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We consider a two-periodmodel in which a continuum of agents trade in a context of costly information acquisition and systematic
heterogeneous expectations biases. Because of systematic biases agents are supposed not to learn from others’ decisions. In a
previous work under somehow strong technical assumptions a market equilibrium was proved to exist and the supply and demand
functions were proved to be strictly monotonic with respect to the price. Here we extend these results under very weak technical
assumptions. We also prove that the equilibrium price maximizes the trading volume and further additional properties (such as
the antimonotonicity of the trading volume with respect to the marginal information price).

1. Introduction

We consider a continuum of agents that act in a two-period
(𝑡 ∈ {0, 𝑇}) market consisting of a single asset of value 𝑉.
The value𝑉 is constant and deterministic but unknown to the
agents. Each agent constructs an estimation for𝑉 in the form
of a normal random variable with knownmean and variance.
The numerical value of the mean, which is not necessarily
𝑉 and as such can be interpreted as a systematic bias, is
given by the estimation method and cannot be changed.
However, the variance can be reduced at time 𝑡 = 0 by
paying a cost, which is a known deterministic function of
the variance to be attained. Each agent uses a CARA utility
function and constructs the function mapping each triplet
(consisting of the market price, the estimation mean, and
the estimation variance) to the optimal number of units to
trade. The sum of all such functions from all agents results
at time 𝑡 = 0 in aggregate market demand and supply
functions; the price of the asset is chosen to clear the market
(we prove in particular that such a price exists and is unique).
This price can be different from the real value 𝑉 and in
practice it will. The agents close their position at final time
𝑡 = 𝑇. This paper investigates the following questions:
existence of an equilibrium, continuity of supply and demand

functions, and interpretation of the equilibrium price as the
value maximizing the liquidity (trading volume).

The paper is organized as follows. The rest of this section
presents a literature overview. In Section 2 the model is
explained and the fundamental Assumption 3 is introduced.
In Sections 3 and 3.1, we prove the existence of an equilibrium
and important properties of the liquidity (here defined as
the transaction volume); in particular we prove that the
equilibrium price maximizes the trading volume. We apply
our results to a Grossmann-Stiglitz framework in Section 4.
Finally, in Section 5 we show that the liquidity is inversely
correlated with the marginal price of information.

1.1. Literature Overview. Themodel has two important ingre-
dients:

(i) the existence of heterogeneous beliefs (or expecta-
tions) biases among a continuum of agents;

(ii) the fact that the information is costly (the literature
refers to “information acquisition” cost).

There are many models that explain how disagreements
between agent estimations generate investment decisions
and trading volume. The importance of the heterogeneity of
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opinions on the future value of a financial instrument and its
use in speculation has been recognized as early as Keynes (see
[1]) who invokes the “beauty contest” metaphor to explain
how speculators infer the future (consensus) price.

A model of speculative trading in a large economy
with a continuum of agents with heterogeneous beliefs was
presented in [2, 3] (see also the references within). They
demonstrate the existence of price amplification effects and
show that the equilibrium prices can be different from the
rational expectation equilibrium price. It is also shown that
trading volume is positively related to the directions of price
changes and they explain the recurrent presence of diverse
beliefs. We also refer to [4] and references within for a
survey on how heterogeneous beliefs among agents generate
speculation and trading.

The difference-of-opinion approach (see [5, 6]) does not
consider “noise agents” but on the contrary obtains diverse
posterior beliefs from the differences in the way agents inter-
pret common information.They focus on the implications of
the dispersion in beliefs on the price level or direction. Yet
another different method explains diverse posterior beliefs
by relaxing the assumption of a common prior distribution
(see [7]); the authors also model the learning process which
enables a convergence towards a common estimation when
more information is available. Such a frameworkwas invoked
for modeling asset pricing during initial public offerings, but
not for other speculative circumstances. Finally, Pagano [8]
analyze the implications of low liquidity in a market and
propose appropriate incentive schemes to shift the market
to an equilibrium characterized by a higher number of
transactions.

