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Amathematical model of fractal waves on shallowwater surfaces is developed by using the concepts of local fractional calculus.The
derivations of linear and nonlinear local fractional versions of the Korteweg-de Vries equation describing fractal waves on shallow
water surfaces are obtained.

1. Introduction

The mathematical model of shallow water waves, conceived
by Boussinesq [1], was rediscovered by Korteweg and deVries
[2]. It is commonly known as Korteweg-de Vries equation
(KdV) [2, 3] and is given by

𝜕

𝜕𝑡
𝜙 (𝑥, 𝑡) +

𝜕
3

𝜕𝑥3
𝜙 (𝑥, 𝑡) − 6𝜙 (𝑥, 𝑡)

𝜕

𝜕𝑥
𝜙 (𝑥, 𝑡) = 0. (1)

Several versions of the KdV equations found in the
literature are listed below.

(i) Generalized KdV equation (GKdV) [4]

𝜕

𝜕𝑡
𝜙 (𝑥, 𝑡) + 𝜙 (𝑥, 𝑡)

𝜕

𝜕𝑥
𝜙 (𝑥, 𝑡) −

𝜕
5

𝜕𝑥5
𝜙 (𝑥, 𝑡) = 0. (2)

(ii) Generalized-generalized KdV equation (GGKdV) [5]

𝜕

𝜕𝑡
𝜙 (𝑥, 𝑡) + (

𝜕

𝜕𝑥
𝜙 (𝑥, 𝑡))

3

+
𝜕

𝜕𝑥
𝑓 (𝜙) = 0. (3)

(iii) Deformed KdV equation (DKdV) [6]

𝜕

𝜕𝑡
𝜓 (𝑥, 𝑡) +

𝜕

𝜕𝑥

× (
𝜕
2

𝜕𝑥2
𝜓 (𝑥, 𝑡) − 2𝜂𝜓

3
(𝑥, 𝑡)

−
3

2

𝜓 (𝑥, 𝑡) (𝜕𝜓 (𝑥, 𝑡) /𝜕𝑥)
2

𝜂 + 𝜓2 (𝑥, 𝑡)
) = 0.

(4)

(iv) Modified-modified KdV equation (MM KdV) [6]

𝜕

𝜕𝑡
𝜙 (𝑥, 𝑡) +

𝜕
3

𝜕𝑥3
𝜙 (𝑥, 𝑡) −

1

8
(
𝜕

𝜕𝑥
𝜙 (𝑥, 𝑡))

3

+
𝜕

𝜕𝑥
𝜙 (𝑥, 𝑡) (𝐴𝑒

𝜇
+ 𝐵 + 𝐶𝑒

−𝜇
) = 0,

(5)

where 𝜂, 𝐴, 𝐵, and 𝐶 are constants.

(i) Modified KdV equation (M KdV) [7]

𝜕

𝜕𝑡
𝜙 (𝑥, 𝑡) +

𝜕
3

𝜕𝑥3
𝜙 (𝑥, 𝑡) ± 6𝜙

2
(𝑥, 𝑡)

𝜕

𝜕𝑥
𝜙 (𝑥, 𝑡) = 0. (6)
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(ii) Spherical KdV (SKdV) was [7]

𝜕

𝜕𝑡
𝜓 (𝑥, 𝑡) +

𝜕
3

𝜕𝑥3
𝜓 (𝑥, 𝑡) − 6𝜓 (𝑥, 𝑡)

𝜕

𝜕𝑥
𝜓 (𝑥, 𝑡)

+
𝜓 (𝑥, 𝑡)

𝑡
= 0.

(7)

(iii) Cylindrical KdV equation (CKdV) was [8]

𝜕

𝜕𝑡
𝜓 (𝑥, 𝑡) +

𝜕
3

𝜕𝑥3
𝜓 (𝑥, 𝑡) − 6𝜓 (𝑥, 𝑡)

𝜕

𝜕𝑥
𝜓 (𝑥, 𝑡)

+
𝜓 (𝑥, 𝑡)

2𝑡
= 0.

(8)

For Further versions of KdV equation, we refer the reader
to [9–12] and the references cited therein.

Recently, the fractional KdV equations have been dis-
cussed by several authors. Momani et al. [13] studied the KdV
equation with both space- and time-fractional derivatives,
while the time-fractional derivative case has been considered
by El-Wakil et al. [14]. Atangana and Secer [15] developed
solutions for coupledKorteweg-deVries equationswith time-
fractional derivatives [15]. Abdulaziz et al. [16] discussed
the modified KdV equations with different space- and time-
fractional derivatives.

It is imperative to note that the above mentioned works
are based on the fractional calculus of differentiable func-
tions. However, there are certain nondifferentiable physical
quantities describing the physical parameters locally, where
the concept of differentiable functions is not applicable. In
such cases the local fractional calculus (LFC) concept allows
to obtain solutions adequate to such nondifferentiable prob-
lems [17–25] such as local fractional Helmholtz and diffusion
equations [19], local fractional Navier-Stokes equations in
fractal domain [21], local fractional Poisson and Laplace
equations arising in the electrostatics in fractal domain
[23], fractional models in forest gap [24], inhomogeneous
local fractional wave equations [25], local fractional heat
conduction equation [26], and other results [26–30].

In the present work, we focus on the derivation of
the linear and the nonlinear local fractional versions of
the Korteweg-de Vries equation describing fractal waves on
shallow water surfaces.

The paper is organized as follows. In Section 2, we recall
the local fractional conservation laws for the quantities in
mathematical physics while the local fractional Korteweg-
de Vries equation is derived from local fractional calculus in
Section 3. The conclusions are outlined in Section 4.

2. Theoretical Background

2.1. Local Fractional Conservation Laws Arising in Mathe-
matical Physics. First of all, we discuss the local fractional
conservation laws of mass, energy, and momentum in fractal
media.

