
Research Article
High Order Fefferman-Phong Type Inequalities in
Carnot Groups and Regularity for Degenerate Elliptic
Operators plus a Potential

Pengcheng Niu and Kelei Zhang

Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China

Correspondence should be addressed to Pengcheng Niu; pengchengniu@nwpu.edu.cn

Received 4 June 2014; Accepted 13 October 2014; Published 10 November 2014

Academic Editor: Sung G. Kim

Copyright © 2014 P. Niu and K. Zhang.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let {𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑚
} be the basis of space of horizontal vector fields in a Carnot group G = (R𝑛

; ∘) (𝑚 < 𝑛). We prove high order
Fefferman-Phong type inequalities in G. As applications, we derive a priori 𝐿𝑝(G) estimates for the nondivergence degenerate
elliptic operators 𝐿 = −∑

𝑚

𝑖,𝑗=1
𝑎
𝑖𝑗
(𝑥)𝑋

𝑖
𝑋
𝑗
+ 𝑉(𝑥) with 𝑉𝑀𝑂 coefficients and a potential 𝑉 belonging to an appropriate Stummel

type class introduced in this paper. Some of our results are also new even for the usual Euclidean space.

1. Introduction and the Main Results

Theclassical𝐿𝑝 estimates for nondivergence elliptic operators
with potentials of the form

L𝑢 ≡ −

𝑛

∑
𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥) 𝑢

𝑥𝑖𝑥𝑗
+ 𝑉𝑢, 𝑥 ∈ R

𝑛
, (1)

have been extensively investigated and many results have
been proved; see [1–5] and so forth. In particular, when
(𝑎
𝑖𝑗
)
𝑛×𝑛

= 𝐼, the identity matrix, and 𝑉 belongs to the reverse
Hölder class 𝐵

𝑞
(𝑛/2 ≤ 𝑞 < ∞), Shen [2] established 𝐿

𝑝
(1 <

𝑝 ≤ 𝑞) boundedness for the Schrödinger operator −Δ + 𝑉

and showed that the range of 𝑝 is optimal. It is noted that
𝑉 ∈ 𝐵

𝑞
(𝑞 > 1) means that 𝑉 ∈ 𝐿

𝑞

loc(R
𝑛
), 𝑉 ≥ 0, and

there exists a positive constant 𝑐 such that the reverse Hölder
inequality

(|𝐵|
−1

∫
𝐵

𝑉
𝑞
(𝑥) 𝑑𝑥)

1/𝑞

≤ 𝑐 (|𝐵|
−1

∫
𝐵

𝑉 (𝑥) 𝑑𝑥) (2)

holds for every ball 𝐵 in R𝑛. More recently, when 𝑉 ∈

𝐵
𝑞
(𝑛/2 ≤ 𝑞 < ∞), a priori 𝐿𝑝(R𝑛

) (1 < 𝑝 ≤ 𝑞) estimate
for L in (1) with 𝑉𝑀𝑂 coefficients has been deduced by

Bramanti et al. [1] by using the representation formula for
𝑉𝑢 in terms of L𝑢, which generalized the result in [2]. The
aim of this paper is to establish high order Fefferman-Phong
type inequalities in Carnot groups and prove 𝐿𝑝 regularity of
degenerate elliptic operators plus a potential.

Let𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑚
be horizontal vector fields in a Carnot

group G = (R𝑛
; ∘), (𝑚 < 𝑛) (see Section 2.1). In this paper

we consider the nondivergence degenerate elliptic operator
of the kind

𝐿𝑢 ≡ 𝐴𝑢 + 𝑉𝑢 ≡ −

𝑚

∑
𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥)𝑋

𝑖
𝑋
𝑗
𝑢 + 𝑉𝑢, (3)

where the leading coefficient 𝑎
𝑖𝑗
(𝑥) satisfies 𝑎

𝑖𝑗
(𝑥) = 𝑎

𝑗𝑖
(𝑥) ∈

𝐿
∞
(G) for 𝑖, 𝑗 = 1, . . . , 𝑚, and there exists a constant 𝜇 > 0

such that, for any 𝑥 ∈ G and 𝜉 ∈ R𝑚,

𝜇
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

≤

𝑚

∑
𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≤ 𝜇

−1 󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

; (4)

furthermore, we assume

𝑎
𝑖𝑗
(𝑥) ∈ 𝑉𝑀𝑂 (G) , (5)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 274859, 8 pages
http://dx.doi.org/10.1155/2014/274859

http://dx.doi.org/10.1155/2014/274859


2 Abstract and Applied Analysis

which shows that, for 𝑖, 𝑗 = 1, . . . , 𝑚,

𝜂
𝑖𝑗
= sup

𝜌≤𝑟

sup
𝑥∈G

(
󵄨󵄨󵄨󵄨󵄨
𝐵
𝜌
(𝑥)

󵄨󵄨󵄨󵄨󵄨

−1

∫
𝐵𝜌(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗
(𝑦) − 𝑎

𝐵

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦) 󳨀→ 0,

𝑟 󳨀→ 0
+
.

(6)

Here 𝑎
𝐵

𝑖𝑗
= |𝐵

𝜌
(𝑥)|

−1
∫
𝐵𝜌(𝑥)

𝑎
𝑖𝑗
(𝑦)𝑑𝑦. 𝐵

𝜌
(𝑥) denotes a metric

ball of radius 𝑟 and center 𝑥 associated with the Carnot-
Carathéodory distance 𝑑 (see Section 2) by

𝐵
𝜌
(𝑥) = 𝐵 (𝑥, 𝜌) = {𝑦 ∈ G : 𝑑 (𝑥, 𝑦) < 𝜌} . (7)

As to the potential 𝑉, inspired by Di Fazio and Zamboni
[6, Definition 2.4], we introduce the following Stummel type
class 𝑆

𝑝
.