An important advance has been to recognize that the
dynamics of the information gathering is important; it was
thus established how the presence of private information
and noise (liquidity) agents interact with market price and
volume (see, e.g., [9–11], for recent related endeavors). More
specifically it was recognized (the so called “Grossman-
Stiglitz paradox”) that it is not always optimal for the agents to
obtain all the information on a particular asset. This remark
is of importance in our paper in the following because, as
explained in Section 2, ourmodel allows each agent to choose
his level of precision related to the estimation of the true
value of the traded asset. In the classical paper of [12] and
in subsequent related works [13–18] a framework is proposed
where the information is costly and agents can pay more
to lower their uncertainty on the future value of the risky
asset. Verrechia derives a closed form solutionwhich requires
some particular assumptions. These include the convexity of
the cost function with respect to the precision (the precision
being the inverse of the estimate’s variance). On the contrary
our cost function is here only lower semicontinuous. Our
approach also differs in a more fundamental way in that
we suppose that heterogeneity of estimations is given but
arbitrary, that is, not centered around the correct price.
Moreover, theVerrecchiamodel relies on the heterogeneity of
risk tolerances in theCARAutility functionwhile in ourwork
the price formation mechanism does not require such an
assumption, the heterogeneity in estimations being enough.
Also, in this model, the endowments of the agents do not

play any role and in particular are not required to obtain an
equilibrium. The paper extends a previous work [19] where
stronger technical assumptions were invoked.

2. The Model

We consider a two-period model, 𝑡 = 0 and 𝑡 = 𝑇, in which a
risky security of value𝑉 is traded.The value𝑉 is unknown to
the agents and each participant 𝑥 in the market constructs an
estimate 𝐴𝑥 for 𝑉 at 𝑡 = 0, 𝐴𝑥 being a random variable. For
simplicity, we suppose that 𝐴𝑥 has a normal distribution and
that𝐴𝑥1 and𝐴

𝑥
2 are independent if 𝑥

1
and 𝑥
2
are two distinct

agents (this independence assumption is motivated by the
existence of an individual bias for each agent as explained
below). Also, we assume that the mean and the variance of
𝐴
𝑥 are, respectively, given by 𝐴

𝑥 and (𝜎
𝑥

)
2, both mean and

variance being known to the agent 𝑥. As in [12] we work with
the precision 𝐵

𝑥

= 1/(𝜎
𝑥

)
2 instead of the variance (𝜎𝑥)2.

Many estimation procedures can output results in the
formof a normal variable with knownmean and variance, the
most known example being a Kalman-Bucy filter; see [20] for
details.

Note that we do not model here the riskless security, but
everythingworks as if the numeraire was the riskless security;
from a technical point of view this allows setting the interest
rate to zero.

An important remark is that each agent has his own bias
attached to the estimate𝐴𝑥 because he has his own procedure
to interpret the available information. It may be due to
personal optimism or pessimism (e.g., the agent is a “bull”
or “bear”) or may be correlated with some exogenous factors,
such as overall economic outlooks, commodities evolution,
and geopolitical factors, which each agent interprets with
a specific systematic bias. See also the cited references for
additional discussion on how agents interpret the informa-
tion they obtain. We assume that the bias 𝐴𝑥 − 𝑉 of agent 𝑥
does not depend on the precision 𝐵

𝑥 to be attained and only
depends on the agent; the value 𝐴𝑥 associated to an agent is
known only by him. The agent does not influence 𝐴𝑥 in any
way during the process of forecasting; his forecasting process
is not influenced by other agents’ decisions; that is, there is no
collective learning in this model. Hence, two different agents
𝑥
1
and 𝑥
2
have generically different biases𝐴𝑥1−𝑉 and𝐴

𝑥
2−𝑉

and thus different estimation averages 𝐴
𝑥
1 and 𝐴

𝑥
2 . This is

not a collateral property of the model. It is instead the mere
reason for which the agents trade. They trade because they
have different (heterogeneous) expectations on the final value
of the security.

We define 𝜌(𝐴) to be the distribution of 𝐴
𝑥 among

the agents; neither the law of the distribution 𝜌(𝐴) nor
any moments or statistics is known by the agents. We also
introduce the expected value with respect to 𝜌(⋅), which is
denoted by E𝐴; see also [21] for related works on empirical
estimation of such a distribution 𝜌. We do not assume the
law of 𝜌 to be normal or have particular properties (except
technical Assumption 9).

Froma theoretical point of view, it is interesting to explore
the case when E𝐴(𝐴) = 𝑉. This means that the average
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estimate is 𝑉, so that the agents are neither overpricing
nor underpricing the security with respect to its (unknown)
value. However, we will see that this does not necessarily
indicate that the market price is 𝑉.

The only parameter the agent can control is the accuracy
of the result, that is, the precision𝐵

𝑥. However, this has a cost:
the agent has to pay 𝑓(𝐵

𝑥

) to obtain the precision 𝐵
𝑥. The

precision cost function 𝑓 : R
+

→ R
+
is defined on positive

numbers but if needed we set by convention 𝑓(𝑏) = ∞ for
any 𝑏 < 0. See also [22] for an example involving a power
function and [18] for a structural model to motivate such a
function.

