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An algorithm of constructing infinitely many symplectic realizations of generalized sl(2) Gaudin magnet is proposed. Based on
this algorithm, the consecutive Rosochatius deformations of integrable Hamiltonian systems are presented. As examples, the
consecutive Rosochatius deformations of the Garnier system and the Hénon-Heiles system as well as their Lax representations,
are obtained.

1. Introduction

Usually the integrability of a Hamiltonian system is destroyed
even with a very small perturbation. As early as in 1877,
Rosochatius first discovered that it would keep the integra-
bility to add a potential of the sum of inverse squares of
the coordinates to that of the Neumann system [1, 2]. This
provides an interesting example of integrable perturbation.
Nowadays, the resulting system is called the Neumann-
Rosochatius system [3–7]. In 1985, Wojciechowski gained
an analogy system (called Garnier-Rosochatius system) for
the Garnier system [8, 9]. Later in 1999, based on the Deift
technique and a well-known theorem that the Gauss map
transforms the Neumann system to the Jacobi system, Kubo
et al. constructed the analogy system for the Jacobi system
or the geodesic flow equation on the ellipsoid [10–12]. In
2007, one of the authors (Zhou) generalized the Rosochatius
deformations of the constrained soliton flows [13], and then
the method has been extended to construct the integrable
deformations of the symplectic maps [14] and the soliton
equations with self-consistent sources [15].

There appear some important physical and mathematical
applications of Rosochatius deformed integrable systems.
For example, the Neumann-Rosochatius system can be used
to describe the dynamics of a rotating closed string and
the membranes [16, 17], the Garnier-Rosochatius system
can be used to solve the multicomponent coupled non-
linear Schödinger equation [18, 19], and the Rosochatius

deformation of the KdV equationwith self-consistent sources
can be used to establish the bi-Hamiltonian structure of the
KdV6 equation [20].

Recently, we proposed an approach to generate integrable
Rosochatius deformations of the Neumann system consec-
utively [21]. The Lax matrix of the 𝑁-copies of Neumann
system is of the form of classical sl(2) Gaudinmagnet defined
on the 2(𝑁 − 1)-dimensional submanifold. In this paper, we
would like to show that the approach can be applied to the
integrable Hamiltonian systems whose Lax matrices are of
the form of the generalized Gaudin magnet. We first present
an algorithm of constructing infinitely many realizations of
generalized sl(2) Gaudin magnet model. Then, we describe
how to generate integrable Hamiltonian systems based on the
realizations of sl(2) Gaudin magnet. The Rosochatius defor-
mation of an integrable Hamiltonian system is explained
as a special case of the realizations of generalized sl(2)
Gaudin magnet model.Thus, such an algorithm enables us to
construct Rosochatius deformations of the integrable Hamil-
tonian systems consecutively. As applications, we obtain
the consecutive Rosochatius deformations of the Garnier
system and the Hénon-Heiles system as well as their Lax
representations.

The plan of the paper is as follows. In Section 2, we pro-
pose infinitely many symplectic realizations of sl(2) Gaudin
magnet and describe how to generate the integrable Hamil-
tonian systems based on these realizations. In Sections 3 and
4, we pay attention to studying the integrable deformations
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of the Garnier system andHénon-Heiles system, respectively.
Some concluding remarks are drawn in Section 5.

2. The Generalized sl(2) Gaudin Magnet and
Its Realizations

2.1. The Realizations of the Generalized sl(2) Gaudin Magnet.
We consider the Lax matrix of the form of the generalized
Gaudin magnet [22, 23]

𝐿 (𝜆) = 𝐿
0
(𝜆) +

1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑆
0

𝑗
𝑆
−

𝑗

𝑆
+

𝑗
−𝑆
0

𝑗

) , (1)

where 𝐿
0
(𝜆) is a traceless 2 × 2 matrix whose entries are

polynomials of𝜆 or𝜆−1 and 𝑆
𝑗
satisfy𝑁 copies of the standard

sl(2) algebra

{𝑆
0

𝑗
, 𝑆
+

𝑘
}=2𝛿
𝑗𝑘
𝑆
+

𝑘
, {𝑆

0

𝑗
, 𝑆
−

𝑘
}=−2𝛿

𝑗𝑘
𝑆
−

𝑘
, {𝑆

+

𝑗
, 𝑆
−

𝑘
}=4𝛿
𝑗𝑘
𝑆
0

𝑘
,

𝑗, 𝑘 = 1, 2, . . . , 𝑁,

(2)

with𝑁 Casimirs

𝐶
𝑗
= (𝑆
0

𝑗
)
2

+ 𝑆
−

𝑗
𝑆
+

𝑗
, 𝑗 = 1, 2, . . . , 𝑁. (3)

It is well known that the sl(2) algebra (2) has a symplectic
realization:

𝑆
0

𝑗
= 𝑞
𝑗
𝑝
𝑗
, 𝑆

−

𝑗
= −𝑞
2

𝑗
, 𝑆

+

𝑗
= 𝑝
𝑗

2
,

𝑗 = 1, 2, . . . , 𝑁,

(4)

where 𝑞
𝑗
, 𝑝
𝑗
are canonical coordinates on the standard

symplectic space (R2𝑁, 𝜔2 = ∑
𝑁

𝑗=1
𝑑𝑝
𝑗
∧ 𝑑𝑞
𝑗
). Under the

realization of (4), the Lie-Poisson brackets (2) are recovered
by computing the standard Poisson bracket

{𝐹 (𝑞, 𝑝) , 𝐺 (𝑞, 𝑝)} =

𝑁

∑

𝑗=1

(
𝜕𝐹

𝜕𝑞
𝑗

𝜕𝐺

𝜕𝑝
𝑗

−
𝜕𝐹

𝜕𝑝
𝑗

𝜕𝐺

𝜕𝑞
𝑗

) , (5)

where 𝑞 = (𝑞
1
, . . . , 𝑞

𝑁
), 𝑝 = (𝑝

1
, . . . , 𝑝

𝑁
), 𝐹(𝑞, 𝑝), and𝐺(𝑞, 𝑝)

are arbitrary smooth functions about 𝑞 and 𝑝.
With a direct calculation, we observe the following

proposition.

Proposition 1. If 𝑆0
𝑗
= 𝑓
𝑗
(𝑞, 𝑝), 𝑆−

𝑗
= 𝑔
𝑗
(𝑞, 𝑝), and 𝑆

+

𝑗
=

ℎ
𝑗
(𝑞, 𝑝) is a realization of (2), so are

𝑆
0

𝑗
= 𝑓
𝑗
(𝑞, 𝑝) , 𝑆

−

𝑗
= 𝑔
𝑗
(𝑞, 𝑝) ,

𝑆
+

𝑗
= ℎ
𝑗
(𝑞, 𝑝) + 𝛾

𝑗
𝑔
−1

𝑗
(𝑞, 𝑝) ,

𝑆
0

𝑗
= 𝑓
𝑗
(𝑞, 𝑝) , 𝑆

−

𝑗
= 𝑔
𝑗
(𝑞, 𝑝) + 𝛽

𝑗
ℎ
−1

𝑗
(𝑞, 𝑝) ,

𝑆
+

𝑗
= ℎ
𝑗
(𝑞, 𝑝) ,

(6)

where 𝛾
𝑗
, 𝛽
𝑗
, (𝑗 = 1, 2, . . . , 𝑁) are arbitrary constants.

This proposition provides us with two kinds of new
realizations of sl(2) algebra (2) from a known one. Moreover,
applying such two kinds of realizations in turn, we can
construct an infinitely many realizations of sl(2) algebra (2).
For example, from (4), we obtain the following realizations of
(2):

𝑆
0

𝑗
= 𝑞
𝑗
𝑝
𝑗
, 𝑆

−

𝑗
= −𝑞
2

𝑗
, 𝑆

+

𝑗
= 𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
, (7)

𝑆
0

𝑗
= 𝑞
𝑗
𝑝
𝑗
, 𝑆

−

𝑗
= −𝑞
2

𝑗
− 𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

,

𝑆
+

𝑗
= 𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
.

(8)

2.2. A Recipe for Generating Integrable Hamiltonian Systems
Based on Realizations of sl(2) Gaudin Magnet. Now, we
describe how to generate an integrable Hamiltonian system
based on a symplectic realization of sl(2) Gaudin magnet. We
suppose that the Lax matrix (1) satisfies an 𝑟-matrix relation
[24]

{𝐿
1
(𝜆) , 𝐿

2
(𝜇)} = [𝑟

12
(𝜆, 𝜇) , 𝐿

1
(𝜆)] − [𝑟

21
(𝜆, 𝜇) , 𝐿

2
(𝜇)] ,

(9)

where 𝐿
1
(𝜆) = 𝐿(𝜆)⊗ 𝐼

2
, 𝐿
2
(𝜇) = 𝐼

2
⊗𝐿(𝜇), 𝐼

2
is 2×2 identity

matrix, 𝜇 is an arbitrary parameter, and [⋅, ⋅] denotes the
commutator of thematrices, such as [𝑟

12
, 𝐿
1
] = 𝑟
12
𝐿
1
−𝐿
1
𝑟
12
.

According to the general theory of the 𝑟-matrix [24, 25], we
have

{det 𝐿 (𝜆) , det 𝐿 (𝜇)} = 0. (10)

First, we expand det 𝐿(𝜆) as

det 𝐿 (𝜆) =
∞

∑

𝑗=𝑘0

𝐹
𝑗
𝜆
−𝑗
, or det 𝐿 (𝜆) =

∞

∑

𝑗=𝑘0

𝐹
𝑗
𝜆
𝑗
. (11)

From (10), we have

{𝐹
𝑗
, 𝐹
𝑘
} = 0, 𝑗, 𝑘 ≥ 𝑘

0
, (12)

which implies that 𝐹
𝑘
’s are in involution in pairs. Usually,

we can single out 𝑁 functionally independent 𝐹
𝑘1
, . . . , 𝐹

𝑘𝑁

among {𝐹
𝑘
}
𝑘≥𝑘0

. Choosing a Hamiltonian 𝐻, which is com-
posed of some of 𝐹

𝑘
’s, we have

{𝐻, 𝐹
𝑘𝑗
} = 0, 1 ≤ 𝑗 ≤ 𝑁. (13)