Definition 1 (Stummel type class). Let 𝑉 : G → R, 1 < 𝑝 <

∞, 𝑟 > 0. One says that 𝑉 ∈ 𝑆
𝑝
(G), if for every 𝑟 > 0,

𝜑
𝑉
(𝑟) := sup

𝑥∈G

(∫
𝑑(𝑥,𝑦)<𝑟

𝑑 (𝑥, 𝑦)
2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨

× (∫
𝑑(𝑧,𝑥)<𝑟

|𝑉 (𝑧)|

×
𝑑 (𝑧, 𝑦)

2

󵄨󵄨󵄨󵄨𝐵(𝑧, 𝑑(𝑧, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑧)

1/(𝑝−1)

𝑑𝑦)

𝑝−1

(8)

is finite and

lim
𝑟→0

𝜑
𝑉
(𝑟) = 0, (9)

where 𝑑(⋅, ⋅) is the Carnot-Carathéodory distance; see
Section 2.

Sometimes we will call 𝜑
𝑉
(𝑟) the Stummel modulus of 𝑉.

Remark 2. We note that 𝐿∞(G) ⊂ 𝑆
𝑝
(G) (1 < 𝑝 < ∞) and

𝑆
𝑝
(G) is the special case of the function class in [7, page 56]

with 𝑝 = 2 and G = R𝑛
(𝑛 ≥ 5). Also, note that the function

𝑉(𝑥) = 𝑑(0, 𝑥)
−2 on G belongs to the classes 𝑆

𝑝
(G) for 𝑝 > 2,

where 𝑑 is the Carnot-Carathéodory distance (see Section 2).

Nondivergence degenerate elliptic operators similar to
(3) including the form −∑

𝑚

𝑖=1
𝑋
2

𝑖
+ 𝑉 have been studied by

some authors; see [8–11] and so forth. The local 𝐿𝑝 estimate
for operator (3) with the vanishing potential 𝑉 = 0 on
the homogeneous group has been verified by Bramanti and
Brandolini [12]. For the study of related operators, we refer
to [13, 14] and references therein. We will prove regularity
for the operator 𝐿 in (3) on G if 𝑎

𝑖𝑗
satisfy (4)-(5) and 𝑉

𝑝
∈

𝑆
𝑝
(G); see Theorem 3 below. Our methods are different from

the Euclidean case by Bramanti et al. [1], where estimates of
integral operators and their commutators were used as amain
tool.

Since Fefferman [15] proved the well-known imbedding
inequality

∫
R𝑛

|𝑉| |𝑢|
2
𝑑𝑥 ≤ 𝑐∫

R𝑛
|∇𝑢|

2
𝑑𝑥, 𝑢 ∈ 𝐶

∞

0
(R

𝑛
) , (10)

with𝑉 belonging to the classical Morrey class 𝐿𝑟,𝑛−2𝑟, 1 < 𝑟 ≤

𝑛/2, it has been extended to many more general settings and
applied to infer regularity for partial differential operators; see
[6, 16–19] and so forth. One of the main jobs of this paper
is to establish a high order Fefferman-Phong type inequality
in Carnot groups (see Theorem 4), which is motivated by
Di Fazio and Zamboni [6, Theorem 3.1]. So far as we know,
there is not any result in literature on high order Fefferman-
Phong inequalities. Using this inequality and proving several
estimates with the potential, a priori 𝐿𝑝(G) estimate for 𝐿 is
obtained.

We mention that the homogeneous dimension 𝑄 of G,
the horizontal gradient 𝑋𝑢, the second order horizontal
gradient 𝑋2

𝑢, the horizontal Sobolev spaces 𝐻𝑊
2,𝑝

(G) and
𝐻𝑊

2,𝑝

𝑉
(G), the polynomial 𝑃

𝐵
(𝑥), and the reverse Hölder

class 𝐵
𝑞
in our setting will be described in Section 2. Now we

are in a position to state main results.

Theorem3. Under the assumptions (4)-(5), if𝑉𝑝
∈ 𝑆

𝑝
(G), 1 <

𝑝 < ∞, then there exists a positive constant 𝑐 = 𝑐(𝑝, 𝜇, 𝜂, 𝑉,G)

such that, for any 𝑢 ∈ 𝐶
∞

0
(G), it follows that

‖𝑢‖𝐻𝑊2,𝑝(G) + ‖𝑉𝑢‖𝐿𝑝(G)

≤ 𝑐 (‖𝐿𝑢‖𝐿𝑝(G) + ‖𝑢‖𝐿𝑝(G)) ,
(11)

where 𝜂 in 𝑐 depends only on the 𝑉𝑀𝑂 moduli 𝜂
𝑖𝑗
of the

coefficients 𝑎
𝑖𝑗
. Furthermore, (11) holds for 𝑢 ∈ 𝐻𝑊

2,𝑝

𝑉
(G).

It is noted that the 𝐿
𝑝 estimates of the operators similar

to (3) with discontinuous leading coefficients and bounded
lower terms were obtained by Bramanti and Brandolini [12,
20]. Here the potential 𝑉 in Theorem 3 may be unbounded
on G.

The key for the proof of Theorem 3 is the following high
order Fefferman-Phong type inequality.

Theorem 4. Let 𝐵 = 𝐵
𝑟𝐵
(𝑥

0
) be any metric ball in G. If 𝑉 ∈

𝑆
𝑝
(G) (1 < 𝑝 < ∞), then there exists a first order polynomial

𝑃
𝐵
(𝑥) such that, for any 𝑢 ∈ 𝐶

∞
(𝐵), one has

∫
𝐵

󵄨󵄨󵄨󵄨𝑢 − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉| 𝑑𝑥 ≤ 𝑐𝜑
𝑉
(2𝑟

𝐵
) ∫

𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥, (12)

where the positive constant 𝑐 is independent of 𝑢 and 𝐵.
Moreover, for any 𝑢 ∈ 𝐶

∞

0
(𝐵), one has

∫
𝐵

|𝑢|
𝑝
|𝑉| 𝑑𝑥 ≤ 𝑐𝜑

𝑉
(2𝑟

𝐵
) ∫

𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥, (13)

where 𝑐 > 0 is independent of 𝑢 and 𝐵.

