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We prove the existence and uniqueness of coupled best proximity point for mappings satisfying the proximally coupled contraction
in a complete ordered metric space. Further, our result provides an extension of a result due to Bhaskar and Lakshmikantham.

1. Introduction

One of the most useful tools in the study of nonlinear
functional equation is to describe many problems in physics,
chemistry, and engineering. It can be formulated in terms of
finding the fixed points of a nonlinear self-mapping. Fixed
point theory investigates the techniques for determining a
solution of the pattern 𝑇𝑥 = 𝑥, where 𝑇 is a self-mapping
defined on a subset𝐴 of ametric space𝑋. Noteworthy, a fixed
point 𝑥 of 𝑇 on can be written by 𝑑(𝑥, 𝑇𝑥) = 0.

A well-known principle that guarantees a unique fixed
point solution is the Banach contraction principle [1] which
states on a complete metric space 𝑋 for a contraction self-
mapping (i.e., 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where
𝛼 is a nonnegative number such that 𝛼 < 1). Over the
years, this principle has been generalized in many ways;
see also [2–6]. Recently, an interesting way is to study the
extension of Banach contraction principle to the case of non-
self-mappings. Certainly, a contraction non-self-mapping 𝑇 :

𝐴 → 𝐵 does not necessarily have a fixed point, where 𝐴 and
𝐵 are nonempty subsets of a metric space𝑋.

Ultimately, one proceeds to find an approximate solution
𝑥 ∈ 𝐴 which is closest to 𝑇𝑥 in the sense that distance

𝑑(𝑥, 𝑇𝑥) is minimumwhich implies that 𝑥 and𝑇𝑥 are in close
proximity to each other. Indeed, the best approximation the-
orems and the best proximity point theorem investigate the
existence of an approximate solution to fixed point problems
for the non-self-mappings. In 1969, Fan [7] guarantees at least
one solution to the minimization problem min

𝑥∈𝐴
‖𝑥 − 𝑇𝑥‖,

where 𝐴 is a nonempty compact convex subset of a normed
linear space𝑋 and𝑇 : 𝐴 → 𝑋 is a continuous function. Such
an element 𝑥 ∈ 𝐴 satisfying the above condition is called a
best approximant of𝑇 in𝐴. Note that if𝑥 ∈ 𝐴 is a best approx-
imant, then ‖𝑥 − 𝑇𝑥‖ need not be the optimum. As a matter
of fact, the best proximity point theorems have been explored
to find sufficient conditions for the existence of an element
𝑥 such that the error 𝑑(𝑥, 𝑇𝑥) is minimum.

To have a concrete lower bound, let us consider two
nonempty subsets 𝐴, 𝐵 of a metric space 𝑋 and a mapping
𝑇 : 𝐴 → 𝐵. The natural question is whether one can find
an element 𝑥∗ ∈ 𝐴 such that 𝑑(𝑥∗, 𝑇𝑥∗) = 𝑑(𝐴, 𝐵), where
𝑑(𝐴, 𝐵) := min{𝑑(𝑥, 𝑇𝑥) : 𝑥 ∈ 𝐴}. Since 𝑑(𝑥, 𝑇𝑥) ≥ 𝑑(𝐴, 𝐵)

for all 𝑥 ∈ 𝐴, the optimal solution to the problem ofminimiz-
ing the real valued function 𝑥 → 𝑑(𝑥, 𝑇𝑥) over the domain
𝐴 of the mapping 𝑇 will be the one for which the value
𝑑(𝐴, 𝐵) is attained. A point that satisfies the condition
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𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) is called a best proximity point of 𝑇.
Furthermore, the best proximity theorems also regress to an
extension of fixed point theorem; that is, a best proximity
point becomes a fixed point if either 𝑑(𝐴, 𝐵) = 0 or the
mapping under consideration is a self-mapping.

The existence and convergence of best proximity points
are an interesting topic of optimization theory. For more
details on this approach, we refer the reader to De la Sen
and Agarwal [8], Kumam et al. [9–11], di Bari et al. [12],
Eldred and Veeramani [13], Al-Thagafi and Shahzad [14],
Sadiq Basha and Veeramani [15], Kim and Lee [16], Kirk et al.
[17], Sankar Raj [18], Karapınar et al. [19], and Jleli and Samet
[20]. The study of best proximity point in the setting of par-
tially ordered metric space attracted recently the attention of
many authors; see [21–33].