Such a model is relevant in the case of high expense for
information sources, for instance, news broadcasting fees.
The expense also involves the reward of research personnel
or the need for more accurate computer simulations.

Based on his estimations the agent 𝑥 decides at time 𝑡 = 0

to trade a quantity of 𝜃𝑥 security units. When 𝜃
𝑥 is positive,

the agent is long, so he buys the security, whereas when 𝜃
𝑥 is

negative, he is short; he sells it.
Hence, each agent is characterized by three parameters:

his mean estimate 𝐴
𝑥, the precision 𝐵

𝑥 of the estimate (that
comes at a cost 𝑓(𝐵𝑥)), and the quantity of traded units, 𝜃𝑥.

The agents buy or sell the security at time 𝑡 = 0 by
formulating demand and supply functions depending on the
price. The market price at time 𝑡 = 0 is chosen to clear the
aggregate total demand/supply.

Remark 1. The price that clears the market is also called
market equilibrium price. Note however that the uniqueness
of the equilibrium is, at this stage, not proved.

We set the investment horizon of all agents to be the
final time 𝑡 = 𝑇 which is the time when each agent
liquidates his initial position. Each agent supposes that this
final transaction takes place at a price in agreement with his
initial estimation.

In order to describe the model for the market price, we
introduce for any price 𝑝 > 0 the basic notions of total supply
𝑆(𝑝) and total demand𝐷(𝑝) defined as

𝐷(𝑝) = E
𝐴

(𝜃
+
) , 𝑆 (𝑝) = E

𝐴

(𝜃
−
) , (1)

where for any real number 𝑎 we define 𝑎
+

= max{𝑎, 0},
𝑎
−
= max{−𝑎, 0}.
A price 𝑝

∗ such that 𝑆(𝑝∗) = 𝐷(𝑝
∗

) is said to clear the
market. From the definition of 𝐷(⋅) and 𝑆(⋅) in (1) this is
equivalent to saying that E𝐴(𝜃) = 0; that is, at the price 𝑝

∗,
the overall (signed) demand is zero. Note that such a price
may not exist or may not be unique. Hence, one of the goals
of the paper is to prove existence and uniqueness of 𝑝∗.

The transaction volume at some price 𝑝 is the number of
units that can be exchanged at that price and is defined as
follows:

TV (𝑝) = min {𝑆 (𝑝) , 𝐷 (𝑝)} . (2)

A price 𝑝
∗ for which TV(⋅) reaches its maximum is of

particular interest because it maximizes the total number of

asset units being exchanged. Note that such a price may not
exist and may also be nonunique.

Let us recall the following result (see [19] for the proof).

Theorem 2. Suppose that functions 𝑆(𝑝),𝐷(𝑝) are continuous
and positive, 𝑆(0) = 0, and lim

𝑝→∞
𝐷(𝑝) = 0. Consider the

following.

(A) If 𝑆(𝑝) is increasing, not identically zero, and 𝐷(𝑝) is
decreasing, then there exists at least one price 𝑝∗ < ∞

such that 𝑆(𝑝∗) = 𝐷(𝑝
∗

); moreover TV(𝑝∗) ≥ 𝑇𝑉(𝑝)

for all 𝑝 ≥ 0.
(B) In addition to previous assumptions suppose that 𝑆(𝑝)

is strictly increasing and lim
𝑝→∞

𝑆(𝑝) > 0, whereas
𝐷(𝑝) is strictly decreasing and such that 𝐷(0) > 0.
Then the following statements are true.

(1) There exists a unique 𝑝
∗

1
such that 𝑆(𝑝

∗

1
) =

𝐷(𝑝
∗

1
).

(2) There exists a unique 𝑝
∗

2
such that TV(𝑝∗

2
) ≥

TV(𝑝) for all 𝑝 ≥ 0.
(3) Moreover 𝑝∗

1
= 𝑝
∗

2
.

Recall that 𝐹 : R
+

→ R
+
∪ {+∞} is said to be lower

semicontinuous (denoted by “l.s.c.”) if for any 𝑥 ∈ R
+

𝐹 (𝑥) ≤ lim inf
𝑦→𝑥

𝐹 (𝑦) . (3)

A function 𝐺 such that −𝐺 is l.s.c. is said to be upper
semicontinuous (denoted by “u.s.c.”).

For any function 𝜁 : R
+

→ R
+
∪ {+∞} we define

𝜁 (𝑥) = lim inf
𝑦→𝑥

𝜁 (𝑦) , 𝜁
󸀠

(𝑥) = lim inf
𝑦→𝑥

𝜁 (𝑦) − 𝜁 (𝑥)

𝑦 − 𝑥
.