The above𝑋2
𝑢 is a set of𝑋

𝑖
𝑋
𝑗
𝑢 for all 𝑖, 𝑗 = 1, . . . , 𝑚. We will

define𝑋
2
𝑢 precisely in Section 2.
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Remark 5. The main difference between Theorem 4 and [6,
Theorem 3.1] is clear; that is, the right-hand side term
‖𝑋𝑢‖

𝐿
𝑝
(𝐵)

in [6] is replaced by ‖𝑋
2
𝑢‖

𝐿
𝑝
(𝐵)

here. Of course, the
class involving 𝑉 is not the same.

We observe an important relation between the Stummel
class here and the reverse Hölder class: if 𝑉 ∈ 𝐵

𝑞
∩ 𝐿

1
(G),

𝑞 > 𝑄/2, then 𝑉
𝑝

∈ 𝑆
𝑝
(G), 1 < 𝑝 ≤ 2𝑞/𝑄. From it and

Theorem 3, the following result follows.

Theorem 6. Under the same assumptions on 𝑎
𝑖𝑗

as in
Theorem 3, if𝑉 ∈ 𝐵

𝑞
∩𝐿

1
(G), 𝑞 > 𝑄/2, then for 1 < 𝑝 ≤ 2𝑞/𝑄

and 𝑢 ∈ 𝐶
∞

0
(𝐵), the estimate (11) holds.

Remark 7. When 𝑞 = 𝑄/2 and 𝑉 ∈ 𝐵
𝑄/2

⋂𝐿
1
(G), by the

important property of the 𝐵
𝑞
class (see [21]), there exists

𝜀 > 0 such that 𝑉 ∈ 𝐵
𝑄/2+𝜀

. Therefore, estimate (11) holds
for 1 < 𝑝 ≤ 1 + 2𝜀/𝑄 and 𝑢 ∈ 𝐶

∞

0
(𝐵).

The paper is organized as follows. In Section 2 we recall
some basic facts about Carnot groups and function spaces.
In Section 3 we first give the proof of Theorem 4. Then
combining with the known result in [12, Theorem 2] and
proving an estimate with the potential 𝑉, we finish the proof
of Theorem 3. The proof of Theorem 6 is given in Section 4.
In Section 5, we restate Theorems 3 and 4 for the Euclidean
case and elliptic operators without proofs.

Dependence of Constants. Throughout this paper, the letter 𝑐
denotes a positive constant which may vary from line to line.

2. Preliminaries

2.1. Background on Carnot Groups. We collect some facts
about Carnot groups that will be needed in the sequel and
refer the readers to [22–25] for further details.

Definition 8 (Carnot group). A Carnot groupG = (R𝑛
; ∘) is a

simply connected nilpotent Lie group such that its Lie algebra
𝑔 admits a stratification

𝑔 = 𝑉
1
⊕ 𝑉

2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑉

𝑟
= ⊕

𝑟

𝑗=1
𝑉
𝑗
, (14)

where [𝑉
1
, 𝑉

𝑗
] = 𝑉

𝑗+1
, 𝑗 = 1, . . . , 𝑟 − 1, and [𝑉

1
, 𝑉

𝑟
] = {0}.

Here 𝑟 is called the step of G.

For 𝑘 = 1, . . . , 𝑟, let𝑋
1,𝑘

, . . . , 𝑋
𝑚𝑘 ,𝑘

be a basis of𝑉
𝑘
consist-

ing of commutators of length 𝑘, where 𝑚
𝑘
is the dimension

of 𝑉
𝑘
. The horizontal vector fields are ones in the first layer

𝑉
1
and for convenience, we set 𝑚

1
= 𝑚 and denote 𝑋

𝑖,1
=

𝑋
𝑖
, 𝑖 = 1, . . . , 𝑚. Clearly, vector fields 𝑋

1
, . . . , 𝑋

𝑚
satisfy

Hormander’s condition [26].
Let {𝛿

𝜆
}
𝜆>0

be a family of nonisotropic dilations on G

defined by

𝛿
𝜆
: G 󳨀→ G, 𝛿

𝜆
(𝜉) = (𝜆𝜉

1
, 𝜆

2
𝜉
2
, . . . , 𝜆

𝑟
𝜉
𝑟
) , (15)

for any 𝜆 > 0 and 𝜉 = (𝜉
1
, . . . , 𝜉

𝑟
) = (𝑥

1,1
, . . . , 𝑥

𝑚1 ,1
, . . . ,

𝑥
1,𝑟

, . . . , 𝑥
𝑚𝑟 ,𝑟

) ∈ G.The integer𝑄 = ∑
𝑟

𝑘=1
𝑘𝑚

𝑘
is said to be the

homogeneous dimension of G. In general, we assume 𝑄 ≥ 4.
We call that a vector field 𝑋

𝑖,𝑘
∈ 𝑔 is left invariant if for any

smooth function 𝑓 one has

𝑋
𝑥

𝑖,𝑘
(𝑓 (𝑦 ∘ 𝑥)) = (𝑋

𝑖,𝑘
𝑓) (𝑦 ∘ 𝑥) , for any 𝑥 ∈ G, (16)

and 𝑋
𝑖,𝑘

is 𝑠th homogeneous if for any smooth function 𝑓, it
follows that

𝑋
𝑖,𝑘

(𝑓 (𝛿
𝜆
(𝑥))) = 𝜆

𝑠
(𝑋

𝑖,𝑘
𝑓) (𝛿

𝜆
(𝑥)) , for any 𝑥 ∈ G.