Let us consider the quantity 𝜓(𝑟, 𝑡) which varies within
the fractal volume 𝑉(𝛾). Observe that the variations in

𝜓(𝑟, 𝑡) with respect to the fractal time corresponds to the
variation in the flux through the fractal boundary S(𝛽) or
by a source inside the volume 𝑉(𝛾). The integral form of
local fractional conservation of the quantity 𝜓(𝑟, 𝑡) is given
by [17, 19, 21]

𝑑
𝛼

𝑑𝑡𝛼
∭
𝑉
(𝛾)

𝜓 (𝑟, 𝑡) 𝑑𝑉
(𝛾)

= −∯
𝑆
(𝛽)

𝜙 (𝑟, 𝑡) ⋅ 𝑑S(𝛽) +∭
𝑉
(𝛾)

𝐻(𝑟, 𝑡) 𝑑𝑉
(𝛾)
,

(9)

where 𝜙(𝑟, 𝑡) = 𝜓(𝑟, 𝑡)𝜐(𝑟, 𝑡) is the fractal flux vector and
𝐻(𝑟, 𝑡) is the source (sink) for a nondifferentiable quant-
ity 𝜓(𝑟, 𝑡).

The local fractional surface integral is defined by [17, 19–
22]

∬𝑢(𝑟
𝑃
) 𝑑S(𝛽) = lim

𝑁→∞

𝑁

∑

𝑃=1

𝑢 (𝑟
𝑃
)n
𝑃
Δ𝑆
(𝛽)

𝑃
, (10)

where Δ𝑆
(𝛽)

𝑃
is the local fractal surface and 𝑁 denote

elements of the surface with unit normal local fractional
vector n

𝑃
. When Δ𝑆(𝛽)

𝑃
→ 0 as 𝑁 → ∞, the local fraction-

al volume integral of the function u takes the form [17, 19–23]

∭u (𝑟
𝑃
) 𝑑𝑉
(𝛾)
= lim
𝑁→∞

𝑁

∑

𝑃=1

u (𝑟
𝑃
) Δ𝑉
(𝛾)

𝑃
. (11)

The local fractional derivative of a function 𝑓(𝑥) of
order 𝛼 is defined by [17, 24, 25]

𝑑
𝛼
𝑓 (𝑥
0
)

𝑑𝑥𝛼
=
Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼

, (12)

with

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥

0
)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥

0
)] . (13)

Using (9), the local fractional differential form of the local
fractional conservation balance of the quantity 𝜓(𝑟, 𝑡) can be
expressed as

𝜕
𝛼
𝜓 (𝑟, 𝑡)

𝜕𝑡𝛼
+ ∇
𝛼
⋅ 𝜙 (𝑟, 𝑡) = 𝐻 (𝑟, 𝑡) . (14)

The local fractional gradient of the scale function
𝜑 emerging from (14) is [17]

∇
𝛼
𝜑 = lim
𝑑𝑉
(𝛾)
→0

(
1

𝑑𝑉(𝛾)
∯
𝑆
(𝛽)

𝜑𝑑S(𝛽)) . (15)

In the Cantorian coordinates, the local fractional con-
servation equation (14) with respect to 𝜓(𝑥, 𝑦, 𝑧, 𝑡) can be
written as

𝜕
𝛼
𝜓 (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡𝛼
+ ∇
𝛼
⋅ 𝜙 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐻 (𝑥, 𝑦, 𝑧, 𝑡) . (16)
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Alternatively

𝜕
𝛼
𝜓 (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡𝛼
+
𝜕
𝛼
𝜙
1
(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥𝛼
+
𝜕
𝛼
𝜙
2
(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦𝛼

+
𝜕
𝛼
𝜙
3
(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧𝛼
= 𝐻 (𝑥, 𝑦, 𝑧, 𝑡) ,

(17a)

𝜙 (𝑥, 𝑦, 𝑧, 𝑡) = 𝜙
1
(𝑥, 𝑦, 𝑧, 𝑡) 𝑖

𝛼
+ 𝜙
2
(𝑥, 𝑦, 𝑧, 𝑡) 𝑗

𝛼

+ 𝜙
3
(𝑥, 𝑦, 𝑧, 𝑡) 𝑘

𝛼
.

(17b)

Notice that the quantity 𝜙(𝑥, 𝑦, 𝑧, 𝑡) can represent mass,
energy, or momentum in fractal media.

If 𝜌 denotes the fractal mass density, then the
function 𝜙 = 𝜌𝜐 is themass fractal flux and 𝐻(𝑥, 𝑦, 𝑧, 𝑡) = 0.
In this case, the local fractional conservation ofmass in fractal
media reads as

𝜕
𝛼
𝜌

𝜕𝑡𝛼
+ ∇
𝛼
⋅ (𝜌𝜐) = 0. (18)

In passing 𝑒 remark that (18) is used to describe fractal
physical problems [17, 19, 20].

In the context of the present analysis, the local fractional
conservation of energy 𝐸 in fractal media is

𝜕
𝛼
𝐸

𝜕𝑡𝛼
+ ∇
𝛼
⋅ (𝐸𝜐) = 𝐻 (𝑥, 𝑦, 𝑧, 𝑡) . (19)

The function 𝜙 = 𝐸𝜐 in (19) is the fractal flux vector of
the energy in fractal media. Further, if the function 𝐸 =

𝜌𝐶
𝛼
𝑇 denotes the amount of heat energy per unit fractal

volume in fractal media, then the transport flux is

𝜙 = 𝜌𝐶𝑇𝜐. (20)

Thus, the conservation of thermal energy in fractal media
can be expressed as

𝜕
𝛼
𝜌𝐶
𝛼
𝑇

𝜕𝑡𝛼
+ ∇
𝛼
⋅ (𝜌𝐶
𝛼
𝑇𝜐) = ∇

𝛼
⋅ 𝑘 (∇
𝛼
𝑇) + 𝐻 (𝑥, 𝑦, 𝑧, 𝑡) .

(21)

As a consequence of (21), the local fractional Fourier law
(with fractal thermal conductivity 𝑘) reads as

𝐹 = −𝑘∇
𝛼
𝑇. (22)

For constant 𝐶
𝛼
and 𝑘, (21) can be rewritten as [17, 22]

𝜕
𝛼
𝑇

𝜕𝑡𝛼
+ 𝜐 ⋅ ∇

𝛼
𝑇 = 𝑎∇

2𝛼
𝑇 +

𝐻 (𝑥, 𝑦, 𝑧, 𝑡)

𝜌𝐶
𝛼

, (23)

where the fractal thermal diffusivity 𝑎 is

𝑎 =
𝑘

𝜌𝐶
𝛼

. (24)

The local fractional conservation of momentum in fractal
media is

𝜕
𝛼
𝑀

𝜕𝑡𝛼
+ ∇
𝛼
⋅ (𝑀𝜐) = 𝐻 (𝑥, 𝑦, 𝑧, 𝑡) , (25)

where the quantity 𝑀 represents the momentum in fractal
media while the function 𝜙 = 𝑀𝜐 is the fractal momentum
flux vector fractal media.