Nowwe recall the definition of coupled fixed point. Let𝑋
be a nonempty set and 𝐹 : 𝑋 ×𝑋 → 𝑋 a given mapping. An
element (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is called a coupled fixed point of the
mapping 𝐹 if 𝐹(𝑥, 𝑦) = 𝑥 and 𝐹(𝑦, 𝑥) = 𝑦. In 2006, Bhaskar
and Lakshmikantham [34] proved some coupled fixed point
theorems for mappings satisfying the mixed monotone
mapping. Indeed, let (𝑋, ≤) be a partially ordered set;
the mapping 𝐹 is said to have the mixed monotone property
if

𝑥
1
, 𝑥
2
∈ 𝑋, 𝑥

1
≤ 𝑥
2
󳨐⇒ 𝐹 (𝑥

1
, 𝑦) ≤ 𝐹 (𝑥

2
, 𝑦) ,

∀𝑦 ∈ 𝑋,

𝑦
1
, 𝑦
2
∈ 𝑋, 𝑦

1
≤ 𝑦
2
󳨐⇒ 𝐹 (𝑥, 𝑦

1
) ≥ 𝐹 (𝑥, 𝑦

2
) ,

∀𝑥 ∈ 𝑋.

(1)

Their results investigate a large class of problems and show
the existence and uniqueness of a solution for a periodic
boundary value problem. For more details on this concept
one may go through the references [35–37].

Motivated by the above theorems, we introduce the
concept of proximally mixed monotone property and proxi-
mally coupled contraction. We also explore the existence and
uniqueness of coupled best proximity points in the setting of
partially ordered metric spaces, thereby producing optimal
approximate solutions for that function with respect to both
coordinates. Further, we attempt to give the generalization of
the results in [34].

2. Preliminaries

Let 𝑋 be a nonempty set such that (𝑋, 𝑑) is a metric space.
Unless otherwise specified, it is assumed throughout this
section that𝐴 and𝐵 are nonempty subsets of themetric space
(𝑋, 𝑑); the following notions are used subsequently:

𝑑 (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ,

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(2)

In [17], the authors discussed sufficient conditions which
guarantee the nonemptiness of 𝐴

0
and 𝐵

0
. Also, in [15],

the authors proved that 𝐴
0
is contained in the boundary of

𝐴. Moreover, the authors proved that 𝐴
0
is contained in the

boundary of 𝐴 in the setting of normed linear spaces.

Definition 1. Let (𝑋, 𝑑, ≤) be a partially ordered metric space
and 𝐴, 𝐵 nonempty subsets of 𝑋. A mapping 𝐹 : 𝐴 ×

𝐴 → 𝐵 is said to have proximal mixed monotone property
if 𝐹(𝑥, 𝑦) is proximally nondecreasing in 𝑥 and is proximally
nonincreasing in 𝑦; that is, for all 𝑥, 𝑦 ∈ 𝐴,

𝑥
1
≤ 𝑥
2

𝑑 (𝑢
1
, 𝐹 (𝑥
1
, 𝑦)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝐹 (𝑥
2
, 𝑦)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑢
1
≤ 𝑢
2
,

𝑦
1
≤ 𝑦
2

𝑑 (𝑢
3
, 𝐹 (𝑥, 𝑦

1
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
4
, 𝐹 (𝑥, 𝑦

2
)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑢
4
≤ 𝑢
3
,

(3)

where 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
∈ 𝐴.

One can see that, if 𝐴 = 𝐵 in the above definition, the
notion of proximal mixedmonotone property reduces to that
of mixed monotone property.

Lemma2. Let (𝑋, 𝑑, ≤) be a partially orderedmetric space and
𝐴, 𝐵 nonempty subsets of 𝑋. Assume that 𝐴

0
is nonempty. A

mapping 𝐹 : 𝐴 × 𝐴 → 𝐵 has proximal mixed monotone
property with 𝐹(𝐴

0
× 𝐴
0
) ⊆ 𝐵

0
; then for any 𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑦
0
,

𝑦
1
in 𝐴
0

𝑥
0
≤ 𝑥
1
, 𝑦

0
≥ 𝑦
1

𝑑 (𝑥
1
, 𝐹 (𝑥
0
, 𝑦
0
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝐹 (𝑥
1
, 𝑦
1
)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑥
1
≤ 𝑥
2
. (4)

Proof. By hypothesis𝐹(𝐴
0
×𝐴
0
) ⊆ 𝐵
0
, 𝐹(𝑥
1
, 𝑦
0
) ∈ 𝐵
0
. Hence

there exists 𝑥∗
1
∈ 𝐴 such that

𝑑 (𝑥
∗

1
, 𝐹 (𝑥
1
, 𝑦
0
)) = 𝑑 (𝐴, 𝐵) . (5)