(17)

As in [23], the homogeneous norm of 𝜉 ∈ G is defined by

𝑑G (𝜉) = [

[

𝑟

∑
𝑘=1

(

𝑚𝑘

∑
𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑖,𝑘
󵄨󵄨󵄨󵄨
2

)

𝑟!/𝑘

]

]

1/2𝑟!

. (18)

It is natural to define the pseudo distance by the homoge-
neous norm

𝑑G (𝜉, 𝜂) = 𝑑G (𝜂
−1

∘ 𝜉) , for any 𝜉, 𝜂 ∈ G, (19)

where 𝜂
−1 is the inverse of 𝜂. A polynomial on G [24] is a

function which can be expressed in exponential coordinates
(see, e.g., [22, Section 2.1.9] and [27]) as

𝑃 (𝑥) = ∑
𝐼

𝑎
𝐼
𝑥
𝐼
, 𝑎

𝐼
∈ R, (20)

where 𝐼 = (𝑖
𝑗,𝑘

)
𝑘=1,...,𝑟

𝑗=1,...,𝑚𝑘
are multi-indices and

𝑥
𝐼
= ∏
𝑘=1,...,𝑟;𝑗=1,...,𝑚𝑘

𝑥
𝑖𝑗,𝑘

𝑗,𝑘
. (21)

The homogeneous degree of monomial 𝑥𝐼 is the sum 𝑑(𝐼) =

∑
𝑟

𝑘=1
∑
𝑚𝑘

𝑗=1
𝑘𝑖
𝑗,𝑘

and the homogeneous degree of 𝑃(𝑥) is
max{𝑑(𝐼) | 𝑎

𝐼
̸= 0}.

From [28], the left invariant vector fields 𝑋
1
, . . . , 𝑋

𝑚
can

induce the corresponding Carnot-Carathéodory distance 𝑑:
for any 𝛿 > 0, let 𝐴(𝛿) be the set of absolutely continuous
curves 𝛾 : [0, 1] → G such that for a.e. 𝑡 ∈ [0, 1],

𝛾
󸀠
(𝑡) =

𝑚

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑋

𝑖
(𝛾 (𝑡))

with
𝑚

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝛿.

(22)

By [29], it is known that for 𝛿 large enough the set 𝐴(𝛿) is
nonempty. We define the Carnot-Carathéodory distance by

𝑑 (𝜉, 𝜂) = inf {𝛿 > 0 | ∃𝛿 ∈ 𝐴 (𝛿)with 𝛾 (0) = 𝜉, 𝛾 (1) = 𝜂} .

(23)

It is well known that the distance 𝑑 is equivalent to the pseudo
distance 𝑑G (see [28]). In this paper, we will mainly use the
Carnot-Carathéodory distance 𝑑 to study regularity of (3).
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Associated with the distance, we define the metric ball of
center 𝜉 and radius 𝑟 in G by

𝐵
𝑟
(𝜉) = {𝜂 ∈ G | 𝑑 (𝜉, 𝜂) < 𝑟} . (24)

The Lebesgue measure in R𝑛 is the Haar measure on G ([25,
page 619]). Due to (15), one has

󵄨󵄨󵄨󵄨𝐵𝑟 (𝜉)
󵄨󵄨󵄨󵄨 = 𝐶

𝑄
𝑟
𝑄
, (25)

where |𝐵
𝑟
(𝜉)| is the measure of 𝐵

𝑟
(𝜉) and 𝐶

𝑄
is a positive

constant.

2.2. Function Spaces. Denote 𝑋 = (𝑋
1
, . . . , 𝑋

𝑚
), 𝑋𝑢 =

(𝑋
1
𝑢, . . . , 𝑋

𝑚
𝑢), 𝑋2

𝑢 = {𝑋
𝑖
𝑋
𝑗
𝑢}
𝑚

𝑖,𝑗=1
, |𝑋𝑢| = ∑

𝑚

𝑖=1
|𝑋

𝑖
𝑢|, and

|𝑋
2
𝑢| = ∑

𝑚

𝑖,𝑗=1
|𝑋

𝑖
𝑋
𝑗
𝑢|.

Definition 9 (Horizontal Sobolev space). For any 𝑝 ≥ 1 and a
domainΩ ⊆ G, one defines the Horizontal Sobolev spaces by

𝐻𝑊
2,𝑝

(Ω) = {𝑢 ∈ 𝐿
𝑝
(Ω) | ‖𝑢‖𝐻𝑊2,𝑝(Ω) < +∞} (26)

with the norm

‖𝑢‖𝐻𝑊2,𝑝(Ω) = ‖𝑢‖𝐿𝑝(Ω) + ‖𝑋𝑢‖𝐿𝑝(Ω) +
󵄩󵄩󵄩󵄩󵄩
𝑋
2
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

, (27)

where ‖𝑋𝑢‖
𝐿
𝑝
(Ω)

= ∑
𝑚

𝑖=1
‖𝑋

𝑖
𝑢‖

𝐿
𝑝
(Ω)

, ‖𝑋
2
𝑢‖

𝐿
𝑝
(Ω)

=

∑
𝑚

𝑖,𝑗=1
‖𝑋

𝑖
𝑋
𝑗
𝑢‖

𝐿
𝑝
(Ω)

.