If the momentum per unit fractal volume is 𝑀 = 𝜌𝜐,
then the sources due to fractal stresses and fractal body
forces (gravity generated) are ∇𝛼 ⋅ 𝜃 and 𝐻(𝑥, 𝑦, 𝑧, 𝑡) = 𝜌𝑔,
respectively. With this terminology, we have

𝜕
𝛼
𝜌𝜐

𝜕𝑡𝛼
+ ∇
𝛼
⋅ (𝜌𝜐𝜐) = ∇

𝛼
⋅ 𝜃 + 𝜌g. (26)

In view of the local fractional conservation of mass (18),
(26) takes the form

𝜕
𝛼
𝜐

𝜕𝑡𝛼
+ (𝜐 ⋅ ∇

𝛼
) 𝜐 =

1

𝜌
∇
𝛼
⋅ 𝜃 + g. (27)

In (26) (𝜐 ⋅ ∇𝛼)𝜐 is the nondifferentiable advection of
momentum in fractal media.

For compressible fluids, the general form of the Navier-
Stokes equation on Cantor sets is [21]

𝜌
𝜕
𝛼
𝜐

𝜕𝑡𝛼
= − ∇

𝛼
𝑝 +

1

3
𝜇∇
𝛼
((∇
𝛼
⋅ 𝜐)) + 𝜇∇

2𝛼
𝜐 + 𝜌b

− 𝜌𝜐 (∇
𝛼
⋅ 𝜐) ,

(28)

where 𝜐 is the fractal fluid velocity, 𝜇 is the dynamic
viscosity, 𝑝 is the thermodynamic pressure, and b denotes
the specific fractal body force.

If the term (1/3)𝜇∇𝛼((∇𝛼 ⋅ 𝜐)) + 𝜇∇2𝛼𝜐 is zero, then (28)
reduces to

𝜌
𝜕
𝛼
𝜐

𝜕𝑡𝛼
= −∇
𝛼
𝑝 + 𝜌b − 𝜌𝜐 (∇𝛼 ⋅ 𝜐) , (29)

which is known as Cauchy’s equation of motion of flows on
Cantor sets [21].

For

1

𝜌
∇
𝛼
⋅ 𝜃 = −

1

𝜌
∇
𝛼
𝑝, b = −g, (30)

the Navier-Stokes equation on Cantor sets for a compressible
fluid becomes

𝜕
𝛼
𝜐

𝜕𝑡𝛼
+ 𝜐 (∇

𝛼
⋅ 𝜐) = −

1

𝜌
∇
𝛼
𝑝 − g. (31)

2.2. Fractal Water Waves

2.2.1. Linear Theory for Fractal Water Waves. Let us consider
the following local fractional conservation equations of fluid
motion in fractal media (Cauchy’s equation of motion of
flows on Cantor sets):

𝜕
𝛼
𝜌

𝜕𝑡𝛼
+ ∇
𝛼
⋅ (𝜌𝜐) = 0, (32)

𝜕
𝛼
𝜐

𝜕𝑡𝛼
+ 𝜐 (∇

𝛼
⋅ 𝜐) = −

1

𝜌
∇
𝛼
𝑝 − g. (33)
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If the fractal fluid is incompressible and locally fractional
irrotational, then we have

∇
𝛼
𝜌 = 0, (34)

𝜕
𝛼
𝜌

𝜕𝑡𝛼
= 0, (35)

∇
𝛼
× 𝜐 = 0. (36)

From (32) and (37), we have

𝜐 = ∇
𝛼
𝜑, (37)

∇
2𝛼
𝜑 = 0. (38)

The local fractional Laplace operator is

∇
𝛼
⋅ ∇
𝛼
= ∇
2𝛼
. (39)

Wenotice that (38) is the local fractional Laplace equation
(see [21, 23]).

If the following relationship is valid [21]

𝜐 ⋅ ∇
𝛼
𝜐 = ∇

𝛼
(
𝜐 ⋅ 𝜐

2
) − (∇

𝛼
× 𝜐) × 𝜐. (40)

Then, we have

𝜐 ⋅ ∇
𝛼
𝜐 = ∇

𝛼
(
𝜐 ⋅ 𝜐

2
) . (41)

Hence, from (33) and (41), we get

𝜕
𝛼

𝜕𝑡𝛼
(∇
𝛼
𝜑) + 𝜐 (∇

𝛼
⋅ 𝜐) = −

1

𝜌
∇
𝛼
𝑝 − g, (42)

which leads to

𝜕
𝛼

𝜕𝑡𝛼
(∇
𝛼
𝜑) + ∇

𝛼
(
𝜐 ⋅ 𝜐

2
) = −

1

𝜌
∇
𝛼
𝑝 − g. (43)

Equation (43) can be rewritten in terms of local fractional
gradient as

∇
𝛼
(
𝜕
𝛼
𝜑

𝜕𝑡𝛼
+
𝜐 ⋅ 𝜐

2
+
𝑝

𝜌
+ g𝑦) = 0, (44)

or

∇
𝛼
(
𝜕
𝛼
𝜑

𝜕𝑡𝛼
+
∇
𝛼
𝜑 ⋅ ∇
𝛼
𝜑

2
+
𝑝

𝜌
+ g 𝑦

𝛼

Γ (1 + 𝛼)
) = 0. (45)

From (45), we have

𝜕
𝛼
𝜑

𝜕𝑡𝛼
+
∇
𝛼
𝜑 ⋅ ∇
𝛼
𝜑

2
+
𝑝 − 𝑝
0

𝜌
+ g𝑦 = 𝑛 (𝑡) , (46)

where 𝑝
0
is the initial pressure.