Using 𝐹 is proximal mixed monotone (in particular 𝐹 is
proximally nondecreasing in 𝑥) to (4) and (5), we get

𝑥
0
≤ 𝑥
1

𝑑 (𝑥
1
, 𝐹 (𝑥
0
, 𝑦
0
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
∗

1
, 𝐹 (𝑥
1
, 𝑦
0
)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑥
1
≤ 𝑥
∗

1
. (6)

Analogously, using 𝐹 is proximal mixed monotone (in par-
ticular 𝐹 is proximally nonincreasing in 𝑦) to (4) and (5), we
get

𝑦
1
≤ 𝑦
0

𝑑 (𝑥
2
, 𝐹 (𝑥
1
, 𝑦
1
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
∗

1
, 𝐹 (𝑥
1
, 𝑦
0
)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑥
∗

1
≤ 𝑥
2
. (7)

From (6) and (7), one can conclude that 𝑥
1
≤ 𝑥
2
. Hence the

proof is completed.

Lemma3. Let (𝑋, 𝑑, ≤) be a partially orderedmetric space and
𝐴, 𝐵 nonempty subsets of 𝑋. Assume that 𝐴

0
is nonempty. A

mapping 𝐹 : 𝐴 × 𝐴 → 𝐵 has proximal mixed monotone
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property with 𝐹(𝐴
0
× 𝐴
0
) ⊆ 𝐵

0
; then for any 𝑥

0
, 𝑥
1
, 𝑦
0
, 𝑦
1
,

𝑦
2
in 𝐴
0

𝑥
0
≤ 𝑥
1
, 𝑦

0
≥ 𝑦
1

𝑑 (𝑦
1
, 𝐹 (𝑦
0
, 𝑥
0
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑦
2
, 𝐹 (𝑦
1
, 𝑥
1
)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑦
1
≥ 𝑦
2
. (8)

Proof. The proof is same as Lemma 2.

Definition 4. Let (𝑋, 𝑑, ≤) be a partially ordered metric space
and 𝐴, 𝐵 nonempty subsets of 𝑋. A mapping 𝐹 : 𝐴 × 𝐴 →

𝐵 is said to be proximally coupled contraction if there exists
𝑘 ∈ (0, 1) such that whenever

𝑥
1
≤ 𝑥
2
, 𝑦

1
≥ 𝑦
2

𝑑 (𝑢
1
, 𝐹 (𝑥
1
, 𝑦
1
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝐹 (𝑥
2
, 𝑦
2
)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑑 (𝑢
1
, 𝑢
2
)

≤
𝑘

2
[𝑑 (𝑥
1
, 𝑥
2
) + 𝑑 (𝑦

1
, 𝑦
2
)] ,

(9)

where 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝑢
1
, 𝑢
2
∈ 𝐴.

One can see that, if 𝐴 = 𝐵 in the above definition, the
notion of proximally coupled contraction reduces to that of
coupled contraction.

3. Coupled Best Proximity Point Theorems

Let (𝑋, 𝑑, ≤) be a partially ordered complete metric space
endowed with the product space 𝑋 × 𝑋 with the following
partial order:

for (𝑥, 𝑦) , (𝑢, V) ∈ 𝑋 × 𝑋,

(𝑢, V) ≤ (𝑥, 𝑦) ⇐⇒ 𝑥 ≥ 𝑢, 𝑦 ≤ V.
(10)

Theorem 5. Let (𝑋, ≤, 𝑑) be a partially ordered complete
metric space. Let 𝐴 and 𝐵 be nonempty closed subsets of the
metric space (𝑋, 𝑑) such that 𝐴

0
̸= 0. Let 𝐹 : 𝐴 × 𝐴 → 𝐵

satisfy the following conditions.

(i) 𝐹 is a continuous proximally coupled contraction hav-
ing the proximal mixed monotone property on 𝐴 such
that 𝐹(𝐴

0
× 𝐴
0
) ⊆ 𝐵
0
.

(ii) There exist elements (𝑥
0
, 𝑦
0
) and (𝑥

1
, 𝑦
1
) in 𝐴

0
× 𝐴
0

such that

𝑑 (𝑥
1
, 𝐹 (𝑥
0
, 𝑦
0
)) = 𝑑 (𝐴, 𝐵) 𝑤𝑖𝑡ℎ 𝑥

0
≤ 𝑥
1
,

𝑑 (𝑦
1
, 𝐹 (𝑦
0
, 𝑥
0
)) = 𝑑 (𝐴, 𝐵) 𝑤𝑖𝑡ℎ 𝑦

0
≥ 𝑦
1
.