Analogously to [1], the space 𝐻𝑊
2,𝑝

𝑉
(Ω) is the closure of

𝐶
∞

0
(Ω) in the norm

‖𝑢‖
𝐻𝑊
2,𝑝

𝑉
(Ω)

= ‖𝑢‖𝐻𝑊2,𝑝(Ω) + ‖𝑉𝑢‖𝐿𝑝(Ω) . (28)

Definition 10 (Reverse Hölder class). (1) A nonnegative
locally 𝐿

𝑞 integrable function 𝑉(𝑥) on G is said to belong to
the reverse Hölder class 𝐵

𝑞
(1 < 𝑞 < ∞), if there exists a

positive constant 𝑐 such that

(|𝐵|
−1

∫
𝐵

𝑉
𝑞
(𝑥) 𝑑𝑥)

1/𝑞

≤ 𝑐 (|𝐵|
−1

∫
𝐵

𝑉 (𝑥) 𝑑𝑥) , (29)

for any metric ball 𝐵 in G.
(2) Let 𝑉(𝑥) > 0 a.e. and𝑉(𝑥) ∈ 𝐿

∞

loc(G); one says 𝑉(𝑥) ∈

𝐵
∞

if there exists a positive constant 𝑐 such that

sup
𝐵

𝑉 (𝑥) ≤ 𝑐 (|𝐵|
−1

∫
𝐵

𝑉 (𝑥) 𝑑𝑥) ,

for any metric ball 𝐵 inG.

(30)

It is easy to see that 𝐵
∞

⊂ 𝐵
𝑞
⊂ 𝐵

𝑝
,1 < 𝑝 < 𝑞 < ∞.

3. Proofs of Theorems 3 and 4

We first proveTheorem 4 and then proveTheorem 3.

3.1. Proof ofTheorem 4. The following lemma is due to Lu and
Wheeden [30, 31]. It will play a key role in our proof.

Lemma 11. Let 𝐵 = 𝐵
𝑟𝐵
(𝑥

0
) be a metric ball in G. If 𝑢 ∈

𝐶
∞
(𝐵), then there exists a first order polynomial 𝑃

𝐵
(𝑥) such

that, for a.e. 𝑥 ∈ 𝐵,

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑐 ∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢 (𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑥, 𝑦)
2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑦, (31)

where the positive constant 𝑐 is independent of 𝑢, 𝑥, and 𝐵.
Moreover, if 𝑢 ∈ 𝐶

∞

0
(𝐵), then for a.e. 𝑥 ∈ 𝐵,

|𝑢 (𝑥)| ≤ 𝑐 ∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢 (𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑥, 𝑦)
2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑦, (32)

where 𝑐 > 0 is independent of 𝑢, 𝑥, and 𝐵.

Proof of Theorem 4. By (31), Fubini’s Theorem, and Hölder’s
inequality, we have

∫
𝐵

󵄨󵄨󵄨󵄨𝑢(𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉 (𝑥)| 𝑑𝑥

≤ 𝑐∫
𝐵

|𝑉 (𝑥)|
󵄨󵄨󵄨󵄨𝑢(𝑥) − 𝑃

𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝−1

× (∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢 (𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑥, 𝑦)
2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑦)𝑑𝑥

= 𝑐∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢 (𝑦)

󵄨󵄨󵄨󵄨󵄨

× (∫
𝐵

|𝑉 (𝑥)|
󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑃

𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝−1

×
𝑑 (𝑥, 𝑦)

2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑥)𝑑𝑦

≤ 𝑐 (∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢(𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑦)
1/𝑝

⋅ (∫
𝐵

(∫
𝐵

|𝑉 (𝑥)|
󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑃

𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝−1

×
𝑑 (𝑥, 𝑦)

2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑥)

𝑝/(𝑝−1)

𝑑𝑦)

(𝑝−1)/𝑝

≡ 𝑐 (∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢(𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑦)
1/𝑝

⋅ 𝐼.

(33)
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Now a computation yields

𝐼
𝑝/(𝑝−1)

≤ ∫
𝐵

(∫
𝐵

|𝑉(𝑧)|
𝑑 (𝑧, 𝑦)

2

󵄨󵄨󵄨󵄨𝐵(𝑧, 𝑑(𝑧, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑧)

1/(𝑝−1)

⋅ (∫
𝐵

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉 (𝑥)|

×
𝑑 (𝑥, 𝑦)

2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑥)𝑑𝑦

= ∫
𝐵

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉 (𝑥)| ∫
𝐵

𝑑 (𝑥, 𝑦)
2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨

⋅ (∫
𝐵

|𝑉(𝑧)|
𝑑 (𝑧, 𝑦)

2

󵄨󵄨󵄨󵄨𝐵(𝑧, 𝑑(𝑧, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑧)

1/(𝑝−1)

𝑑𝑦𝑑𝑥

≤ ∫
𝐵(𝑥0 ,𝑟𝐵)

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉 (𝑥)|

× ∫
𝐵(𝑥,2𝑟𝐵)

𝑑 (𝑥, 𝑦)
2

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨

⋅ (∫
𝐵(𝑥,2𝑟𝐵)

|𝑉 (𝑧)|

×
𝑑 (𝑧, 𝑦)

2

󵄨󵄨󵄨󵄨𝐵 (𝑧, 𝑑 (𝑧, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑧)

1/(𝑝−1)

𝑑𝑦𝑑𝑥

≤ (𝜑
𝑉
(2𝑟

𝐵
))
1/(𝑝−1)

∫
𝐵

󵄨󵄨󵄨󵄨𝑢(𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉 (𝑥)| 𝑑𝑥.

(34)

Therefore,

∫
𝐵

󵄨󵄨󵄨󵄨𝑢(𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉 (𝑥)| 𝑑𝑥

≤ 𝑐 (𝜑
𝑉
(2𝑟

𝐵
))
1/𝑝

(∫
𝐵

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉 (𝑥)| 𝑑𝑥)
(𝑝−1)/𝑝

× (∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢(𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑦)
1/𝑝

.

(35)

It implies (12).
By using (32) and repeating the argument above for (12),

we immediately obtain (13).

3.2. Proof of Theorem 3. Let us recall 𝐿𝑝 estimates for the
operator 𝐴 = ∑

𝑚

𝑖,𝑗=1
𝑎
𝑖𝑗
𝑋
𝑖
𝑋
𝑗
by Bramanti and Brandolini [12,

Theorem 2].