(4)

In particular 𝑓󸀠(0) = lim inf
𝑦→0

((𝑓(𝑦) − 𝑓(0))/𝑦). Denote
by (𝑓󸀠(0))

+

its positive part.
Let us introduce an important assumption of this paper.

Assumption 3. We say that a function 𝑓 : R
+

→ R
+
∪

{+∞} satisfies Assumption 3 if 𝑓(0) < ∞, 𝑓 is lower
semicontinuous, and there exists 𝛽 > 0 such that

lim inf
𝑥→∞

𝑓 (𝑥)

𝑥
1+𝛽

> 0. (5)

Remark 4. The quantity 𝑓(0) < ∞ represents the residual
cost, when precision approaches zero, to enter themarket. It is
not related to the precision (because there is none in the limit)
but to the fixed costs to trade on the market (independent
of the quantity). A market with infinite fixed costs is not
realistic.

The assumption 𝑓(0) < ∞ implies, by lower semiconti-
nuity, that 𝑓(0) < ∞ and is realistic in that it demands that
the price of zero precision be finite.

In order to model the choices of the agents, we consider
that the agents maximize a CARA-type expected utility
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function (see [23]); that is, if the output is the randomvariable
𝑋, they maximize E(−𝑒−𝜆𝑋). Note that if 𝑋 is a normal
random variable with mean E(𝑋) and variance var(𝑋), then
maximizing E(−𝑒−𝜆𝑋) is equivalent to maximizing the mean-
variance utility function E(𝑋) − ((𝜆/2)var(𝑋)). We refer to
(6) for the treatment of degenerate normal variables with
infinite variance. The parameter 𝜆 ∈ R

+
is called the risk

aversion coefficient. Note that all agents have here the same
utility function; see for instance [24, 25] who argue that
differences in preferences are not a major factor in explaining
the magnitude of trade in speculative markets.

Of course, the expectedwealth of the agent at time 𝑡 = 𝑇 is
a function of 𝜃𝑥 and 𝐵

𝑥. It is computed under the assumption
that each agent enters the transaction (buys or sells) at time
𝑡 = 0 at the market price and exits the transaction (sells or
buys) at time 𝑡 = 𝑇 at a price coherent with his estimation;
that is, we condition on the available information at time 𝑡 =
0. Thus, for a given price 𝑝, which is not necessarily equal to
the market equilibrium priceP, the average expected wealth
at time 𝑡 = 𝑇 of the agent 𝑥 denoted by 𝑢

𝑥 is given by 𝑢
𝑥

=

𝜃
𝑥

(𝐴
𝑥

− 𝑝) − 𝑓(𝐵
𝑥

). The variance of the wealth, denoted by
V𝑥, is given by V𝑥 = (𝜃

𝑥

)
2

/𝐵
𝑥.

Thus, for a given price 𝑝 (not necessarily themarket equi-
librium price P) the fact that agent 𝑥 optimizes his CARA
utility function is equivalent to saying that he optimizes with
respect to 𝜃

𝑥 and 𝐵
𝑥 his mean-variance utility:

𝐽(𝜃
𝑥

, 𝐵
𝑥

)=

{{{{

{{{{

{

𝜃
𝑥

(𝐴
𝑥

− 𝑝)− 𝑓(𝐵
𝑥

)−
𝜆

2

(𝜃
𝑥

)
2

𝐵
𝑥

if 𝐵𝑥, 𝜃
𝑥

> 0

−∞ if 𝐵𝑥=0, 𝜃
𝑥

> 0

−𝑓 (0) if 𝐵𝑥 = 𝜃
𝑥

= 0.

(6)

3. Existence of the Transaction Volume

Each agent 𝑥 is characterized by his own bias 𝐴𝑥. The agents
consider the market price as being fixed, which means they
cannot influence it directly. They do not know any statistics
on 𝜌 so the market price is not directly informative, but the
acquired information is. Therefore, their strategy depend on
two values: the bias 𝐴 and the market price 𝑝.

Under Assumption 3, the agent chooses the optimal pair
of precision 𝐵opt(𝑝, 𝐴; 𝑓) and demand/supply 𝜃opt(𝑝, 𝐴; 𝑓),
that is, the value of the pair maximizing the following
expression:

J (𝑦, 𝑧) =

{{{

{{{

{

𝑦 (𝐴 − 𝑝) − 𝑓 (𝑧) −
𝜆

2

𝑦
2

𝑧
if 𝑦, 𝑧 > 0

−∞ if 𝑧 = 0, 𝑦 > 0

−𝑓 (0) if 𝑦 = 𝑧 = 0,

(7)

so that

J (𝜃opt (𝑝, 𝐴; 𝑓) , 𝐵opt (𝑝, 𝐴; 𝑓)) ≥ J (𝑦, 𝑧) , ∀𝑦, 𝑧 ≥ 0.