Let us suggest that the velocity of the fractal flow normal
to the fractal interface can be described as

𝑓 (𝑥, 𝑧, 𝑡) = 𝜂 (𝑥, 𝑧, 𝑡) − 𝑦 (47)

and is equal to the velocity of the fractal interface normal to
itself. With these suggestions, we obtain

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ ∇
𝛼
𝜑 ⋅ ∇
𝛼
𝜂 = 𝜐
𝑦
, (48)

which is the fractal kinematic equation on the fractal bound-
ary with

𝜐
𝑦
=
𝜕
𝛼
𝜑

𝜕𝑦𝛼
. (49)

When the fractal boundary condition at the free surface
is specified, then it follows from (46) and (48) that

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
𝛼
𝜂

𝜕𝑧𝛼
=
𝜕
𝛼
𝜑

𝜕𝑦𝛼
, (50)

𝜕
𝛼
𝜑

𝜕𝑡𝛼
+
1

2
(
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
𝜑

𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑦𝛼

𝜕
𝛼
𝜑

𝜕𝑦𝛼
+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
𝛼
𝜑

𝜕𝑧𝛼
)

+ g𝜂 = 0,
(51)

where 𝑝 = 𝑝
0
, 𝑛(𝑡) = 0, and 𝜂(𝑥, 𝑧, 𝑡) = 𝑦.

If the bottom section of the flow is considered, then
𝑦 = −ℎ

0
(𝑥, 𝑧) . (52)

Further, if the normal velocity of the flow is zero at the
fixed solid boundary, (50) gives

𝜕
𝛼
𝜑

𝜕𝑦𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
ℎ
0

𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
𝛼
ℎ
0

𝜕𝑧𝛼
= 0. (53)

For a horizontal bottom, we have 𝑦 = −ℎ
0
(𝑥, 𝑧) which

leads to
𝜕
𝛼
𝜑

𝜕𝑦𝛼
= 0, (54)

or
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
ℎ
0

𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
𝛼
ℎ
0

𝜕𝑧𝛼
= 0. (55)

Therefore, at the free surface, we have
𝜕
𝛼
𝜂

𝜕𝑡𝛼
=
𝜕
𝛼
𝜑

𝜕𝑦𝛼
, (56)

𝜕
𝛼
𝜑

𝜕𝑡𝛼
+ g𝜂 = 0, (57)

where 𝜂(𝑥, 𝑧, 𝑡) = 𝑦.
For 𝑦 = 0, we find from (56) and (57) that

𝜕
2𝛼
𝜑

𝜕𝑡2𝛼
+ g𝜕
𝛼
𝜑

𝜕𝑦𝛼
= 0. (58)

Therefore, we define the line problem for a water wave as
follows:

𝜕
2𝛼
𝜑

𝜕𝑥2𝛼
+
𝜕
2𝛼
𝜑

𝜕𝑦2𝛼
+
𝜕
2𝛼
𝜑

𝜕𝑧2𝛼
= 0, −ℎ

0 (𝑥, 𝑧) < 𝑦 < 0;

𝜕
2𝛼
𝜑

𝜕𝑡2𝛼
+ g𝜕
𝛼
𝜑

𝜕𝑦𝛼
= 0, 𝑦 = 0;

𝜕
𝛼
𝜑

𝜕𝑦𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
ℎ
0

𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
𝛼
ℎ
0

𝜕𝑧𝛼
= 0, 𝑦 = −ℎ

0 (𝑥, 𝑧) .

(59)
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From (57), we may present the fractal surface as

𝜂 (𝑥, 𝑧, 𝑡) = −
1

g
𝜕
𝛼
𝜑 (𝑥, 0, 𝑧, 𝑡)

𝜕𝑡𝛼
. (60)

2.2.2. Nonlinear Theory of Fractal Water Waves. The linear
wave equation given in [21] is

𝜕
2𝛼
𝜂

𝜕𝑡2𝛼
+ 𝜛
𝜕
2𝛼
𝜂

𝜕𝑥2𝛼
= 0, (61)

where 𝜛 is a constant.
From (43), we get

1

𝜌
∇
𝛼
𝑝 − g = 0 (62)

or

1

𝜌

𝜕
𝛼
𝜂

𝜕𝑦𝛼
𝑝 − g = 0. (63)

Then

𝑝 − 𝑝
0
= g𝜌 (𝜂 − 𝑦) . (64)

From (33) and (64), we have

𝜕
𝛼
𝜐

𝜕𝑡𝛼
+ 𝜐 (∇

𝛼
⋅ 𝜐) = −g∇𝛼𝜂. (65)

Consequently

𝜕
2𝛼
𝜑

𝜕𝑡𝛼𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
2𝛼
𝜑

𝜕𝑥2𝛼
+
𝜕
𝛼
𝜑

𝜕𝑦𝛼

𝜕
2𝛼
𝜑

𝜕𝑦𝛼𝜕𝑥𝛼

+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
2𝛼
𝜑

𝜕𝑧𝛼𝜕𝑥𝛼
= −g 𝜕

𝛼
𝜂

𝜕𝑥𝛼
,

𝜕
2𝛼
𝜑

𝜕𝑡𝛼𝜕𝑧𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
2𝛼
𝜑

𝜕𝑥𝛼𝜕𝑧𝛼
+
𝜕
𝛼
𝜑

𝜕𝑦𝛼

𝜕
2𝛼
𝜑

𝜕𝑦𝛼𝜕𝑧𝛼

+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
2𝛼
𝜑

𝜕𝑧2𝛼
= −g𝜕

𝛼
𝜂

𝜕𝑧𝛼
.

(66)

If the conditions (𝜕
2𝛼
𝜑/𝜕𝑦
𝛼
𝜕𝑧
𝛼
) = 0 and (𝜕2𝛼𝜑/

𝜕𝑦
𝛼
𝜕𝑥
𝛼
) = 0 are satisfied, then from (66), we get

𝜕
2𝛼
𝜑

𝜕𝑡𝛼𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
2𝛼
𝜑

𝜕𝑥2𝛼
+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
2𝛼
𝜑

𝜕𝑧𝛼𝜕𝑥𝛼
= −g 𝜕

𝛼
𝜂

𝜕𝑥𝛼
,

𝜕
2𝛼
𝜑

𝜕𝑡𝛼𝜕𝑧𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
2𝛼
𝜑

𝜕𝑥𝛼𝜕𝑧𝛼
+
𝜕
𝛼
𝜑

𝜕𝑧𝛼

𝜕
2𝛼
𝜑

𝜕𝑧2𝛼
= −g𝜕

𝛼
𝜂

𝜕𝑧𝛼
.