Lemma 12. Under the assumptions (4) and (5), for every
𝑝 ∈ (1,∞), there exist positive constants 𝑐 = 𝑐(𝑝, 𝜇,G) and

𝑟 = 𝑟(𝑝, 𝜇, 𝜂,G), where 𝜂 denotes the 𝑉𝑀𝑂 moduli of coef-
ficients 𝑎

𝑖𝑗
, such that, for any 𝑢 ∈ 𝐶

∞

0
(G) and sprt u ⊂ 𝐵

𝑟
(𝐵

𝑟

any metric ball of radius 𝑟),
󵄩󵄩󵄩󵄩󵄩
𝑋
2
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐵𝑟)

≤ 𝑐 ‖𝐴𝑢‖𝐿𝑝(𝐵𝑟) . (36)

Based on it and Theorem 4, we have the following 𝐿
𝑝

estimates for 𝐿 in (3).

Lemma 13. Under the assumptions (4) and (5), for every 𝑝 ∈

(1,∞) and 𝑉
𝑝

∈ 𝑆
𝑝
(G), there exist positive constants 𝑟

0
=

𝑟
0
(𝑝, 𝜇, 𝜂,G) and 𝑐 = 𝑐(𝑝, 𝑟

0
, 𝜇, 𝑉,G) such that, for any 𝑢 ∈

𝐶
∞

0
(G) and sprt 𝑢 ⊂ 𝐵

𝑟0
,

󵄩󵄩󵄩󵄩󵄩
𝑋
2
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐵𝑟0 )

+ ‖𝑉𝑢‖𝐿𝑝(𝐵𝑟0 )
≤ 𝑐 ‖𝐿𝑢‖𝐿𝑝(𝐵𝑟0 )

. (37)

Proof. ByTheorem 4,

‖𝑉𝑢‖
𝑝

𝐿
𝑝
(𝐵𝑟0

)
≤ 𝑐𝜑

𝑉
𝑝 (2𝑟

0
) ∫

𝐵𝑟0

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢(𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥. (38)

Applying Lemma 12, it follows that
󵄩󵄩󵄩󵄩󵄩
𝑋
2
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐵𝑟0 )

+ ‖𝑉𝑢‖𝐿𝑝(𝐵𝑟0 )

≤ 𝑐 (‖𝐴𝑢‖𝐿𝑝(𝐵𝑟0 )
+ ‖𝑉𝑢‖𝐿𝑝(𝐵𝑟0 )

)

≤ 𝑐 (‖𝐿𝑢‖𝐿𝑝(𝐵𝑟0 )
+ ‖𝑉𝑢‖𝐿𝑝(𝐵𝑟0 )

)

≤ 𝑐 (‖𝐿𝑢‖𝐿𝑝(𝐵𝑟0 )
+ 𝜑

𝑉
𝑝 (2𝑟

0
)
1/𝑝 󵄩󵄩󵄩󵄩󵄩

𝑋
2
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐵𝑟0 )

) .

(39)

Choosing 𝑟
0
> 0 such that 𝑐𝜑

𝑉
𝑝(2𝑟

0
)
1/𝑝

≤ 1/2, we derive (37).

Proof of Theorem 3. We consult the way in [1, pages 342-343]
and apply our previous results. By the basic theorem on
the partition of unity (e.g., see [32, page 66]), there exists a
partition of unity of nonnegative functions {𝜑

𝑖
}
∞

𝑖=1
in G such

that 𝜑
𝑖

∈ 𝐶
∞

0
(𝐵

𝑟0
(𝑧
𝑖
)) with 𝑟

0
in Lemma 13 and a family

of metric balls {𝐵
𝑟0
(𝑧
𝑖
)}
∞

𝑖=1
satisfying the finite overlapping

property. We have from Lemma 13 that
󵄩󵄩󵄩󵄩󵄩
𝑋
2
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(G)

+ ‖𝑉𝑢‖𝐿𝑝(G)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖

𝑋
2
(𝜑

𝑖
𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(G)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖

𝑉𝜑
𝑖
𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(G)

≤ 𝑐(∑
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑋
2
(𝜑

𝑖
𝑢)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐵𝑟0 (𝑧𝑖))
+ ∑

𝑖

󵄩󵄩󵄩󵄩𝑉𝜑𝑖𝑢
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵𝑟0 (𝑧𝑖))

)

≤ 𝑐∑
𝑖

󵄩󵄩󵄩󵄩𝐿 (𝜑
𝑖
𝑢)

󵄩󵄩󵄩󵄩𝐿𝑝(𝐵𝑟0 (𝑧𝑖))

≤ ∑
𝑖

(‖𝐿𝑢‖𝐿𝑝(𝐵𝑟0 (𝑧𝑖))
+ ‖𝐷𝑢‖𝐿𝑝(𝐵𝑟0 (𝑧𝑖))

+ ‖𝑢‖𝐿𝑝(𝐵𝑟0 (𝑧𝑖))
)

≤ 𝑐 (‖𝐿𝑢‖𝐿𝑝(G) + ‖𝑋𝑢‖𝐿𝑝(G) + ‖𝑢‖𝐿𝑝(G)) .

(40)
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Combining with the interpolation inequality (see [12, Propo-
sition 2])

‖𝑋𝑢‖𝐿𝑝(G) ≤ 𝜀
󵄩󵄩󵄩󵄩󵄩
𝑋
2
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(G)

+
2

𝜀
‖𝑢‖𝐿𝑝(G) ,

for any 𝜀 > 0,

(41)

we obtain (11).

4. Proof of Theorem 6

Several preliminary conclusions are necessary.