(8)

Let 𝑔
𝑝,𝐴;𝑓

(𝑋) = ((𝑝 − 𝐴)
2

/2𝜆)𝑋 − 𝑓(𝑋) and let 𝛼

be the function defined by 𝛼(𝑝, 𝐴) = (𝑝 − 𝐴)
2

/2𝜆. To

simplify the notations we sometimes write only 𝑔
𝑝,𝐴

, 𝑔
𝑝
,

or 𝑔 instead of 𝑔
𝑝,𝐴;𝑓

and 𝜃opt(𝑝, 𝐴)/𝐵opt(𝑝, 𝐴) instead of
𝜃opt(𝑝, 𝐴; 𝑓)/𝐵opt(𝑝, 𝐴; 𝑓); likewise 𝛼 stands for 𝛼(𝑝, 𝐴).

Lemma 5. Under Assumption 3, for any 𝑝 and 𝐴, there exists
a pair (𝐵opt(𝑝, 𝐴), 𝜃opt(𝑝, 𝐴)) such that (8) is satisfied.

Proof. Since 𝑓 satisfies Assumption 3, there exists 𝑥
1
> 0 and

some positive constant 𝐶
1
such that 𝑓(𝑥) ≥ 𝐶

1
𝑥
1+𝛽 for all

𝑥 ≥ 𝑥
1
. In particular for

𝑥 > max{𝑥
1
, (

2𝛼

𝐶
1

)

1/𝛽

, (
2𝑓 (0)

𝐶
1

)

1/(1+𝛽)

} , (9)

we have 𝑔(𝑥) < −𝑓(0) = 𝑔(0). Since 𝑓 is l.s.c. then 𝑔 is u.s.c.;
it follows that 𝑔 attains its maximum on R

+
in the interval

[0,max{𝑥
1
, (2𝛼/𝐶

1
)
1/𝛽

, (2𝑓(0)/𝐶
1
)
1/(1+𝛽)

}]. We set 𝐵opt(𝑝, 𝐴)

to be one such maximum (it may not be unique) and set
𝜃opt(𝑝, 𝐴) = (𝐴 − 𝑝)𝐵opt(𝑝, 𝐴)/𝜆.

Note that 𝐵opt(𝑝, 𝐴) = 0 implies 𝜃opt(𝑝, 𝐴) = 0; thus

∀𝑦 > 0 : J (𝜃opt (𝑝, 𝐴) , 𝐵opt (𝑝, 𝐴)) > −∞ = J (𝑦, 0) .

(10)

When 𝑦 = 𝑧 = 0, one has

J (0, 0) = 𝑔 (0) ≤ 𝑔 (𝐵opt (𝑝, 𝐴))

= J (𝜃opt (𝑝, 𝐴) , 𝐵opt (𝑝, 𝐴)) .

(11)

Let 𝑦, 𝑧 > 0. Since J is a parabola with negative leading
coefficient with respect to its first argument, it follows that

J (𝑦, 𝑧) ≤ J(
(𝐴 − 𝑝) 𝑧

𝜆
, 𝑧) = 𝑔 (𝑧) ≤ 𝑔 (𝐵opt (𝑝, 𝐴))

= J (𝜃opt (𝑝, 𝐴) , 𝐵opt (𝑝, 𝐴)) .

(12)

Remark 6. Note that the formula 𝜃opt(𝑝, 𝐴) = (𝐴 −

𝑝)𝐵opt(𝑝, 𝐴)/𝜆 is completely compatible with previousworks,
see [26] p575, although here we have no assumption on
budget constraints and the risk-less interest rate is set to zero.

In order to prove the existence of an equilibrium we need
the following auxiliary results (Lemmas 7–11).

Lemma 7. Under Assumption 3, let (𝑝
1
, 𝐴
1
), (𝑝
2
, 𝐴
2
) be such

that 𝛼
1

≤ 𝛼
2
, where 𝛼

𝑘
= 𝛼(𝑝

𝑘
, 𝐴
𝑘
). Then 𝐵opt(𝑝1, 𝐴1) ≤

𝐵opt(𝑝2, 𝐴2). One says that 𝐵opt(𝑝, 𝐴) is increasing with respect
to 𝛼. In particular, for fixed 𝐴, one has the following:

(i) 𝐵opt(𝑝, 𝐴) is increasing with respect to 𝑝 on the interval
]𝐴,∞[;