(67)

Further, from (32) and (35), we obtain

𝜕
𝛼
ℎ

𝜕𝑡𝛼
+ ∇
𝛼
⋅ (ℎ𝜐) = 0, (68)

where

ℎ = ℎ
0
+ 𝜂. (69)

Using (51), (68), and (69), we obtain the local fractional
conservation equations for one-dimensional waves on the
bottom given by

𝜕
𝛼

𝜕𝑡𝛼
(
𝜕
𝛼
𝜑

𝜕𝑥𝛼
) +

𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
2𝛼
𝜑

𝜕𝑥2𝛼
+ g𝜕
𝛼
ℎ

𝜕𝑥𝛼
= 0, (70)

𝜕
𝛼
ℎ

𝜕𝑡𝛼
+
𝜕
𝛼

𝜕𝑥𝛼
(ℎ
𝜕
𝛼
𝜑

𝜕𝑥𝛼
) = 0, (71)

which lead to

𝜕
𝛼

𝜕𝑡𝛼
(ℎ
𝜕
𝛼
𝜑

𝜕𝑥𝛼
) +

𝜕
𝛼

𝜕𝑥𝛼
((
𝜕
𝛼
𝜑

𝜕𝑥𝛼
)

2

ℎ +
1

2
gℎ2) = 0, (72)

𝜕
𝛼

𝜕𝑡𝛼
(
1

2
(
𝜕
𝛼
𝜑

𝜕𝑥𝛼
)

2

ℎ +
1

2
gℎ2)

+
𝜕
𝛼

𝜕𝑥𝛼
(
1

2
(
𝜕
𝛼
𝜑

𝜕𝑥𝛼
)

3

ℎ +
1

2
gℎ2 𝜕
𝛼
𝜑

𝜕𝑥𝛼
) = 0.

(73)

Furthermore, from (38), (50), (51), and (59), we get

𝜕
2𝛼
𝜑

𝜕𝑥2𝛼
+
𝜕
2𝛼
𝜑

𝜕𝑦2𝛼
= 0, −∞ < 𝑥 < +∞, 0 ≤ 𝑦 ≤ 𝜂 (𝑥, 𝑡) ,

(74)

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
𝜂

𝜕𝑥𝛼
=
𝜕
𝛼
𝜑

𝜕𝑦𝛼
, 𝑦 = 1 + 𝜍𝜂, (75)

𝜕
𝛼
𝜑

𝜕𝑡𝛼
+
1

2
(
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
𝜑

𝜕𝑥𝛼
+
𝜕
𝛼
𝜑

𝜕𝑦𝛼

𝜕
𝛼
𝜑

𝜕𝑦𝛼
) + g𝜂 = 0, (76)

with

𝜕
𝛼
𝜑

𝜕𝑦𝛼
= 0, 𝑦 = 0. (77)

3. Local Fractional Korteweg-de
Vries Equation

Using (74) and (76), it is possible to expand the fractal velocity
potential into a nondifferentiable series with respect to 𝑦 in
the following form:

𝜑 (𝑥, 𝑦, 𝑡) =

∞

∑

𝑖=0

𝑦
𝑛𝛼

Γ (1 + 𝑛𝛼)
𝜑
𝑛
(𝑥, 𝑡) . (78)

Then, it follows from (74) and (78) that

𝜕
2𝛼
𝜑

𝜕𝑥2𝛼
=

∞

∑

𝑖=0

𝑦
𝑛𝛼

Γ (1 + 𝑛𝛼)

𝜕
2𝛼
𝜑
𝑛
(𝑥, 𝑡)

𝜕𝑥2𝛼
, (79)

𝜕
2𝛼
𝜑

𝜕𝑦2𝛼
=

∞

∑

𝑖=2

𝑦
(𝑛−2)𝛼

Γ (1 + (𝑛 − 2) 𝛼)
𝜑
𝑛
(𝑥, 𝑡)

=

∞

∑

𝑖=0

Γ (1 + (𝑛 + 2) 𝛼) 𝑦
𝑛𝛼
𝜑
𝑛+2
(𝑥, 𝑡) .

(80)
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Hence,

𝜕
2𝛼
𝜑
𝑛
(𝑥, 𝑡)

𝜕𝑥2𝛼
+
Γ (1 + (𝑛 + 2) 𝛼)

Γ (1 + 𝑛𝛼)
𝜑
𝑛+2
(𝑥, 𝑡) = 0,

∀𝑛 ∈ 𝑁.

(81)

Thus, from (77), we get

𝜕
𝛼
𝜑

𝜕𝑦𝛼
=

∞

∑

𝑖=1

𝑦
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
𝜑
𝑛
(𝑥, 𝑡)

= 𝜑
1
(𝑥, 𝑡) = 0.

(82)

Equations (70) and (73) lead to

𝑛 = 0:
𝜕
2𝛼
𝜑
0
(𝑥, 𝑡)

𝜕𝑥2𝛼
+
Γ (1 + (𝑛 + 2) 𝛼)

Γ (1 + 𝑛𝛼)
𝜑
2
(𝑥, 𝑡) = 0,

𝑛 = 1:
𝜕
2𝛼
𝜑
1 (𝑥, 𝑡)

𝜕𝑥2𝛼
+
Γ (1 + (𝑛 + 2) 𝛼)

Γ (1 + 𝑛𝛼)
𝜑
3
(𝑥, 𝑡) = 0,

𝑛 = 2:
𝜕
2𝛼
𝜑
2
(𝑥, 𝑡)

𝜕𝑥2𝛼
+
Γ (1 + (𝑛 + 2) 𝛼)

Γ (1 + 𝑛𝛼)
𝜑
4 (𝑥, 𝑡) = 0,

𝑛 = 3:
𝜕
2𝛼
𝜑
3
(𝑥, 𝑡)

𝜕𝑥2𝛼
+
Γ (1 + (𝑛 + 2) 𝛼)

Γ (1 + 𝑛𝛼)
𝜑
5
(𝑥, 𝑡) = 0,

𝑛 = 4:
𝜕
2𝛼
𝜑
4 (𝑥, 𝑡)

𝜕𝑥2𝛼
+
Γ (1 + (𝑛 + 2) 𝛼)

Γ (1 + 𝑛𝛼)
𝜑
6
(𝑥, 𝑡) = 0,

...

𝑛 = 𝑘:
𝜕
2𝛼
𝜑
𝑘
(𝑥, 𝑡)

𝜕𝑥2𝛼
+
Γ (1 + (𝑘 + 2) 𝛼)

Γ (1 + 𝑘𝛼)
𝜑
𝑘+2 (𝑥, 𝑡) = 0.

