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Due to the memory trait of the fractional calculus, numerical or analytical solution of higher order becomes very difficult even
impossible to obtain in real engineering problems. Recently, a new and convenient way was suggested to calculate the Adomian
series and the higher order approximation was realized. In this paper, the Adomian decomposition method is applied to nonlinear
fractional differential equation and the error analysis is given which shows the convenience.

1. Introduction

The fractional calculus has frequently appeared in various
applied areas and has become an increasing interesting
topic in the past decades [1-7]. Many efforts to analytical
and numerical methods have been made. The often used
numerical methods are the fractional difference method [8-
10] and the predictor corrector method [11-13] and others as
well as the analytical methods such as the variational iteration
method (VIM) [14-17] and the Adomian decomposition
method (ADM) [17-21] and others.

In fact, these methods are developed from original
versions for ordinary differential equation of the integer
order equation. Compared with the ordinary calculus, the
fractional calculus has the long interaction traits or the so-
called memory effects; this characteristic can better depict
various nonlinear dynamics in both theories and engineering
mathematical modeling. However, it also results in finding
the solution to the fractional models. The challenge is
analyzed in the analytical methods in [17].

The ADM has been extensively applied to fractional
differential equations due to its convenience. The Adomian
series should be calculated in each iteration which greatly

affects the efficiency and accuracy of the analytical approx-
imation. In order to solve this problem, Duan very recently
suggested a new way to calculate the Adomian series in [22-
25] and successfully extended it to the fractional differential
equation [26].

In this paper, we adopt Duans way to calculate the
Adomian series and apply it to FDEs for 1 < a < 2. We
define the residual function and give the error analysis and
investigate the validness of the iteration formulae.

2. Algorithm of the Fractional
Differential Equations

Definition 1 (see [2]). The Caputo derivative is defined as

c @ 1 t ) o
= a d ’
’ Dt ! I'(m-«a) JO (t — T)Oc—m+1 dom u(r)dr (1)

0<t, 0<a, m=[a]+1,

where T is the Gamma function.
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Definition 2 (see [2]). The R-L integration of « order is
defined by
o 1 ! a1

Lu(t) = —J t-17)" u(r)dr, 0<t, 0<a (2)

o () Jo

Now we present our analytical schemes using the conve-
nient Adomian series, Laplace transform, and Pade approx-
imation. We adopt the steps in [27, 28]. Considering the
following general fractional differential equations (FDEs),

Llu]+Nu]=g(), 3)
where L[u] is a linear operator with respect to u such as
ngu, OCDl:u +u, gD(:u + OCDfu, ..., we show the following
iteration schemes.

(a) Take Laplace transform L to both sides:
LIL{u)] +LIN[u]] =L[g ()] (4)

We can have iteration formula (4) through inverse of
Laplace transform L™

u(t)=fO+L" [A(LN[u]], ©)

where A(s) and f(t) can be determined by calculation
of Laplace transform to L[u], g(t). This step makes (3)
in time domain equivalently defined in the Laplace
domain. This idea is illustrated in the solution of
differential equations [27-29]. Here the A(s) similarly
plays a role as the Lagrange multipliers in the VIM
[29].

(b) Through the Picard successive approximation, we can
obtain the following iteration formula:

Uy = )+ L7 X)L [N [w,]]]. (6)

(c) Let u, = Y. ,v; and apply the Adomian series to
expand the term N[u] as Y ;) A;. Then the iteration
formula reads

Vi1 = z_l [X (S) I [An” >

7)
vo=f ()
according to [24], where A, is calculated by
i-1 A
A = lz (k+1) vy, dAir (8)

dv,

Y=o

(d) The nth-order approximation is explicitly given as
Uy = YV, 9)

The A; depends on the vy, v, ..
as

., v; which is denoted

Ai:Ai(VO’Vl""’Vi)' (10)

This characteristic allows us to obtain the approxi-
mate solutions from v, and A, = N(v).
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3. Numerical Example and Error Analysis

Example 1. Consider the following nonlinear FDE:

Diu+u’=0, 1<a<2 (1)
with the initial conditions

u(0) =1, 4 (0)=0. (12)

Following to the steps (a) to (d) in Section 2, we can have
2
Ay =2v, (13)

where v, can be identified using the Laplace as v, = 1.
The iteration formula is written as

- [li [An]] , n>0,

Vi1 =
n S“

(14)

Ag=2v%, vy=1

For « = 1.9, the Adomian series and the approximate
solutions can be calculated as

A, = -4y,
U, = vy +v, = 1 - 1.094478036¢"/1°,
2
A, = =2v" = 4wy, (15)

u, = 1 —1.094478036t""/1° + 0.4484842412¢""°,

We find the new way to calculate the solution and the
series is very convenient compared with the classical one. Set
n = 20 and plot the defined residual function in Figure 1:

(24
g, = log,, th u, + 214,21 . (16)

From Figure 2, we can conclude that iteration formula
(14) and the approximate solutions are correct.

Example 2. The second example is given as

OCD‘:u =u’, u©0)=0,u0)=11<a<2 (17)

We obtain the following formulae based on the Adomian
series:

Vo =L" [Siai [An]] , nx>0,
(18)
3

Ay=vy, Vo=t
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F1GURE 1: Residual function (16).
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FIGURE 2: Approximate solution of (11).

For « = 1.5, we can have the approximate solutions
successively as

uy =1,

u, =t +0.1146289948¢"7,

u, =t +0.1146289948t”% + 0.01595982144¢°
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FIGURE 3: Approximate solution of (17).

uy =t +0.1146289948t” + 0.01595982144°

+0.002314983909¢>>/2

(19)

We plot the u,, in Figure 3.

4. Conclusions

This study applied the convenient Adomian series to frac-
tional differential equations whose order is between one and
two. Two nonlinear examples are used to illustrate the basics
of the steps. We found the calculation of the solutions is
more convenient and more rapid compared with the classical
version. The approximate order here can be chosen asn = 100
while this choice is impossible for the classical definition.
This merit is particularly nice for the fractional differential
equations and the results show this purpose.
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