(ii) 𝐵opt(𝑝, 𝐴) is decreasing with respect to 𝑝 on the interval
]0, 𝐴[.
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Proof. Let 𝐵
𝑘

= 𝐵opt(𝑝𝑘, 𝐴𝑘), for 𝑘 = 1, 2. Recall that 𝐵
𝑘

optimizes 𝛼
𝑘
𝐵 − 𝑓(𝐵) with respect to 𝐵. Then

𝛼
1
𝐵
1
− 𝑓 (𝐵

1
) ≥ 𝛼
1
𝐵
2
− 𝑓 (𝐵

2
)

= 𝛼
2
𝐵
2
− 𝑓 (𝐵

2
) + (𝛼

1
− 𝛼
2
) 𝐵
2

≥ 𝛼
2
𝐵
1
− 𝑓 (𝐵

1
) + (𝛼

1
− 𝛼
2
) 𝐵
2
.

(13)

Thus,𝛼
1
𝐵
1
≥ 𝛼
2
𝐵
1
+(𝛼
1
−𝛼
2
)𝐵
2
and hence (𝛼

1
−𝛼
2
)(𝐵
1
−𝐵
2
) ≥

0, which gives the conclusion.

Lemma 8. Under Assumption 3, let 𝛼
𝑛
= 𝛼(𝑝

𝑛
, 𝐴
𝑛
), 𝑛 ≥ 0, be

a sequence such that 𝛼
𝑛
→
𝑛→+∞

𝛼
0
but 𝐵opt(𝑝𝑛, 𝐴𝑛) does not

converge to𝐵opt(𝑝0, 𝐴0).The set of such𝛼
0
is atmost countable.

In particular, if 𝑝 is fixed, then the set of𝐴 such that 𝐵opt(𝑝, 𝐴)

is discontinuous with respect to 𝐴 is countable. An analogous
result holds if 𝐴 is fixed.

Proof. Let 𝐵
𝑛

= 𝐵opt(𝑝𝑛, 𝐴𝑛), for 𝑛 ≥ 0. Without loss of
generality, we only investigate the case when the sequence 𝛼

𝑛

converges decreasingly to 𝛼
0
. Then, we have 𝐵

𝑛
≥ 𝐵
0
, ∀𝑛 ≥ 0.

Since 𝐵
𝑛
does not converge to 𝐵

0
, let 𝜂 = (lim

𝑛→+∞
𝐵
𝑛
) −

𝐵
0
. Note that 𝜂 > 0 and 𝐵

𝑛
≥ 𝐵
0
+ 𝜂, ∀𝑛 ≥ 0. Also recall that

𝛼
𝑛
𝐵
𝑛
− 𝑓 (𝐵

𝑛
) ≥ 𝛼
𝑛
𝐵 − 𝑓 (𝐵) , ∀𝐵. (14)

Yet, since −𝑓 is u.s.c.,

𝛼
0
(𝐵
0
+ 𝜂) − 𝑓 (𝐵

0
+ 𝜂) ≥ lim sup

𝑛→∞

(𝛼
𝑛
𝐵
𝑛
− 𝑓 (𝐵

𝑛
)) , (15)

and for fixed 𝐵, 𝛼
𝑛
𝐵 − 𝑓(𝐵) converges to 𝛼

0
𝐵 − 𝑓(𝐵). In the

limit when 𝑛 → ∞, it holds that

𝛼
0
(𝐵
0
+ 𝜂) − 𝑓 (𝐵

0
+ 𝜂) ≥ 𝛼

0
𝐵 − 𝑓 (𝐵) , ∀𝐵. (16)

This implies that 𝐵
0
+ 𝜂 is also a maximum for 𝛼

0
𝐵 −

𝑓(𝐵). From this we deduce that 𝑔
𝛼
0

has at least two distinct
maximums, 𝐵

0
and 𝐵

0
+ 𝜂.

Let 𝛼 be such that 𝑔
𝛼
has at least two distinct minimums

𝑥
1

𝛼
and 𝑥

2

𝛼
with 𝑥

1

𝛼
< 𝑥
2

𝛼
; we associate to 𝛼 a rational number

𝑞
𝛼
such that 𝑞

𝛼
∈ ]𝑥
1

𝛼
, 𝑥
2

𝛼
[. Take 𝛼 and 𝛼̃ such that 𝛼 ̸= 𝛼̃; to

fix notations suppose 𝛼 < 𝛼̃. Then by the previous result
𝑥
2

𝛼
≤ 𝑥
1

𝛼̃
; moreover 𝑞

𝛼
< 𝑥
2

𝛼
≤ 𝑥
1

𝛼̃
< 𝑞
𝛼̃
; that is, 𝑞

𝛼
̸= 𝑞
𝛼̃
. Thus

the set of 𝛼 such that 𝑔
𝛼
has at least two distinct minimums

is of cardinality smaller than the cardinality of Q, that is, at
most countable. Since continuity can only fail when 𝑔

𝛼
has

nonunique maximum, the conclusion follows.