(83)

Hence, we get

𝜑 (𝑥, 𝑦, 𝑡) =

∞

∑

𝑖=0

𝑦
2𝑖𝛼

Γ (1 + 2𝑖𝛼)
(−1)
𝑖 𝜕
2𝑖𝛼

𝜕𝑥2𝑖𝛼
𝑓 (𝜑
0
) , (84)

where

𝑓 (𝜑
0
) = 𝜑
0
(𝑥, 𝑡) . (85)

Similarly, from (84) and (85), we can get

𝜕
𝛼
𝜑

𝜕𝑥𝛼
=
𝜕
𝛼

𝜕𝑥𝛼
𝑓 (𝜑
0
) −

𝑦
2𝛼

Γ (1 + 2𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝑓 (𝜑
0
) + 𝑂 (𝑥

2𝛼
) ,

𝜕
𝛼
𝜑

𝜕𝑦𝛼
= −

𝑦
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
) +

𝑦
3𝛼

Γ (1 + 3𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
)

+ 𝑂 (𝑥
2𝛼
) .

(86)

In order to obtain a dimensionless form of (74)–(77), we
make the following scale transformations:

𝑥 󳨀→ 𝑥𝜆,

𝑦 󳨀→ ℎ𝑦,

𝜑 󳨀→
𝜍𝜆
𝛼
𝑐
𝛼

0
𝜑

ℎ𝛼
,

𝑡 󳨀→
𝑡𝜆

𝑐
0

,

𝜂 󳨀→ 𝜍𝜂,

(87)

so that

𝜀
2𝛼 𝜕
2𝛼
𝜑

𝜕𝑥2𝛼
+
𝜕
2𝛼
𝜑

𝜕𝑦2𝛼
= 0, 0 ≤ 𝑦 ≤ 1 + 𝑎𝜂, (88)

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎
𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
𝜂

𝜕𝑥𝛼
−
1

𝜀2𝛼

𝜕
𝛼
𝜑

𝜕𝑦𝛼
= 0, 𝑦 = 1 + 𝑎𝜂, (89)

𝜕
𝛼
𝜑

𝜕𝑡𝛼
+
𝑎

2

𝜕
𝛼
𝜑

𝜕𝑥𝛼

𝜕
𝛼
𝜑

𝜕𝑥𝛼
+
1

2

𝑎

𝜀2𝛼

𝜕
𝛼
𝜑

𝜕𝑦𝛼

𝜕
𝛼
𝜑

𝜕𝑦𝛼
+ 𝜂 = 0,

𝑦 = 1 + 𝑎𝜂,

(90)

𝜕
𝛼
𝜑

𝜕𝑦𝛼
= 0, 𝑦 = 0. (91)

In this context, the equation for the free water surface is

𝑦 = 1 + 𝑎𝜂, (92)

Here 𝑐
0
= √𝑔ℎ is the linear wave velocity in shallow

water. The two small parameters are 𝑎 = 𝜍/ℎ𝛼 and 𝜀 =

ℎ/𝜆 with depth of the water ℎ, while 𝜍 and 𝜆 are the typical
height and length of the solitary wave, respectively

Equations (84), (88), and (91) allow developing a nondif-
ferentiable series with respect to 𝜀 in the form

𝜑 (𝑥, 𝜂, 𝑡) =

∞

∑

𝑖=0

𝑦
2𝑖𝛼

Γ (1 + 2𝑖𝛼)
(−1)
𝑖 𝜕
2𝑖𝛼

𝜕𝑥2𝑖𝛼
𝑓 (𝜑
0
) 𝜀
2𝑖𝛼
. (93)

In view of (84), (89), and (90), we have

𝜑 = 𝑓 (𝜑
0
) −

𝑦
2𝛼

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
) 𝜀
2𝛼

+
𝑦
4𝛼

Γ (1 + 4𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼
+ 𝑂 (𝜀

4𝛼
) ,

(94)

so that

𝜕
𝛼
𝜑

𝜕𝑥𝛼
=
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼
−
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝑓 (𝜑
0
) 𝜀
2𝛼

+
(1 + 𝑎𝜂)

4𝛼

Γ (1 + 4𝛼)

𝜕
5𝛼

𝜕𝑥5𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼
+ 𝑂 (𝜀

4𝛼
) ,

(95)
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𝜕
𝛼
𝜑

𝜕𝑦𝛼
= −

(1 + 𝑎𝜂)
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
) 𝜀
2𝛼

+
(1 + 𝑎𝜂)

3𝛼

Γ (1 + 3𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼
+ 𝑂 (𝜀

4𝛼
) ,

(96)

which leads to

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎(

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼
−
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝑓 (𝜑
0
) 𝜀
2𝛼

+
(1 + 𝑎𝜂)

4𝛼

Γ (1 + 4𝛼)

𝜕
5𝛼

𝜕𝑥5𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼
)
𝜕
𝛼
𝜂

𝜕𝑥𝛼

−
1

𝜀2𝛼
(−
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
) 𝜀
2𝛼

+
(1 + 𝑎𝜂)

3𝛼

Γ (1 + 3𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼
)

+ 𝑂(𝜀
4𝛼
) = 0,

(97)

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑡𝛼
−
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑡𝛼
𝜀
2𝛼

+
(1 + 𝑎𝜂)

4𝛼

Γ (1 + 4𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼

𝜕
𝛼

𝜕𝑡𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼

+
𝑎

2
(
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼
+
(1 + 𝑎𝜂)

4𝛼

Γ (1 + 4𝛼)

𝜕
5𝛼

𝜕𝑥5𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼

−
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝑓 (𝜑
0
) 𝜀
2𝛼
)

2

+
1

2

𝑎

𝜀2𝛼
(−
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
) 𝜀
2𝛼

+
(1 + 𝑎𝜂)

3𝛼

Γ (1 + 3𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
) 𝜀
4𝛼
)

2

+ 𝜂 + 𝑂 (𝜀
4𝛼
) = 0.