Functionally independent and involutive pairwise integrals,
𝐹
𝑘1
, . . . , 𝐹

𝑘𝑁
, ensure that the Hamiltonian system 𝐻 is com-

pletely integrable in the sense of Liouville [26].
Further, substituting a realization of (2) into the Lax

matrix (1) and the corresponding 𝐹
𝑘
’s and 𝐻 defined above,

we finally obtain an integrable Hamiltonian system with the
Hamiltonian𝐻 expressed in canonical coordinates (𝑞

𝑗
, 𝑝
𝑗
):

𝑞
𝑗,𝑥

=
𝜕𝐻

𝜕𝑝
𝑗

, 𝑝
𝑗,𝑥

= −
𝜕𝐻

𝜕𝑞
𝑗

, 1 ≤ 𝑗 ≤ 𝑁. (14)

The above recipe shows that, once having a symplectic
realization of sl(2) algebra (2), we may obtain an inte-
grable Hamiltonian system. In the next sections, we will
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take the Garnier system and the Hénon-Heiles system as
examples to show that the Rosochatius deformations and
second Rosochatius deformations of integrable systems can
be generated from the realizations of (7) and (8), respectively,
according to the above recipe. Thus, applying Proposition 1
in turn enables us to consecutively construct Rosochatius
deformations of the integrable Hamiltonian systems.

3. Consecutive Rosochatius Deformations of
the Garnier System

We take 𝐿
0
(𝜆) in (1) as

𝐿
0
(𝜆) = (

0 1

−𝜆 +
1

2

𝑁

∑

𝑗=1

𝑆
−

𝑗
0
) ; (15)

then, the Lax matrix (1) becomes

𝐿 (𝜆) = (

0 1

−𝜆 +
1

2

𝑁

∑

𝑗=1

𝑆
−

𝑗
0
) +

1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑆
0

𝑗
𝑆
−

𝑗

𝑆
+

𝑗
−𝑆
0

𝑗

)

≜ (
𝐿
11
(𝜆) 𝐿

12
(𝜆)

𝐿
21
(𝜆) −𝐿

11
(𝜆)

) .

(16)

Direct calculations yield that

{𝐿
11
(𝜆) , 𝐿

11
(𝜇)} = {𝐿

12
(𝜆) , 𝐿

12
(𝜇)} = 0,

{𝐿
21
(𝜆) , 𝐿

21
(𝜇)} = 2𝐿

11
(𝜆) − 2𝐿

11
(𝜇) ,

{𝐿
11
(𝜆) , 𝐿

12
(𝜇)} =

1

𝜇 − 𝜆
(𝐿
12
(𝜇) − 𝐿

12
(𝜆)) ,

{𝐿
12
(𝜆) , 𝐿

21
(𝜇)} =

2

𝜇 − 𝜆
(𝐿
11
(𝜇) − 𝐿

11
(𝜆)) ,

{𝐿
11
(𝜆) , 𝐿

21
(𝜇)} =

1

𝜇 − 𝜆
(𝐿
21
(𝜆) − 𝐿

21
(𝜇)) − 𝐿

12
(𝜆) ,

(17)

which is equivalent to the 𝑟-matrix algebra.

Proposition 2. 𝐿(𝜆) satisfies the 𝑟-matrix relation

{𝐿
1
(𝜆) , 𝐿

2
(𝜇)} = [𝑟

12
(𝜆, 𝜇) , 𝐿

1
(𝜆)] − [𝑟

21
(𝜆, 𝜇) , 𝐿

2
(𝜇)] ,

(18)

where

𝑟
12
(𝜆, 𝜇) = 𝑟

21
(𝜇, 𝜆) =

1

𝜇 − 𝜆
𝑃 + 𝑆,

𝑃 = (

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

) , 𝑆 = (

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

) .

(19)

Expand det 𝐿(𝜆) as follows:

𝐹
𝜆
≜ det 𝐿 (𝜆) = 𝜆 +

∞

∑

𝑚=0

𝐹
𝑚
𝜆
−𝑚−1

, (20)

where

𝐹
0
= −

1

2

{

{

{

𝑁

∑

𝑗=1

𝑆
+

𝑗
−

𝑁

∑

𝑗=1

𝜆
𝑗
𝑆
−

𝑗
+
1

2
(

𝑁

∑

𝑗=1

𝑆
−

𝑗
)

2

}

}

}

,

𝐹
𝑚
= −

1

2

{

{

{

𝑁

∑

𝑗=1

𝜆
𝑚

𝑗
𝑆
+

𝑗
−

𝑁

∑

𝑗=1

𝜆
𝑚+1

𝑗
𝑆
−

𝑗

+
1

2
(

𝑁

∑

𝑗=1

𝑆
−

𝑗
)(

𝑁

∑

𝑗=1

𝜆
𝑚

𝑗
𝑆
−

𝑗
)
}

}

}

−
1

4
∑

𝑙+𝑘=𝑚−1

[

[

(

𝑁

∑

𝑗=1

𝜆
𝑙

𝑗
𝑆
0

𝑗
)(

𝑁

∑

𝑗=1

𝜆
𝑘

𝑗
𝑆
0

𝑗
)

+(

𝑁

∑

𝑗=1

𝜆
𝑙

𝑗
𝑆
−

𝑗
)(

𝑁

∑

𝑗=1

𝜆
𝑘

𝑗
𝑆
+

𝑗
)]

]

, 𝑚 ≥ 1.