Assumption 9. We say that 𝜌(𝐴) satisfies Assumption 9 if 𝜌 is
absolutely continuous with respect to the Lebesgue measure
and

∫

∞

0

𝐴
1+2/𝛽

𝜌 (𝐴) 𝑑𝐴 < ∞. (17)

Lemma 10. Let 𝑆(𝑓, 𝑝) and𝐷(𝑓, 𝑝) (or in short notation 𝑆(𝑝)

and 𝐷(𝑝) when function 𝑓 is implicit) be defined by

𝑆 (𝑓, 𝑝) =
1

2𝜆
∫

∞

0

(𝐴 − 𝑝)
−
𝐵opt (𝑝, 𝐴; 𝑓) 𝜌 (𝐴) 𝑑𝐴,

𝐷 (𝑓, 𝑝) =
1

2𝜆
∫

∞

0

(𝐴 − 𝑝)
+
𝐵opt (𝑝, 𝐴; 𝑓) 𝜌 (𝐴) 𝑑𝐴.

(18)

ThenunderAssumptions 3 and 9 𝑆(𝑝) and𝐷(𝑝) are finite, con-
tinuous, and monotonic. Moreover 𝑆(0) = 0 = lim

𝑝→∞
𝐷(𝑝).

Proof. To prove that 𝑆(𝑝) and 𝐷(𝑝) are finite we recall
that the maximum of 𝑔

𝑝,𝐴
is attained in the interval

[0,max{𝑥
1
,(2𝛼/𝐶

1
)
1/𝛽

, (2𝑓(0)/𝐶
1
)
1/(1+𝛽)

}]; that is, 𝐵opt(𝑝, 𝐴)

≤ max{𝑥
1
, (2𝛼/𝐶

1
)
1/𝛽

, (2𝑓(0)/𝐶
1
)
1/(1+𝛽)

}. Recalling that 𝛼 =

(𝐴 − 𝑝)
2

/2𝜆 it follows that both integrals are bounded (mod-
ulo some constant) by ∫

∞

0

𝐴
1+2/𝛽

𝜌(𝐴)𝑑𝐴; that is, 𝑆(𝑝) and
𝐷(𝑝) are finite for all 𝑝 ≥ 0.

Let𝑝
𝑛
be a sequence increasingly converging to𝑝. For any

𝑋, the set of𝐴 such that𝐵opt(𝑋, 𝐴) is discontinuous is at most
countable. Denote it byB

𝑋
. LetB = B

𝑝
∪ (⋃
+∞

𝑛=1
B
𝑝
𝑛

).B is
also clearly countable and thus 𝜌(B) = 0.

Let 𝜁
𝑛
(𝐴) = (𝐴−𝑝

𝑛
)
−
𝐵opt(𝑝𝑛, 𝐴) and 𝜁(𝐴) =

(𝐴−𝑝)
−
𝐵opt(𝑝, 𝐴). Then lim

𝑛→+∞

𝜁
𝑛
(𝐴) = 𝜁(𝐴), for all

𝐴 with the possible exception of the null set B. Also, the
sequence 𝜁

𝑛
is increasing.

Then from the Beppo-Levi theorem, the following holds:

lim
𝑛→+∞

𝑆 (𝑝
𝑛
)= lim
𝑛→+∞

1

2𝜆
∫

+∞

0

(𝐴 − 𝑝
𝑛
)
−
𝐵opt (𝑝𝑛, 𝐴) 𝜌 (𝐴) 𝑑𝐴

=
1

2𝜆
∫

+∞

0

(𝐴 − 𝑝)
−
𝐵opt (𝑝, 𝐴) 𝜌 (𝐴) 𝑑𝐴 = 𝑆 (𝑝) .

(19)

This proves sequential continuity of 𝑆(𝑝) and thus its conti-
nuity.Themonotonicity is a consequence of themonotonicity
of 𝐵opt(𝑝, 𝐴). This result also holds for the demand 𝐷(𝑝),
recalling that −𝐷(𝑝) is increasing and lower-bounded.

The property 𝑆(0) = 0 is trivial. To prove lim
𝑝→∞

𝐷(𝑝) =

0 it is sufficient to use the above upper bound for 𝐵opt(𝑝, 𝐴)

and lim
𝑝→∞

∫
∞

𝑝

𝐴
1+2/𝛽

𝜌(𝐴)𝑑𝐴 = 0.