(98)

Hence, from (97) and (98), we obtain

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ (𝑎

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
))

− {
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝑓 (𝜑
0
) 𝑎
𝜕
𝛼
𝜂

𝜕𝑥𝛼

+
(1 + 𝑎𝜂)

3𝛼

Γ (1 + 3𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
)} 𝜀
2𝛼

+
(1 + 𝑎𝜂)

4𝛼

Γ (1 + 4𝛼)

𝜕
5𝛼

𝜕𝑥5𝛼
𝑓 (𝜑
0
)
𝜕
𝛼
𝜂

𝜕𝑥𝛼
𝑎𝜀
4𝛼
+ 𝑂 (𝜀

4𝛼
) = 0,

{
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑡𝛼
+
𝑎

2
(
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼
)

2

}

− {
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑡𝛼

+ 𝑎
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼

𝜕
3𝛼
𝑓 (𝜑
0
)

𝜕𝑥3𝛼

−
𝑎

2
(
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
))

2

}𝜀
2𝛼

+ {
(1 + 𝑎𝜂)

4𝛼

Γ (1 + 4𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼

𝜕
𝛼

𝜕𝑡𝛼
𝑓 (𝜑
0
)

+ 𝑎
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼

(1 + 𝑎𝜂)
4𝛼

Γ (1 + 4𝛼)

𝜕
5𝛼

𝜕𝑥5𝛼
𝑓 (𝜑
0
)

+
𝑎

2
(
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝑓 (𝜑
0
))

2

− 𝑎
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

×𝑓 (𝜑
0
)
(1 + 𝑎𝜂)

3𝛼

Γ (1 + 3𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
) } 𝜀
4𝛼

+ 𝜂 + 𝑂 (𝜀
4𝛼
) = 0.

(99)

To this end, let us consider the following relations:

𝜀 =
ℎ

𝜆
≪ 1,

𝑎 =
𝜍

ℎ𝛼
≪ 1.

(100)

Then, from (99) and (103), we have

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ (𝑎

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
))

− {
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝑓 (𝜑
0
) 𝑎
𝜕
𝛼
𝜂

𝜕𝑥𝛼

+
(1 + 𝑎𝜂)

3𝛼

Γ (1 + 3𝛼)

𝜕
4𝛼

𝜕𝑥4𝛼
𝑓 (𝜑
0
)} 𝜀
2𝛼
+ 𝑂 (𝜀

4𝛼
) = 0,

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑡𝛼
+
𝑎

2
(
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼
)

2

−
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)
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× {
𝜕
2𝛼

𝜕𝑥3𝛼

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑡𝛼
+ 𝑎
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼

𝜕
3𝛼
𝑓 (𝜑
0
)

𝜕𝑥3𝛼

−
𝑎

2

Γ (1 + 2𝛼)

Γ2 (1 + 𝛼)
(
𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
))

2

}𝜀
2𝛼

+ 𝜂 + 𝑂 (𝜀
4𝛼
) = 0.

(101)

From (101), we get

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝑓 (𝜑
0
) = 0,

𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑡𝛼
+
𝑎

2
(
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼
)

2

+ 𝜂 = 0

(102)

which yield

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
𝛼
𝜎

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝜎

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜎

𝜕𝑥𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0,

(103)

where

𝜎 =
𝜕
𝛼
𝑓 (𝜑
0
)

𝜕𝑥𝛼
. (104)

If the terms of 𝑂(𝑎𝜀2𝛼, 𝜀4𝛼) are omitted, then from (101),
we obtain

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
(1 + 𝑎𝜂)

𝛼

Γ (1 + 𝛼)

𝜕
𝛼
𝜎

𝜕𝑥𝛼
−
(1 + 𝑎𝜂)

3𝛼

Γ (1 + 3𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝜎𝜀
2𝛼

+ 𝑂 (𝑎𝜀
2𝛼
, 𝜀
4𝛼
) = 0,

(105)

𝜕
𝛼
𝜎

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜎

𝜕𝑥𝛼
−
(1 + 𝑎𝜂)

2𝛼

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝜎

𝜕𝑡𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼

+ 𝑂 (𝑎𝜀
2𝛼
, 𝜀
4𝛼
) = 0.

(106)

From (93) and (95), we have

𝜕
𝛼
𝜑

𝜕𝑥𝛼
= 𝜎 −

1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝜎𝜀
2𝛼
+ 𝑂 (𝜀

4𝛼
) ,

𝜔 = 𝜎 −
1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼
𝜎𝜀
2𝛼
+ 𝑂 (𝑎𝜀

2𝛼
, 𝜀
4𝛼
) ,

(107)

which can alternatively be written as

𝜎 = 𝜔 +
1

Γ (1 + 2𝛼)

𝜕
2𝛼
𝜔

𝜕𝑥2𝛼
𝜀
2𝛼
+ 𝑂 (𝑎𝜀

2𝛼
, 𝜀
4𝛼
) . (108)

Substituting (108) in (97) and (106), we get

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎𝜔

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+

1

Γ (1 + 𝛼)

𝜕
𝛼
𝜔

𝜕𝑥𝛼
+ 𝑂 (𝑎𝜀

2𝛼
, 𝜀
4𝛼
) = 0,

𝜕
𝛼
𝜔

𝜕𝑡𝛼
+ 𝑎𝜔

𝜕
𝛼
𝜔

𝜕𝑥𝛼
−

1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝜔

𝜕𝑡𝛼
𝜀
2𝛼

+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
+ 𝑂 (𝑎𝜀

2𝛼
, 𝜀
4𝛼
) = 0,

(109)

where 𝜀 = ℎ/𝜆 ≪ 1 and 𝑎 = 𝜍/ℎ𝛼 ≪ 1.
In view of (109), we obtain

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+

1

Γ (1 + 𝛼)

𝜕
𝛼
𝜔

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝜔

𝜕𝑡𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0,

(110)

which result into the form

𝜕
2𝛼
𝜔

𝜕𝑡2𝛼
=

1

Γ (1 + 𝛼)

𝜕
2𝛼
𝜂

𝜕𝑥2𝛼
. (111)

We notice that (111) is the linear local fractional wave
equation for water waves when 𝜔 = 𝜂.

