions. However, in some cases, even for low-
frequency ground motions, such as V number 3, the per-
formance of EDP is not acceptable. MDP shows a sat-
isfactory performance for both low- and high-frequency
groundmotions. Figure 8 presents the response spectra of the
deconvolved ground motions for M number 1 and V number
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Figure 7: Coefficient of determination (𝑅2) for deconvolved ground motions for Geometry G1: (a) M number 3(H); (b) M number 3(V); (c)
V number 2(H); (d) V number 2(V); (e) V number 3(H); and (f) V number 3(V).

1 for the dam-foundation system G-2 with MDP and the
original ground motions. The results of the deconvolution
using EDP have been omitted as they are found to be
incorrect in some cases as observed in dam configuration
G-1. As the quality of the deconvolution process affects the
response of a dam-foundation system, the performance of the
deconvolution procedure used in the study is very important.
The case study presented in this paper assumes a linear elastic
foundation. However, since the deconvolution procedure is
iterative, a nonlinear material behavior can be modeled for
the foundation.

8. Conclusions

The study presents a modified deconvolution procedure for
the deconvolution of input ground motions for the use in

the seismic response analysis of dam-foundation systems.
While the performance of the existing deconvolution proce-
dure is generally good for low-frequency ground motions,
it may not work in all such cases; the performance of
the procedure is found to be quite poor when a ground
motion has high-frequency contents (e.g., for Montreal).
The modified deconvolution procedure is found to perform
well for both high-frequency and low-frequency ground
motions. It is also observed that the deconvolution by EDP
requires more iterations and the convergence is poorer
compared to MDP. It is important here to note that while
only two-dimensional models are considered here, the mod-
ified deconvolution procedure proposed in this study is
expected to be more effective for three-dimensional dam-
foundation models. Further study is required in that direc-
tion.
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Figure 8: Deconvolved ground motions with MDP for dam-foundation, G2: (a) M number 1(H); (b) M number 1(V); (c) V number 1(H);
and (d) V number 1(V).
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