(21)

Then, we have the involutive relation

{𝐹
𝑗
, 𝐹
𝑘
} = 0, 𝑗, 𝑘 = 0, 1, 2, . . . . (22)

Under the realization of (4), we obtain the following Lax
matrix

𝐿 (𝜆) = (

0 1

−𝜆 −
1

2
⟨𝑞, 𝑞⟩ 0

) +
1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑞
𝑗
𝑝
𝑗

−𝑞
2

𝑗

𝑝
2

𝑗
−𝑞
𝑗
𝑝
𝑗

) .

(23)

Then, (21) becomes

𝐹
0
= −

1

2
{⟨𝐴𝑞, 𝑞⟩ + ⟨𝑝, 𝑝⟩ +

1

2
⟨𝑞, 𝑞⟩

2
} ,

𝐹
𝑚
= −

1

2
{⟨𝐴
𝑚+1

𝑞, 𝑞⟩ + ⟨𝐴
𝑚
𝑝, 𝑝⟩ +

1

2
⟨𝑞, 𝑞⟩⟨𝐴

𝑚
𝑞, 𝑞⟩}

−
1

4
∑

𝑙+𝑘=𝑚−1

[⟨𝐴
𝑙
𝑞, 𝑝⟩⟨𝐴

𝑘
𝑞, 𝑝⟩ − ⟨𝐴

𝑙
𝑞, 𝑞⟩⟨𝐴

𝑘
𝑝, 𝑝⟩] ,

𝑚 ≥ 1.

(24)

Here and after, 𝐴 = diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
) and ⟨, ⟩ stands

for the standard inner product in the Euclidean space. The
Hamiltonian system with Hamiltonian𝐻 = −𝐹

0
reads

𝑞
𝑗,𝑥

= 𝑝
𝑗
,

𝑝
𝑗,𝑥

= −𝜆
𝑗
𝑞
𝑗
− ⟨𝑞, 𝑞⟩𝑞

𝑗
, 1 ≤ 𝑗 ≤ 𝑁,

(25)

which is nothing but the Garnier system [27, 28]. We can
check directly that the Garnier system (25) allows the Lax
representation:

𝑑

𝑑𝑥
𝐿 (𝜆) = [𝑈 (𝜆) , 𝐿 (𝜆)] , (26)
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where 𝐿(𝜆) is given by (23), and

𝑈 (𝜆) = (
0 1

−𝜆 − 𝑢 0
) , 𝑢 = ⟨𝑞, 𝑞⟩. (27)

Example 3 (The Garnier-Rosochatius System). From the
realization of (7), we arrive at the Lax matrix

𝐿̃ (𝜆) = (

0 1

−𝜆 −
1

2
⟨𝑞, 𝑞⟩ 0

)

+
1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑞
𝑗
𝑝
𝑗

−𝑞
2

𝑗

𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
−𝑞
𝑗
𝑝
𝑗

) ,

(28)

and (21) becomes

𝐹
0
= −

1

2
{⟨𝐴𝑞, 𝑞⟩ + ⟨𝑝, 𝑝⟩ + ⟨𝛾𝑞

−1
, 𝑞
−1
⟩ +

1

2
⟨𝑞, 𝑞⟩

2
} ,

𝐹
𝑚
= −

1

2
{⟨𝐴
𝑚+1

𝑞, 𝑞⟩ + ⟨𝐴
𝑚
𝑝, 𝑝⟩ + ⟨𝐴

𝑚
𝛾𝑞
−1
, 𝑞
−1
⟩

+
1

2
⟨𝑞, 𝑞⟩⟨𝐴

𝑚
𝑞, 𝑞⟩

+
1

2
∑

𝑙+𝑘=𝑚−1

[⟨𝐴
𝑙
𝑞, 𝑝⟩⟨𝐴

𝑘
𝑞, 𝑝⟩ − ⟨𝐴

𝑙
𝑞, 𝑞⟩

× (⟨𝐴
𝑘
𝑝, 𝑝⟩ + ⟨𝐴

𝑘
𝛾𝑞
−1
, 𝑞
−1
⟩)]} ,

𝑚 ≥ 1,

(29)

where 𝛾 = diag(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑁
). Choosing a Hamiltonian 𝐻̃ =

−𝐹
0
, we arrive at

𝑞
𝑗,𝑥

= 𝑝
𝑗
, 𝑝
𝑗,𝑥

= −𝜆
𝑗
𝑞
𝑗
− ⟨𝑞, 𝑞⟩ 𝑞

𝑗
+ 𝛾
𝑗
𝑞
−3

𝑗
,

1 ≤ 𝑗 ≤ 𝑁,

(30)

which is just the Garnier-Rosochatius system [8, 9, 13, 29]. It
can be checked easily that (30) allows the Lax representation:

𝑑

𝑑𝑥
𝐿̃ (𝜆) = [𝑈 (𝜆) , 𝐿̃ (𝜆)] , (31)

where 𝐿̃(𝜆) is given by (28) and 𝑈(𝜆) is given by (27).