(11)

Then there exist (𝑥, 𝑦) ∈ 𝐴 × 𝐴 such that 𝑑(𝑥, 𝐹(𝑥, 𝑦)) =

𝑑(𝐴, 𝐵) and 𝑑(𝑦, 𝐹(𝑦, 𝑥)) = 𝑑(𝐴, 𝐵).

Proof. By hypothesis there exist elements (𝑥
0
, 𝑦
0
) and (𝑥

1
, 𝑦
1
)

in 𝐴
0
× 𝐴
0
such that

𝑑 (𝑥
1
, 𝐹 (𝑥
0
, 𝑦
0
)) = 𝑑 (𝐴, 𝐵) with 𝑥

0
≤ 𝑥
1
,

𝑑 (𝑦
1
, 𝐹 (𝑦
0
, 𝑥
0
)) = 𝑑 (𝐴, 𝐵) with 𝑦

0
≥ 𝑦
1
.

(12)

Because of the fact that 𝐹(𝐴
0
× 𝐴
0
) ⊆ 𝐵

0
, there exists an

element (𝑥
2
, 𝑦
2
) in 𝐴

0
× 𝐴
0
such that

𝑑 (𝑥
2
, 𝐹 (𝑥
1
, 𝑦
1
)) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑦
2
, 𝐹 (𝑦
1
, 𝑥
1
)) = 𝑑 (𝐴, 𝐵) .

(13)

Hence from Lemmas 2 and 3, we obtain 𝑥
1
≤ 𝑥
2
and 𝑦

1
≥ 𝑦
2
.

Continuing this process, we can construct the sequences
(𝑥
𝑛
) and (𝑦

𝑛
) in 𝐴

0
such that

𝑑 (𝑥
𝑛+1

, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N (14)

with 𝑥
0
≤ 𝑥
1
≤ 𝑥
2
≤ ⋅ ⋅ ⋅ 𝑥

𝑛
≤ 𝑥
𝑛+1

⋅ ⋅ ⋅ and

𝑑 (𝑦
𝑛+1

, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
)) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N (15)

with 𝑦
0
≥ 𝑦
1
≥ 𝑦
2
≥ ⋅ ⋅ ⋅ 𝑦

𝑛
≥ 𝑦
𝑛+1

⋅ ⋅ ⋅ .
Then𝑑(𝑥

𝑛
, 𝐹(𝑥
𝑛−1

, 𝑦
𝑛−1

)) = 𝑑(𝐴, 𝐵), 𝑑(𝑥
𝑛+1

, 𝐹(𝑥
𝑛
, 𝑦
𝑛
)) =

𝑑(𝐴, 𝐵) and also we have 𝑥
𝑛−1

≤ 𝑥
𝑛
, 𝑦
𝑛−1

≥ 𝑦
𝑛
, ∀𝑛 ∈ N. Now

using that 𝐹 is proximally coupled contraction on 𝐴 we get

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤
𝑘

2
[𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑑 (𝑦

𝑛−1
, 𝑦
𝑛
)] , ∀𝑛 ∈ N.

(16)

Similarly

𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

) ≤
𝑘

2
[𝑑 (𝑦
𝑛−1

, 𝑦
𝑛
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)] , ∀𝑛 ∈ N.

(17)

Adding (16) and (17), we get

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

≤ 𝑘 [𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑑 (𝑦

𝑛−1
, 𝑦
𝑛
)]

≤ 𝑘 [𝑘 [𝑑 (𝑥
𝑛−2

, 𝑥
𝑛−1

) + 𝑑 (𝑦
𝑛−2

, 𝑦
𝑛−1

)]]

≤ ⋅ ⋅ ⋅

≤ 𝑘
𝑛

[𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑦

0
, 𝑦
1
)] .

(18)

Finally, we get

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

) ≤ 𝑘
𝑛

[𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑦

0
, 𝑦
1
)] .

(19)

Now we prove that (𝑥
𝑛
) and (𝑦

𝑛
) are Cauchy sequences.

For 𝑛 > 𝑚, regarding triangle inequality and (19), one can
observe that

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑚
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛−1

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

)

+ 𝑑 (𝑦
𝑚
, 𝑦
𝑚+1

)

≤ (𝑘
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑘
𝑚

) [𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑦

0
, 𝑦
1
)]

≤
𝑘
𝑚

1 − 𝑘
[𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑦

0
, 𝑦
1
)] .

(20)
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Let 𝜖 > 0 be given. Choose a natural number 𝑀 such that
(𝑘
𝑚

/(1 − 𝑘))[𝑑(𝑥
0
, 𝑥
1
) + 𝑑(𝑦

0
, 𝑦
1
)] < 𝜖 for all 𝑚 > 𝑀. Thus,

𝑑(𝑥
𝑛
, 𝑥
𝑚
)+𝑑(𝑦

𝑛
, 𝑦
𝑚
) < 𝜖 for 𝑛 > 𝑚. Therefore, the sequences

(𝑥
𝑛
) and (𝑦

𝑛
) are Cauchy.