Lemma 14. If 𝑉 ∈ 𝐵
𝑞
, 𝑞 > 1, then there exists a constant 𝑐 > 0

such that, for any 1 ≤ 𝑝 < 𝑞 < ∞ and 0 < 𝑟 < 𝑅 < ∞,
1

󵄨󵄨󵄨󵄨𝐵𝑟 (𝑥)
󵄨󵄨󵄨󵄨
∫
𝐵𝑟(𝑥)

𝑉 (𝑦)
𝑝

𝑑𝑦

≤ 𝑐 (
𝑅

𝑟
)
𝑝𝑄/𝑞

(
1

󵄨󵄨󵄨󵄨𝐵𝑅(𝑥)
󵄨󵄨󵄨󵄨
∫
𝐵𝑅(𝑥)

𝑉(𝑦)𝑑𝑦)

𝑝

.

(42)

Proof. By Hölder’s inequality and (29), it yields
1

󵄨󵄨󵄨󵄨𝐵𝑟 (𝑥)
󵄨󵄨󵄨󵄨
∫
𝐵𝑟(𝑥)

𝑉 (𝑦)
𝑝

𝑑𝑦

≤ (
1

󵄨󵄨󵄨󵄨𝐵𝑟(𝑥)
󵄨󵄨󵄨󵄨
∫
𝐵𝑟(𝑥)

𝑉 (𝑦)
𝑞

𝑑𝑦)

𝑝/𝑞

≤ 𝑐 (
𝑅

𝑟
)
𝑄

(
1

󵄨󵄨󵄨󵄨𝐵𝑅 (𝑥)
󵄨󵄨󵄨󵄨
∫
𝐵𝑅(𝑥)

𝑉 (𝑦)
𝑞

𝑑𝑦)

𝑝/𝑞

≤ 𝑐 (
𝑅

𝑟
)
𝑝𝑄/𝑞

(
1

󵄨󵄨󵄨󵄨𝐵𝑅(𝑥)
󵄨󵄨󵄨󵄨
∫
𝐵𝑅(𝑥)

𝑉(𝑦)𝑑𝑦)

𝑝

.

(43)

Remark 15. If we take G = R𝑛 and 𝑝 = 1, then Lemma 14
gives the version in [2, Lemma 1.2].

Lemma 16. If 𝑉 ∈ 𝐵
𝑞
∩ 𝐿

1
(G), 𝑞 > 𝑄/2, then 𝑉

𝑝
∈ 𝑆

𝑝
(G),

1 < 𝑝 ≤ 2𝑞/𝑄.

Proof. For any 𝑥 ∈ G, it follows that

𝐼 =: ∫
𝑑(𝑥,𝑦)<𝑟

𝑑
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨

× (∫
𝑑(𝑧,𝑥)<𝑟

𝑉
𝑝
(𝑧)

𝑑
2
(𝑧, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑧, 𝑑 (𝑧, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑧)

1/(𝑝−1)

𝑑𝑦

≤ ∫
𝑑(𝑥,𝑦)<𝑟

𝑑
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨

× (∫
𝑑(𝑧,𝑦)<2𝑟

𝑉
𝑝
(𝑧)

𝑑
2
(𝑧, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑧, 𝑑 (𝑧, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑧)

1/(𝑝−1)

𝑑𝑦

≡ ∫
𝑑(𝑥,𝑦)<𝑟

𝑑
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
(𝐼
1
)
1/(𝑝−1)

𝑑𝑦.

(44)

By (42), it yields

𝐼
1
≤

∞

∑
𝑘=0

∫
𝑟/2
𝑘
≤𝑑(𝑧,𝑦)<𝑟/2

𝑘−1

𝑉
𝑝
(𝑧)

𝑑
2
(𝑧, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑧, 𝑑 (𝑧, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑧

≤ 𝑐

∞

∑
𝑘=0

(
𝑟

2𝑘
)
2−𝑄

∫
𝑑(𝑧,𝑦)<𝑟/2

𝑘−1

𝑉
𝑝
(𝑧) 𝑑𝑧

≤ 𝑐𝑟
2−𝑝𝑄/𝑞

𝑅
𝑝𝑄/𝑞−𝑝𝑄

∞

∑
𝑘=0

(
1

2𝑘
)
2−𝑝𝑄/𝑞

(∫
𝐵(𝑦,𝑅)

𝑉 (𝑧) 𝑑𝑧)

𝑝

≤ 𝑐𝑟
2−𝑝𝑄/𝑞

𝑅
𝑝𝑄/𝑞−𝑝𝑄

(∫
G

𝑉𝑑𝑧)
𝑝

.

(45)

Also, we have

∫
𝑑(𝑥,𝑦)<𝑟

𝑑
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑦

≤

∞

∑
𝑘=1

∫
𝑟/2
𝑘
≤𝑑(𝑥,𝑦)<𝑟/2

𝑘−1

𝑑
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝑑 (𝑥, 𝑦))
󵄨󵄨󵄨󵄨
𝑑𝑦

≤ 𝑐

∞

∑
𝑘=1

(
𝑟

2𝑘
)
2−𝑄

∫
𝑑(𝑥,𝑦)<𝑟/2

𝑘−1

𝑑𝑦

≤ 𝑐𝑟
2
.

(46)

Therefore combining (45) and (46) gets

𝐼 ≤ 𝑐𝑟
(1/(𝑝−1))(2−𝑝𝑄/𝑞)

𝑅
(𝑝𝑄/(𝑝−1))(1/𝑞−1)

× (∫
G

𝑉(𝑧)𝑑𝑧)
𝑝/(𝑝−1)

⋅ 𝑐𝑟
2

≤ 𝑐𝑟
(1/(𝑝−1))(2𝑝−𝑝𝑄/𝑞)

𝑅
(𝑝𝑄/(𝑝−1))(1/𝑞−1)

× (∫
G

𝑉 (𝑧) 𝑑𝑧)
𝑝/(𝑝−1)

󳨀→ 0,

as 𝑟 󳨀→ 0.

(47)

The result is proved.

Proof of Theorem 6. By Lemma 16 andTheorem 3, we imme-
diately obtain Theorem 6.