Example 4 (The Second Rosochatius Deformation of the
Garnier System). Based on the realization of (8), we obtain
the Lax matrix

𝐿̂ (𝜆)

= (

0 1

−𝜆 −
1

2
(⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑖=1

𝛽
𝑖
(𝑝
2

𝑖
+ 𝛾
𝑖
𝑞
−2

𝑖
)
−1

) 0

)

+
1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

× (
𝑞
𝑗
𝑝
𝑗

−𝑞
2

𝑗
−𝛽
𝑗
(𝑝
2

𝑗
+𝛾
𝑗
𝑞
−2

𝑗
)
−1

𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
−𝑞
𝑗
𝑝
𝑗

) ,

(32)

and the integrals of motion

𝐹
0
= −

1

2

{

{

{

⟨𝐴𝑞, 𝑞⟩ +

𝑁

∑

𝑗=1

𝜆
𝑗
𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

+ ⟨𝑝, 𝑝⟩ + ⟨𝛾𝑞
−1
, 𝑞
−1
⟩

+
1

2
(⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑗=1

𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

)

2

}

}

}

,

(33)

𝐹
𝑚
= −

1

2
{⟨𝐴
𝑚+1

𝑞, 𝑞⟩

+

𝑁

∑

𝑗=1

𝜆
𝑚+1

𝑗
𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

+ ⟨𝐴
𝑚
𝑝, 𝑝⟩ + ⟨𝐴

𝑚
𝛾𝑞
−1
, 𝑞
−1
⟩

+
1

2
(⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑗=1

𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

)

× (⟨𝐴
𝑚
𝑞, 𝑞⟩ +

𝑁

∑

𝑗=1

𝜆
𝑚

𝑗
𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

)

+
1

2
∑

𝑙+𝑘=𝑚−1

[⟨𝐴
𝑙
𝑞, 𝑝⟩⟨𝐴

𝑘
𝑞, 𝑝⟩

− (⟨𝐴
𝑙
𝑞, 𝑞⟩

+

𝑁

∑

𝑗=1

𝜆
𝑙

𝑗
𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

)

× (⟨𝐴
𝑘
𝑝, 𝑝⟩+⟨𝐴

𝑘
𝛾𝑞
−1
, 𝑞
−1
⟩)]} .

(34)
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Choosing a Hamiltonian 𝐻̂ = −𝐹
0
, we obtain an integrable

Hamiltonian system

𝑞
𝑗,𝑥

= 𝑝
𝑗
− (𝜆
𝑗
+ ⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑖=1

𝛽
𝑖
(𝑝
2

𝑖
+ 𝛾
𝑖
𝑞
−2

𝑖
)
−1

)

× 𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−2

𝑝
𝑗
,

𝑝
𝑗,𝑥

= 𝛾
𝑗
𝑞
−3

𝑗
− (𝜆
𝑗
+ ⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑖=1

𝛽
𝑖
(𝑝
2

𝑖
+ 𝛾
𝑖
𝑞
−2

𝑖
)
−1

)

× (𝑞
𝑗
+ 𝛽
𝑗
𝛾
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−2

𝑞
−3

𝑗
) ,

(35)

which is the second Rosochatius deformation of the Garnier
system. With direct calculations, we find that (35) admits the
Lax representation:

𝑑

𝑑𝑥
𝐿̂ (𝜆) = [𝑈̂ (𝜆) , 𝐿̂ (𝜆)] , (36)

where

𝑈̂ (𝜆) = (
0 1

−𝜆 − 𝑢̂ 0
) ,

𝑢̂ = ⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑗=1

𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

.

(37)

There is no doubt that we can consecutively construct
Rosochatius deformations of the Garnier system by applying
the two kinds of realizations in Proposition 1 in turn and the
recipe we described in Section 2.2. Here, we only present the
above two examples.

4. Consecutive Rosochatius Deformations of
the Hénon-Heiles System

Now, we begin with the Lax matrix of the form

𝐿 (𝜆) = (

2𝑝
𝑁+1

8𝜆 − 4𝑞
𝑁+1

−8𝜆
2
− 4𝑞
𝑁+1

𝜆 − 2𝑞
2

𝑁+1
+
1

2

𝑁

∑

𝑗=1

𝑆
−

𝑗
−2𝑝
𝑁+1

)

+
1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑆
0

𝑗
𝑆
−

𝑗

𝑆
+

𝑗
−𝑆
0

𝑗

) .