Since 𝐴 is closed subset of a complete metric space 𝑋,
these sequences have limits. Thus, there exists 𝑥, 𝑦 ∈ 𝐴 such
that𝑥

𝑛
→ 𝑥 and𝑦

𝑛
→ 𝑦.Therefore (𝑥

𝑛
, 𝑦
𝑛
) → (𝑥, 𝑦) in𝐴×

𝐴. Since 𝐹 is continuous, we have 𝐹(𝑥
𝑛
, 𝑦
𝑛
) → 𝐹(𝑥, 𝑦) and

𝐹(𝑦
𝑛
, 𝑥
𝑛
) → 𝐹(𝑦, 𝑥).

Hence the continuity of the metric function 𝑑

implies that 𝑑(𝑥
𝑛+1

, 𝐹(𝑥
𝑛
, 𝑦
𝑛
)) → 𝑑(𝑥, 𝐹(𝑥, 𝑦)) and

𝑑(𝑦
𝑛+1

, 𝐹(𝑦
𝑛
, 𝑥
𝑛
)) → 𝑑(𝑦, 𝐹(𝑦, 𝑥)). But from (14)

and (15) we get that the sequences 𝑑(𝑥
𝑛+1

, 𝐹(𝑥
𝑛
, 𝑦
𝑛
))

and 𝑑(𝑦
𝑛+1

, 𝐹(𝑦
𝑛
, 𝑥
𝑛
)) are constant sequences with the

value 𝑑(𝐴, 𝐵). Therefore, 𝑑(𝑥, 𝐹(𝑥, 𝑦)) = 𝑑(𝐴, 𝐵) and
𝑑(𝑦, 𝐹(𝑦, 𝑥)) = 𝑑(𝐴, 𝐵). This completes the proof of the
theorem.

Corollary 6. Let (𝑋, ≤, 𝑑) be a partially ordered complete
metric space. Let 𝐴 be nonempty closed subset of the metric
space (𝑋, 𝑑). Let 𝐹 : 𝐴 × 𝐴 → 𝐴 satisfy the following
conditions.

(i) 𝐹 is continuous having the proximal mixed monotone
property and proximally coupled contraction on 𝐴.

(ii) There exist (𝑥
0
, 𝑦
0
) and (𝑥

1
, 𝑦
1
) in𝐴×𝐴 such that 𝑥

1
=

𝐹(𝑥
0
, 𝑦
0
) with 𝑥

0
≤ 𝑥
1
and 𝑦

1
= 𝐹(𝑦

0
, 𝑥
0
) with 𝑦

0
≥

𝑦
1
.

Then there exist (𝑥, 𝑦) ∈ 𝐴×𝐴 such that 𝑑(𝑥, 𝐹(𝑥, 𝑦)) = 0 and
𝑑(𝑦, 𝐹(𝑦, 𝑥)) = 0.

In what follows we prove that Theorem 5 is still valid
for 𝐹 not necessarily continuous, assuming the following
hypothesis in 𝐴:

(𝑥
𝑛
) is a nondecreasing sequence in 𝐴

such that 𝑥
𝑛
󳨀→ 𝑥; then 𝑥

𝑛
≤ 𝑥.

(𝑦
𝑛
) is a nonincreasing sequence in 𝐴

such that 𝑦
𝑛
󳨀→ 𝑦; then 𝑦 ≤ 𝑦

𝑛
.

(21)

Theorem 7. Assume the conditions (21) and 𝐴
0
is closed in𝑋

instead of continuity of 𝐹 in Theorem 5; then the conclusion of
Theorem 5 holds.

Proof. Following the proof of Theorem 5, there exist
sequences (𝑥

𝑛
) and (𝑦

𝑛
) in 𝐴 satisfying the following

conditions:

𝑑 (𝑥
𝑛+1

, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)) = 𝑑 (𝐴, 𝐵) with 𝑥

𝑛
≤ 𝑥
𝑛+1

, ∀𝑛 ∈ N,

(22)

𝑑 (𝑦
𝑛+1

, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
)) = 𝑑 (𝐴, 𝐵) with 𝑦

𝑛
≥ 𝑦
𝑛+1

, ∀𝑛 ∈ N.

(23)

Moreover, (𝑥
𝑛
) converges to 𝑥 and 𝑦

𝑛
converges to 𝑦 in 𝐴.