Remark 17. In order to assure the convergence of the series
∑
∞

𝑘=0
(2
−𝑘
)
2−𝑝𝑄/𝑞

in the proof of Lemma 16, we require the
assumption 𝑝 ≤ 2𝑞/𝑄, which leads to the range of 𝑝 in
Theorem 6 smaller than [1, Theorem 1].

5. Results to the Euclidean Case and
Elliptic Operators

Here for convenience of readers, we restate Theorems 3 and
4 corresponding to the Euclidean case but omit their proofs
because the proofs are analogous toTheorems 3 and 4. It will
be assumed for the leading coefficients 𝑎

𝑖𝑗
in (1) that
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(𝐻
1
) 𝑎

𝑖𝑗
(𝑥) = 𝑎

𝑗𝑖
(𝑥) ∈ 𝐿

∞
(R𝑛

) for all 𝑖, 𝑗 = 1, . . . , 𝑛 and
there exists a positive constant 𝜇 such that, for any 𝑥 ∈ R𝑛

and 𝜉 ∈ R𝑛,

𝜇
−1 󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨
2

≤

𝑛

∑
𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≤ 𝜇

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

; (48)

(𝐻
2
) 𝑎

𝑖𝑗
(𝑥) ∈ 𝑉𝑀𝑂(R𝑛

); that is, for 𝑖, 𝑗 = 1, . . . , 𝑛,

𝜂
𝑖𝑗
= sup

𝜌≤𝑟

sup
𝑥∈R𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝐵
𝜌
(𝑥)

󵄨󵄨󵄨󵄨󵄨

−1

∫
𝐵𝜌(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗
(𝑦) − 𝑎

𝐵

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦) 󳨀→ 0,

as 𝑟 󳨀→ 0
+
,

(49)

where 𝑎𝐵
𝑖𝑗
= |𝐵

𝜌
(𝑥)|

−1
∫
𝐵𝜌(𝑥)

𝑎
𝑖𝑗
(𝑦)𝑑𝑦.

A function 𝑉 ∈ 𝑆
𝑝
(R𝑛

) for 1 < 𝑝 < ∞ means that, for
each 𝑟 > 0,

𝜑
𝑉
(𝑟) := sup

𝑥∈R𝑛
(∫

|𝑥−𝑦|<𝑟

1
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑛−2

× (∫
|𝑧−𝑦|<𝑟

|𝑉(𝑧)|
󵄨󵄨󵄨󵄨𝑧 − 𝑦

󵄨󵄨󵄨󵄨
𝑛−2

𝑑𝑧)

1/(𝑝−1)

𝑑𝑦)

𝑝−1

(50)

is finite and

lim
𝑟→0

𝜑
𝑉
(𝑟) = 0. (51)

Theorem 18. Under assumptions (𝐻
1
) and (𝐻

2
), if 𝑉

𝑝
∈

𝑆
𝑝
(R𝑛

), 1 < 𝑝 < ∞, then there exists a positive constant
𝑐 = 𝑐(𝑛, 𝑝, 𝜇, 𝜂, 𝑉) such that, for any 𝑢 ∈ 𝐶

∞

0
(R𝑛

), one has

‖𝑢‖𝑊2,𝑝(R𝑛) + ‖𝑉𝑢‖𝐿𝑝(R𝑛)

≤ 𝑐 (‖L𝑢‖𝐿𝑝(R𝑛) + ‖𝑢‖𝐿𝑝(R𝑛)) ,
(52)

where 𝜂 depends only on the 𝑉𝑀𝑂 moduli of the coefficients
𝑎
𝑖𝑗
.

Remark 19. If |𝑉| ≡ 0, 𝑥 ∈ R𝑛 or |𝑉| ≤ const., 𝑥 ∈ R𝑛, the
𝐿
𝑝 theory of (1) with discontinuous leading coefficients was

intensively studied and the result was proved in [33–36] and
so forth. Bramanti et al. [1] obtained a prior 𝐿𝑝(R𝑛

) estimate
for (1) with 𝑎

𝑖𝑗
∈ 𝑉𝑀𝑂 and 𝑉 ∈ 𝐵

𝑞
. Here 𝐵

𝑞
̸⊂ 𝑆
𝑝
(R𝑛

) and
𝑆
𝑝
(R𝑛

) ̸⊂ 𝐵
𝑞
.

Theorem 20. Let 𝐵 = 𝐵
𝑟𝐵
(𝑥

0
) be any ball in R𝑛. If 𝑉 ∈

𝑆
𝑝
(R𝑛

), then there exists a first order polynomial 𝑃
𝐵
(𝑥) in R𝑛

such that, for any 𝑢 ∈ 𝐶
∞
(𝐵), one has

∫
𝐵

󵄨󵄨󵄨󵄨𝑢 − 𝑃
𝐵
(𝑥)

󵄨󵄨󵄨󵄨
𝑝

|𝑉| 𝑑𝑥 ≤ 𝑐𝜑
𝑉
(2𝑟

𝐵
) ∫

𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥, (53)

where the positive constant 𝑐 is independent of 𝑢 and 𝐵.
Moreover, for any 𝑢 ∈ 𝐶

∞

0
(𝐵), one has

∫
𝐵

|𝑢|
𝑝
|𝑉| 𝑑𝑥 ≤ 𝑐𝜑

𝑉
(2𝑟

𝐵
) ∫

𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋
2
𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥, (54)

where 𝑐 > 0 is independent of 𝑢 and 𝐵.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The first author was supported by the National Natural Sci-
ence Foundation of China (Grant no. 11271299) and Natural
Science Foundation Research Project of Shaanxi Province
(Grant no. 2012JM1014). The authors are very grateful to the
anonymous referee who read carefully the manuscript and
offered valuable suggestions.

References

[1] M. Bramanti, L. Brandolini, E. Harboure, and B. Viviani,
“Global 𝑊

2,𝑝 estimates for nondivergence elliptic operators
with potentials satisfying a reverse Hölder condition,”Annali di
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