(38)

Defining a generating function

𝐹
𝜆
= det 𝐿 (𝜆) = 64𝜆

3
+ 𝑃
0
+

∞

∑

𝑚=0

𝐹
𝑚
𝜆
−𝑚−1

, (39)

we have

𝑃
0
= −4𝑝

2

𝑁+1
− 8𝑞
3

𝑁+1
− 4

𝑁

∑

𝑗=1

𝑆
+

𝑗
+ 4𝑞
𝑁+1

𝑁

∑

𝑗=1

𝑆
−

𝑗
+ 4

𝑁

∑

𝑗=1

𝜆
𝑗
𝑆
−

𝑗
,

𝐹
0
= − 4

𝑁

∑

𝑗=1

𝜆
𝑗
𝑆
+

𝑗
+ 4

𝑁

∑

𝑗=1

𝜆
2

𝑗
𝑆
−

𝑗
+ 2𝑞
𝑁+1

(

𝑁

∑

𝑗=1

𝑆
+

𝑗
+

𝑁

∑

𝑗=1

𝜆
𝑗
𝑆
−

𝑗
)

+ 𝑞
2

𝑁+1

𝑁

∑

𝑗=1

𝑆
−

𝑗
− 2𝑝
𝑁+1

𝑁

∑

𝑗=1

𝑆
0

𝑗
−
1

4
(

𝑁

∑

𝑗=1

𝑆
−

𝑗
)

2

,

𝐹
𝑚
= − 4

𝑁

∑

𝑗=1

𝜆
𝑚+1

𝑗
𝑆
+

𝑗

+ 4

𝑁

∑

𝑗=1

𝜆
𝑚+2

𝑗
𝑆
−

𝑗
+ 2𝑞
𝑁+1

(

𝑁

∑

𝑗=1

𝜆
𝑚

𝑗
𝑆
+

𝑗
+

𝑁

∑

𝑗=1

𝜆
𝑚+1

𝑗
𝑆
−

𝑗
)

+ 𝑞
2

𝑁+1

𝑁

∑

𝑗=1

𝜆
𝑚

𝑗
𝑆
−

𝑗

− 2𝑝
𝑁+1

𝑁

∑

𝑗=1

𝜆
𝑚

𝑗
𝑆
0

𝑗
−
1

4
(

𝑁

∑

𝑗=1

𝑆
−

𝑗
)(

𝑁

∑

𝑗=1

𝜆
𝑚

𝑗
𝑆
−

𝑗
)

−
1

4
∑

𝑙+𝑘=𝑚−1

[

[

(

𝑁

∑

𝑗=1

𝜆
𝑙

𝑗
𝑆
0

𝑗
)(

𝑁

∑

𝑗=1

𝜆
𝑘

𝑗
𝑆
0

𝑗
)

+(

𝑁

∑

𝑗=1

𝜆
𝑙

𝑗
𝑆
−

𝑗
)(

𝑁

∑

𝑗=1

𝜆
𝑘

𝑗
𝑆
+

𝑗
)]

]

, 𝑚 ≥ 1.

(40)

We may check directly that (38) satisfies the same 𝑟-matrix
relation as (18). Thus, we have the involutive relation:

{𝑃
0
, 𝐹
𝑘
} = {𝐹

𝑗
, 𝐹
𝑘
} = 0, 𝑗, 𝑘 = 0, 1, 2, . . . . (41)

Now, we discuss the integrable Hamiltonian system gen-
erated by the Laxmatrix (38) and its realizations. Firstly, with
the realization of (4), we arrive at the following Lax matrix:

𝐿 (𝜆) = (

2𝑝
𝑁+1

8𝜆 − 4𝑞
𝑁+1

−8𝜆
2
− 4𝑞
𝑁+1

𝜆 − 2𝑞
2

𝑁+1
−
1

2
⟨𝑞, 𝑞⟩ −2𝑝

𝑁+1

)

+
1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑞
𝑗
𝑝
𝑗

−𝑞
2

𝑗

𝑝
2

𝑗
−𝑞
𝑗
𝑝
𝑗

) ,

(42)
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and (40) becomes

𝑃
0
= −4𝑝

2

𝑁+1
− 8𝑞
3

𝑁+1
− 4⟨𝑝, 𝑝⟩ − 4𝑞

𝑁+1
⟨𝑞, 𝑞⟩ − 4⟨𝑞, 𝐴𝑞⟩,

𝐹
0
= − 4⟨𝑝, 𝐴𝑝⟩ − 4⟨𝑞, 𝐴

2
𝑞⟩ + 2𝑞

𝑁+1
(⟨𝑝, 𝑝⟩ − ⟨𝑞, 𝐴𝑞⟩)

− 𝑞
2

𝑁+1
⟨𝑞, 𝑞⟩ − 2𝑝

𝑁+1
⟨𝑞, 𝑝⟩ −

1

4
⟨𝑞, 𝑞⟩
2
,

𝐹
𝑚
= − 4⟨𝑝, 𝐴

𝑚+1
𝑝⟩ − 4⟨𝑞, 𝐴

𝑚+2
𝑞⟩

+ 2𝑞
𝑁+1

(⟨𝑝, 𝐴
𝑚
𝑝⟩ − ⟨𝑞, 𝐴

𝑚+1
𝑞⟩)