From (21), we get 𝑥
𝑛

≤ 𝑥 and 𝑦
𝑛

≥ 𝑦. Note that the
sequences (𝑥

𝑛
) and (𝑦

𝑛
) are in𝐴

0
and𝐴

0
is closed.Therefore,

(𝑥, 𝑦) ∈ 𝐴
0
× 𝐴
0
. Since 𝐹(𝐴

0
× 𝐴
0
) ⊆ 𝐵

0
, there exists

𝐹(𝑥, 𝑦) and𝐹(𝑦, 𝑥) are in𝐵
0
.Therefore, there exists (𝑥∗, 𝑦∗) ∈

𝐴
0
× 𝐴
0
such that

𝑑 (𝑥
∗

, 𝐹 (𝑥, 𝑦)) = 𝑑 (𝐴, 𝐵) , (24)

𝑑 (𝑦
∗

, 𝐹 (𝑦, 𝑥)) = 𝑑 (𝐴, 𝐵) . (25)

Since 𝑥
𝑛
≤ 𝑥 and 𝑦

𝑛
≥ 𝑦. By using 𝐹 is proximally coupled

contraction for (22) and (24) also for (25) and (23), we get

𝑑 (𝑥
𝑛+1

, 𝑥
∗

) ≤
𝑘

2
[𝑑 (𝑥
𝑛
, 𝑥) + 𝑑 (𝑦

𝑛
, 𝑦)] , ∀𝑛,

𝑑 (𝑦
∗

, 𝑦
𝑛+1

) ≤
𝑘

2
[𝑑 (𝑦, 𝑦

𝑛
) + 𝑑 (𝑥, 𝑥

𝑛
)] , ∀𝑛.

(26)

Since 𝑥
𝑛
→ 𝑥 and 𝑦

𝑛
→ 𝑦, by taking limit on the above two

inequality, we get 𝑥 = 𝑥
∗ and𝑦 = 𝑦

∗. Consequently the result
follows.

Corollary 8. Assume the conditions (21) instead of continuity
of 𝐹 in Corollary 6; then the conclusion of Corollary 6 holds.

Now, we present an example where it can be appreciated
that hypotheses in Theorems 5 and 7 do not guarantee
uniqueness of the coupled best proximity point.

Example 9. Let 𝑋 = {(0, 1), (1, 0), (−1, 0), (0, −1)} ⊂ R2 and
consider the usual order (𝑥, 𝑦) ⪯ (𝑧, 𝑡) ⇔ 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑡.

Thus, (𝑋, ⪯) is a partially ordered set. Besides, (𝑋, 𝑑
2
) is

a complete metric space considering 𝑑
2
the euclidean metric.

Let 𝐴 = {(0, 1), (1, 0)} and 𝐵 = {(0, −1), (−1, 0)} be closed
subsets of𝑋. Then, 𝑑(𝐴, 𝐵) = √2,𝐴 = 𝐴

0
and 𝐵 = 𝐵

0
. Let 𝐹 :

𝐴 × 𝐴 → 𝐵 be defined as 𝐹((𝑥
1
, 𝑥
2
), (𝑦
1
, 𝑦
2
)) = (−𝑥

2
, −𝑥
1
).

Then, it can be seen that 𝐹 is continuous such that 𝐹(𝐴
0
×

𝐴
0
) ⊆ 𝐵
0
. The only comparable pairs of points in𝐴 are 𝑥 ⪯ 𝑥

for 𝑥 ∈ 𝐴; hence proximal mixed monotone property and
proximally coupled contraction on 𝐴 are satisfied trivially.

It can be shown that the other hypotheses of the theorem
are also satisfied.However,𝐹has three coupled best proximity
points ((0, 1), (0, 1)), ((0, 1), (1, 0)), and ((1, 0), (1, 0)).

One can prove that the coupled best proximity point is in
fact unique, provided that the product space 𝐴 × 𝐴 endowed
with the partial order mentioned earlier has the following
property:

Every pair of elements has either a lower bound

or an upper bound.
(27)

It is known that this condition is equivalent to the following:
For every pair of (𝑥, 𝑦), (𝑥∗, 𝑦∗) ∈ 𝐴 × 𝐴, there exists

(𝑧
1
, 𝑧
2
) in 𝐴 × 𝐴.

that is comparable to (𝑥, 𝑦) , (𝑥
∗

, 𝑦
∗

) . (28)
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Theorem 10. In addition to the hypothesis ofTheorem 5 (resp.,
Theorem 7), suppose that for any two elements (𝑥, 𝑦) and
(𝑥
∗

, 𝑦
∗

) in 𝐴
0
× 𝐴
0
,

there exists (𝑧
1
, 𝑧
2
) ∈ 𝐴

0
× 𝐴
0

such that (𝑧
1
, 𝑧
2
) is comparable to (𝑥, 𝑦) , (𝑥∗, 𝑦∗) ;

(29)

then 𝐹 has a unique coupled best proximity point.