We may also transform (110) into the following forms:

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+
𝜕
𝛼
𝜔

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝜔

𝜕𝑡𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0,

(112)

which yield

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0, (113)

where 𝜔 = 𝜂 and 𝛼 → 1.
For developing the problem further, by (113), (105), and

(106) can be expressed as

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
𝜕
𝛼
𝜎

𝜕𝑥𝛼
−

1

Γ (1 + 3𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝜎𝜀
2𝛼

+ 𝑂 (𝑎𝜀
2𝛼
, 𝜀
4𝛼
) = 0,

𝜕
𝛼
𝜎

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜎

𝜕𝑥𝛼
−

1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝜎

𝜕𝑡𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼

+ 𝑂 (𝑎𝜀
2𝛼
, 𝜀
4𝛼
) = 0

(114)

which lead to

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
𝜕
𝛼
𝜎

𝜕𝑥𝛼
−

1

Γ (1 + 3𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝜎𝜀
2𝛼
= 0, (115)

𝜕
𝛼
𝜎

𝜕𝑡𝛼
+ 𝑎𝜎

𝜕
𝛼
𝜎

𝜕𝑥𝛼
−

1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝜎

𝜕𝑡𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0, (116)

where 𝜀 = ℎ/𝜆 ≪ 1 and 𝑎 = 𝜍/ℎ𝛼 ≪ 1.
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In view of (108), (115), and (116), we obtain

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎𝜔

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
𝜕
𝛼
𝜔

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝜔

𝜕𝑡𝛼
+ 𝑎𝜔

𝜕
𝛼
𝜔

𝜕𝑥𝛼
−

1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝜔

𝜕𝑡𝛼
𝜀
2𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0.

(117)

Now, from (113), we may look for a solution of the form

𝜎 = 𝜂 + 𝑎𝐴 + 𝜀
2𝛼
𝐵 + 𝑂 (𝑎

2
+ 𝜀
4𝛼
) , (118)

where 𝐴 and 𝐵 are functions of 𝜂 and its local fractional
derivatives.

Utilizing (115), (116), and (118), we obtain

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎(

𝜕
𝛼
𝐴

𝜕𝑥𝛼
+ 𝜂
𝜕
𝛼
𝜂

𝜕𝑥𝛼
) + 𝜀
2𝛼
(
𝜕
𝛼
𝐵

𝜕𝑥𝛼
−

1

Γ (1 + 3𝛼)

𝜕
3𝛼

𝜕𝑥3𝛼
𝜂)

+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
+ 𝑂 (𝑎

2
+ 𝜀
4𝛼
) = 0,

(119)

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎(

𝜕
𝛼
𝐴

𝜕𝑡𝛼
+ 𝜂
𝜕
𝛼
𝜂

𝜕𝑡𝛼
)

+ 𝜀
2𝛼
(
𝜕
𝛼
𝐵

𝜕𝑡𝛼
−

1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝜎

𝜕𝑡𝛼
)

+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
+ 𝑂 (𝑎

2
+ 𝜀
4𝛼
) = 0,

(120)

which lead to

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎(

𝜕
𝛼
𝐴

𝜕𝑥𝛼
+ 𝜂
𝜕
𝛼
𝜂

𝜕𝑥𝛼
) + 𝜀
2𝛼
(
𝜕
𝛼
𝐵

𝜕𝑥𝛼
−

1

Γ (1 + 3𝛼)

𝜕
3𝛼
𝜂

𝜕𝑥3𝛼
)

+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+ 𝑎(

𝜕
𝛼
𝐴

𝜕𝑡𝛼
+ 𝜂
𝜕
𝛼
𝜂

𝜕𝑡𝛼
)

+ 𝜀
2𝛼
(
𝜕
𝛼
𝐵

𝜕𝑡𝛼
−

1

Γ (1 + 2𝛼)

𝜕
2𝛼

𝜕𝑥2𝛼

𝜕
𝛼
𝜎

𝜕𝑡𝛼
)

+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0.

(121)

Moreover, from (121), we have

𝐴 = −𝜒𝜂
2𝛼
,

𝐵 = 𝜗
𝜕
2𝛼
𝜂

𝜕𝑥2𝛼
,

(122)

such that (119) and (120) are valid with 𝜒 and 𝜗 as constants.
Therefore, from (115), (119), and (122), we have

𝜎 = 𝜂 − 𝑎𝜒𝜂
2𝛼
+ 𝜀
2𝛼
𝜗
𝜕
2𝛼
𝜂

𝜕𝑥2𝛼
+ 𝑂 (𝑎

2
+ 𝜀
4𝛼
) , (123)

such that

𝜕
𝛼
𝜂

𝜕𝑡𝛼
− 𝑎𝑀𝜂

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+ 𝜀
2𝛼
𝑁
𝜕
3𝛼
𝜂

𝜕𝑥3𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0, (124)

where

𝑀 = 2𝜒 − 1 ̸= 0,

𝑁 = 𝜗 −
1

Γ (1 + 3𝛼)
̸= 0.

(125)

From (124), we arrive at the following formula:

𝜕
𝛼
𝜂

𝜕𝑡𝛼
− 𝑅𝜂

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+ 𝑆
𝜕
3𝛼
𝜂

𝜕𝑥3𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0, (126)

which leads to

𝜕
𝛼
𝜂

𝜕𝑡𝛼
− 𝜂
𝜕
𝛼
𝜂

𝜕𝑥𝛼
+
𝜕
3𝛼
𝜂

𝜕𝑥3𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0, (127)

or (neglecting the low term)

𝜕
𝛼
𝜂

𝜕𝑡𝛼
− 𝑅𝜂

𝜕
𝛼
𝜂

𝜕𝑥𝛼
+ 𝑆
𝜕
3𝛼
𝜂

𝜕𝑥3𝛼
= 0, (128)

where 𝜂(𝑥, 𝑡) is a nondifferentiable function, 𝑅 = 𝑎𝑀 and
𝑆 = 𝜀
2𝛼
𝑁.

We notice that (126) is the local fractional Korteweg-
de Vries equation. When there are coefficient relations,
namely, 𝑅 = 1 and 𝑆 = 1, we obtain a new local fractional
Korteweg-de Vries equation. When neglecting the nonlinear
term of (127), we obtain the linear local fractional Korteweg-
de Vries equation as follows:

𝜕
𝛼
𝜂

𝜕𝑡𝛼
+
𝜕
3𝛼
𝜂

𝜕𝑥3𝛼
+
𝜕
𝛼
𝜂

𝜕𝑥𝛼
= 0, (129)

where 𝜂(𝑥, 𝑡) is a nondifferentiable function.

4. Conclusions

In thiswork,we have derived the local fractionalKorteweg-de
Vries equation related to fractal waves on shallow water sur-
faces from the local fractional calculus view point. The linear
and nonlinear theories for fractal water wave are presented
and the linear and nonlinear local fractional Korteweg-de
Vries equations are also obtained.
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