− 𝑞
2

𝑁+1
⟨𝑞, 𝐴
𝑚
𝑞⟩ − 2𝑝

𝑁+1
⟨𝑞, 𝐴
𝑚
𝑝⟩ −

1

4
⟨𝑞, 𝑞⟩⟨𝑞, 𝐴

𝑚
𝑞⟩

−
1

4
∑

𝑙+𝑘=𝑚−1

[⟨𝐴
𝑙
𝑞, 𝑝⟩⟨𝐴

𝑘
𝑞, 𝑝⟩ − ⟨𝐴

𝑙
𝑞, 𝑞⟩⟨𝐴

𝑘
𝑝, 𝑝⟩] ,

𝑚 ≥ 1.

(43)

TheHamiltonian systemwithHamiltonian𝐻 = −(1/8)𝑃
0

reads

𝑞
𝑗,𝑥

= 𝑝
𝑗
,

𝑝
𝑗,𝑥

= −𝜆
𝑗
𝑞
𝑗
− 𝑞
𝑁+1

𝑞
𝑗
,

𝑞
𝑁+1,𝑥

= 𝑝
𝑁+1

,

𝑝
𝑁+1,𝑥

= −3𝑞
2

𝑁+1
−
1

2
⟨𝑞, 𝑞⟩ , 1 ≤ 𝑗 ≤ 𝑁,

(44)

which is just the Hénon-Heiles system [30–32], and it allows
the Lax representation:

𝑑

𝑑𝑥
𝐿 (𝜆) = [𝑈 (𝜆) , 𝐿 (𝜆)] , (45)

where 𝐿(𝜆) is given by (42), and

𝑈 (𝜆) = (
0 1

−𝜆 − 𝑞
𝑁+1

0
) . (46)

Example 5 (The Rosochatius Deformation of the Hénon-
Heiles System). Under realization of (7), we arrive at the Lax
matrix

𝐿̃ (𝜆) = (

2𝑝
𝑁+1

8𝜆 − 4𝑞
𝑁+1

−8𝜆
2
− 4𝑞
𝑁+1

𝜆 − 2𝑞
2

𝑁+1
−
1

2
⟨𝑞, 𝑞⟩ −2𝑝

𝑁+1

)

+
1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑞
𝑗
𝑝
𝑗

−𝑞
2

𝑗

𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
−𝑞
𝑗
𝑝
𝑗

) ,

(47)

and (40) becomes

𝑃̃
0
= − 4𝑝

2

𝑁+1
− 8𝑞
3

𝑁+1
− 4 (⟨𝑝, 𝑝⟩ + ⟨𝑞

−1
, 𝛾𝑞
−1
⟩)

− 4𝑞
𝑁+1

⟨𝑞, 𝑞⟩ − 4⟨𝑞, 𝐴𝑞⟩,

𝐹
0
= − 4 (⟨𝑝, 𝐴𝑝⟩ + ⟨𝑞

−1
, 𝐴𝛾𝑞
−1
⟩) − 4⟨𝑞, 𝐴

2
𝑞⟩

+ 2𝑞
𝑁+1

(⟨𝑝, 𝑝⟩ + ⟨𝑞
−1
, 𝛾𝑞
−1
⟩ − ⟨𝑞, 𝐴𝑞⟩)

− 𝑞
2

𝑁+1
⟨𝑞, 𝑞⟩ − 2𝑝

𝑁+1
⟨𝑞, 𝑝⟩ −

1

4
⟨𝑞, 𝑞⟩
2
,

𝐹
𝑚
= − 4 (⟨𝑝, 𝐴

𝑚+1
𝑝⟩ + ⟨𝑞

−1
, 𝐴
𝑚+1

𝛾𝑞
−1
⟩) − 4⟨𝑞, 𝐴

𝑚+2
𝑞⟩

− 2𝑝
𝑁+1

⟨𝑞, 𝐴
𝑚
𝑝⟩ −

1

4
⟨𝑞, 𝑞⟩⟨𝑞, 𝐴

𝑚
𝑞⟩

+ 2𝑞
𝑁+1

(⟨𝑝, 𝐴
𝑚
𝑝⟩ + ⟨𝑞

−1
, 𝐴
𝑚
𝛾𝑞
−1
⟩−⟨𝑞, 𝐴

𝑚+1
𝑞⟩)

− 𝑞
2

𝑁+1
⟨𝑞, 𝐴
𝑚
𝑞⟩

−
1

4
∑

𝑙+𝑘=𝑚−1

[⟨𝐴
𝑙
𝑞, 𝑝⟩⟨𝐴

𝑘
𝑞, 𝑝⟩

− ⟨𝐴
𝑙
𝑞, 𝑞⟩ (⟨𝐴

𝑘
𝑝, 𝑝⟩+⟨𝐴

𝑘
𝛾𝑞
−1
, 𝑞
−1
⟩)] ,

𝑚 ≥ 1.