Proof. FromTheorem 5 (resp.,Theorem 7), the set of coupled
best proximity points of 𝐹 is nonempty. Suppose that there
exist (𝑥, 𝑦) and (𝑥

∗

, 𝑦
∗

) in 𝐴 × 𝐴 which are coupled best
proximity points. That is,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) = 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝐹 (𝑦, 𝑥)) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
∗

, 𝐹 (𝑥
∗

, 𝑦
∗

)) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑦
∗

, 𝐹 (𝑦
∗

, 𝑥
∗

)) = 𝑑 (𝐴, 𝐵) .

(30)

We distinguish two cases.

Case 1. Suppose that (𝑥, 𝑦) is comparable. Let (𝑥, 𝑦) be
comparable to (𝑥∗, 𝑦∗) with respect to the ordering in𝐴×𝐴.
Apply 𝐹 as proximally coupled contraction to 𝑑(𝑥, 𝐹(𝑥, 𝑦)) =
𝑑(𝐴, 𝐵) and 𝑑(𝑥∗, 𝐹(𝑥∗, 𝑦∗)) = 𝑑(𝐴, 𝐵), there exists 𝑘 ∈ (0, 1)

such that

𝑑 (𝑥, 𝑥
∗

) ≤
𝑘

2
[𝑑 (𝑥, 𝑥

∗

) + 𝑑 (𝑦, 𝑦
∗

)] . (31)

Similarly, one can prove that

𝑑 (𝑦, 𝑦
∗

) ≤
𝑘

2
[𝑑 (𝑦, 𝑦

∗

) + 𝑑 (𝑥, 𝑥
∗

)] . (32)

Adding (31) and (32), we get

𝑑 (𝑥, 𝑥
∗

) + 𝑑 (𝑦, 𝑦
∗

) ≤ 𝑘 [𝑑 (𝑥, 𝑥
∗

) + 𝑑 (𝑦, 𝑦
∗

)] . (33)

This implies that 𝑑(𝑥, 𝑥∗) + 𝑑(𝑦, 𝑦
∗

) = 0; hence 𝑥 = 𝑥
∗ and

𝑦 = 𝑦
∗.

Case 2. Suppose that (𝑥, 𝑦) is not comparable. Let (𝑥, 𝑦) be
noncomparable to (𝑥

∗

, 𝑦
∗

); then there exists (𝑢
1
, V
1
) ∈ 𝐴

0
×

𝐴
0
which is comparable to (𝑥, 𝑦) and (𝑥

∗

, 𝑦
∗

).
Since𝐹(𝐴

0
×𝐴
0
) ⊆ 𝐵
0
, there exists (𝑢

2
, V
2
) ∈ 𝐴
0
×𝐴
0
such

that 𝑑(𝑢
2
, 𝐹(𝑢
1
, V
1
)) = 𝑑(𝐴, 𝐵) and 𝑑(V

2
, 𝐹(V
1
, 𝑢
1
)) = 𝑑(𝐴, 𝐵).

Without loss of generality assume that (𝑢
1
, V
1
) ≤ (𝑥, 𝑦) (i.e.,

𝑥 ≥ 𝑢
1
and 𝑦 ≤ V

1
.) Note that (𝑢

1
, V
1
) ≤ (𝑥, 𝑦) implies that

(𝑦, 𝑥) ≤ (V
1
, 𝑢
1
). From Lemmas 2 and 3, we get

𝑢
1
≤ 𝑥, V

1
≥ 𝑦

𝑑 (𝑢
2
, 𝐹 (𝑢
1
, V
1
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝑢
2
≤ 𝑥,

𝑢
1
≤ 𝑥, V

1
≥ 𝑦

𝑑 (V
2
, 𝐹 (V
1
, 𝑢
1
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑦, 𝐹 (𝑦, 𝑥)) = 𝑑 (𝐴, 𝐵)

}

}

}

󳨐⇒ V
2
≥ 𝑦.

(34)

From the above two inequalities, we obtain (𝑢
2
, V
2
) ≤ (𝑥, 𝑦).