(48)

Taking the Hamiltonian as 𝐻̃ = −(1/8)𝑃̃
0
, we have

𝑞
𝑗,𝑥

= 𝑝
𝑗
,

𝑝
𝑗,𝑥

= −𝜆
𝑗
𝑞
𝑗
− 𝑞
𝑁+1

𝑞
𝑗
+ 𝛾
𝑗
𝑞
−3

𝑗
,

𝑞
𝑁+1,𝑥

= 𝑝
𝑁+1

,

𝑝
𝑁+1,𝑥

= −3𝑞
2

𝑁+1
−
1

2
⟨𝑞, 𝑞⟩, 1 ≤ 𝑗 ≤ 𝑁,

(49)

which is exactly the Rosochatius deformation of Hénon-
Heiles system [12, 15]. It can be checked directly that (49)
allows the Lax representation:

𝑑

𝑑𝑥
𝐿̃ (𝜆) = [𝑈 (𝜆) , 𝐿̃ (𝜆)] , (50)

where 𝐿̃(𝜆) is given by (47) and 𝑈(𝜆) is given by (46).

Example 6 (The Second Rosochatius Deformation of the
Hénon-Heiles System). Based on the realization of (8), we
obtain the Lax matrix
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𝐿̂ (𝜆) = (

2𝑝
𝑁+1

8𝜆 − 4𝑞
𝑁+1

−8𝜆
2
− 4𝑞
𝑁+1

𝜆 − 2𝑞
2

𝑁+1
−
1

2
(⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑗=1

𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

) −2𝑝
𝑁+1

)

+
1

2

𝑁

∑

𝑗=1

1

𝜆 − 𝜆
𝑗

(
𝑞
𝑗
𝑝
𝑗

−𝑞
2

𝑗
− 𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
−𝑞
𝑗
𝑝
𝑗

) .

(51)

The integrals of motion 𝑃̂
0
, 𝐹
0
, and 𝐹

𝑚
, 𝑚 ≥ 1, can be

generated from det 𝐿̂(𝜆). In particular, we have

𝑃̂
0
= − 4𝑝

2

𝑁+1
− 8𝑞
3

𝑁+1
− 4 (⟨𝑝, 𝑝⟩ + ⟨𝑞

−1
, 𝛾𝑞
−1
⟩)

− 4𝑞
𝑁+1

(⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑗=1

𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

)

− 4(⟨𝑞, 𝐴𝑞⟩ +

𝑁

∑

𝑗=1

𝜆
𝑗
𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−1

) .

(52)

Choosing a Hamiltonian as 𝐻̂ = −(1/8)𝑃̂
0
, we arrive at an

integrable Hamiltonian system

𝑞
𝑗,𝑥

= 𝑝
𝑗
− (𝜆
𝑗
+ 𝑞
𝑁+1

) 𝛽
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−2

𝑝
𝑗
,

𝑝
𝑗,𝑥

= − 𝜆
𝑗
𝑞
𝑗
− 𝑞
𝑁+1

𝑞
𝑗
+ 𝛾
𝑗
𝑞
−3

𝑗

− (𝜆
𝑗
+ 𝑞
𝑁+1

) 𝛽
𝑗
𝛾
𝑗
(𝑝
2

𝑗
+ 𝛾
𝑗
𝑞
−2

𝑗
)
−2

𝑞
−3

𝑗
,

𝑞
𝑁+1,𝑥

= 𝑝
𝑁+1

,

𝑝
𝑁+1,𝑥

= −3𝑞
2

𝑁+1
−
1

2
(⟨𝑞, 𝑞⟩ +

𝑁

∑

𝑖=1

𝛽
𝑖
(𝑝
2

𝑖
+ 𝛾
𝑖
𝑞
−2

𝑖
)
−1

) ,

1 ≤ 𝑗 ≤ 𝑁,

(53)

which is the second Rosochatius deformation of Hénon-
Heiles system. Again, we may check that (53) allows the Lax
representation:

𝑑

𝑑𝑥
𝐿̂ (𝜆) = [𝑈 (𝜆) , 𝐿̂ (𝜆)] , (54)

where 𝐿̂(𝜆) is given by (51) and 𝑈(𝜆) is given by (46).

5. Concluding Remarks

We have shown how to consecutively generate integrable
Rosochatius deformations of the integrable Hamiltonian
systemswhose Laxmatrices are of the form of the generalized
Gaudinmagnet. As applications, we obtained the consecutive
Rosochatius deformations of the Garnier system and the
Hénon-Heiles system togetherwith their Lax representations.
Our method is performed in a unified way. There is no

doubt that our method can be applied to other constrained
soliton flows [28, 32] whose Lax matrices are of the form of
the generalized Gaudin magnet or the generalized Gaudin
magnet with boundary. Also, we remark that our method can
be used to construct consecutive Rosochatius deformations
of the integrable symplectic maps and the soliton equations
with self-consistent sources.
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formulation of the Hénon-Heiles system and its multidimen-
sional extensions,” Physics Letters A, vol. 163, no. 3, pp. 167–172,
1992.