Continuing this process, we get sequences {𝑢
𝑛
} and {V

𝑛
} such

that 𝑑(𝑢
𝑛+1

, 𝐹(𝑢
𝑛
, V
𝑛
)) = 𝑑(𝐴, 𝐵) and 𝑑(V

𝑛+1
, 𝐹(V
𝑛
, 𝑢
𝑛
)) =

𝑑(𝐴, 𝐵) with (𝑢
𝑛
, V
𝑛
) ≤ (𝑥, 𝑦) ∀𝑛 ∈ N. By using that 𝐹 is a

proximally coupled contraction, we get

𝑢
𝑛
≤ 𝑥, V

𝑛
≥ 𝑦

𝑑 (𝑢
𝑛+1

, 𝐹 (𝑢
𝑛
, V
𝑛
)) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) = 𝑑 (𝐴, 𝐵)

⇓

𝑑 (𝑢
𝑛+1

, 𝑥) ≤
𝑘

2
[𝑑 (𝑢
𝑛
, 𝑥) + 𝑑 (V

𝑛
, 𝑦)] , ∀𝑛 ∈ N.

(35)

Similarly, we can prove that

𝑦 ≤ V
𝑛
, 𝑥 ≥ 𝑢

𝑛

𝑑 (𝑦, 𝐹 (𝑦, 𝑥)) = 𝑑 (𝐴, 𝐵)

𝑑 (V
𝑛+1

, 𝐹 (V
𝑛
, 𝑢
𝑛
)) = 𝑑 (𝐴, 𝐵)

⇓

𝑑 (𝑦, V
𝑛+1

) ≤
𝑘

2
[𝑑 (𝑦, V

𝑛
) + 𝑑 (𝑥, 𝑢

𝑛
)] , ∀𝑛 ∈ N.

(36)

Adding (35) and (36), we obtain

𝑑 (𝑢
𝑛+1

, 𝑥) + 𝑑 (𝑦, V
𝑛+1

) ≤ 𝑘 [𝑑 (𝑢
𝑛
, 𝑥) + 𝑑 (V

𝑛
, 𝑦)] .

𝑑 (𝑢
𝑛+1

, 𝑥) + 𝑑 (𝑦, V
𝑛+1

)

≤ 𝑘 [𝑑 (𝑢
𝑛
, 𝑥) + 𝑑 (V

𝑛
, 𝑦)]

≤ 𝑘
2

[𝑑 (𝑢
𝑛−1

, 𝑥) + 𝑑 (V
𝑛−1

, 𝑦)]

⋅ ⋅ ⋅

≤ 𝑘
𝑛+1

[𝑑 (𝑢
0
, 𝑥) + 𝑑 (V

0
, 𝑦)] .

(37)

As 𝑛 → ∞, we get 𝑑(𝑢
𝑛+1

, 𝑥) + 𝑑(𝑦, V
𝑛+1

) → 0, so that
𝑢
𝑛
→ 𝑥 and V

𝑛
→ 𝑦.

Analogously, one can prove that 𝑢
𝑛
→ 𝑥
∗ and V

𝑛
→ 𝑦
∗.

Therefore, 𝑥 = 𝑥
∗ and 𝑦 = 𝑦

∗. Hence the proof is completed.

Example 11. Let 𝑋 = R be endowed with usual metric, and
with the usual order in R.

Suppose that 𝐴 = [1, 2] and 𝐵 = [−2, −1]. Then 𝐴 and 𝐵

are nonempty closed subsets of 𝑋 and 𝐴
0
= 1 and 𝐵

0
= −1.

Also note that 𝑑(𝐴, 𝐵) = 2.
Now consider the function 𝐹 : 𝐴 × 𝐴 → 𝐵 defined as

𝐹 (𝑥, 𝑦) =
−𝑥 − 𝑦 − 2

4
. (38)

Then it can be seen that 𝐹 is continuous and 𝐹(1, 1) = −1.
Hence,𝐹(𝐴

0
×𝐴
0
) ⊆ 𝐵
0
. It is easy to see that other hypotheses

of the Theorem 10 are also satisfied. Further, it is easy to see
that (1, 1) is the unique element satisfying the conclusion of
Theorem 10.

The following result, due to Fan [7], is a corollary
Theorem 10 by taking 𝐴 = 𝐵.
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Corollary 12. In addition to the hypothesis of Corollary 6
(resp., Corollary 8), suppose that for any two elements (𝑥, 𝑦)
and (𝑥∗, 𝑦∗) in 𝐴 × 𝐴,

𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 (𝑧
1
, 𝑧
2
) ∈ 𝐴 × 𝐴

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑧
1
, 𝑧
2
) 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 (𝑥, 𝑦) , (𝑥

∗

, 𝑦
∗

) ;

(39)

then 𝐹 has a unique coupled fixed point.
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