Recall that 𝑆(𝑝) is increasing on [0, +∞[ but in order to
use Theorem 2 we need to prove its strict monotonicity.

Lemma 11. Under Assumptions 3 and 9 and supposing
(𝑓
󸀠

(0))
+

< ∞ the following hold:

(1) 𝑆(𝑝) is strictly increasing on ]√2𝜆(𝑓
󸀠
(0))
+

+

inf(supp(𝜌)), +∞[;
(2) 𝑆(0) = 0;
(3) lim

𝑝→+∞
𝑆(𝑝) > 0;

(4) 𝐷(𝑝) is strictly decreasing on [0, sup(supp(𝜌)) −

√2𝜆(𝑓
󸀠
(0))
+

];

(5) if sup(supp(𝜌)) > √2𝜆(𝑓
󸀠
(0))
+

, then𝐷(0) > 0;

(6) lim
𝑝→+∞

𝐷(𝑝) = 0.

Remark 12. The assumption (𝑓
󸀠

(0))
+

< ∞ will be relaxed in
Section 3.1, cf. Theorem 18.
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Proof. Note that (𝑓󸀠(0))
+

< ∞ implies in particular con-
tinuity of 𝑓(𝐵) at 𝐵 = 0. Letting 𝑝 and 𝑝

󸀠 be such that
𝑝 > 𝑝

󸀠

> 𝐴 ≥ 0,

𝑆 (𝑝) − 𝑆 (𝑝
󸀠

) =
1

2𝜆
∫

∞

0

[(𝐴 − 𝑝)
−
𝐵opt (𝑝, 𝐴)

−(𝐴 − 𝑝
󸀠

)
−

𝐵opt (𝑝
󸀠

, 𝐴)] 𝜌 (𝐴) 𝑑𝐴

=
1

2𝜆
∫

∞

0

[(𝐴 − 𝑝)
−
𝐵opt (𝑝, 𝐴)

−(𝐴 − 𝑝
󸀠

)
−

𝐵opt (𝑝, 𝐴)] 𝜌 (𝐴) 𝑑𝐴

+
1

2𝜆
∫

∞

0

[(𝐴 − 𝑝
󸀠

)
−

𝐵opt (𝑝, 𝐴)

− (𝐴 − 𝑝
󸀠

)
−

𝐵opt (𝑝
󸀠

, 𝐴)] 𝜌 (𝐴) 𝑑𝐴.

(20)

Since 𝐵opt is increasing if 𝑝 > 𝐴,

1

2𝜆
∫

∞

0

(𝐴 − 𝑝
󸀠

)
−

(𝐵opt (𝑝, 𝐴) − 𝐵opt (𝑝
󸀠

, 𝐴)) 𝜌 (𝐴) 𝑑𝐴 ≥ 0.

(21)

Hence,

𝑆 (𝑝) − 𝑆 (𝑝
󸀠

)

≥
1

2𝜆
∫

∞

0

((𝐴 − 𝑝)
−
− (𝐴 − 𝑝

󸀠

)
−

) 𝐵opt (𝑝, 𝐴) 𝜌 (𝐴) 𝑑𝐴.

(22)

Note that𝐴 < 𝑝
󸀠

< 𝑝 implies that ((𝐴 − 𝑝)
−
−(𝐴 − 𝑝

󸀠

)
−
) > 0.

So, in order to prove the strict inequality in the estimation
above, it is sufficient to prove that 𝐵opt(𝑝, 𝐴) > 0 with 𝐴 in
the support of 𝜌. Yet

𝐵opt (𝑝, 𝐴) = argmax
𝐵

𝑔
𝑝
(𝐵) = argmax

𝐵

(𝛼𝐵 − 𝑓 (𝐵)) . (23)

Therefore we only need to prove that there exists 𝐵 such that
𝛼𝐵 − 𝑓(𝐵) > 0 with 𝐴 in the support of 𝜌. A sufficient
condition is that the upper limit of derivative of 𝛼𝐵 − 𝑓(𝐵) at
𝐵 = 0 be strictly positive. This means 𝛼 − (𝑓

󸀠

(0))
+

> 0 which
is equivalent to (𝑝 − 𝐴)

2

/2𝜆 > (𝑓
󸀠

(0))
+

. Recalling that𝑝 > 𝐴,

the latter condition can be rewritten as 𝑝 − 𝐴 > √2𝜆(𝑓
󸀠
(0))
+

or else 𝑝 > 𝐴 + √2𝜆(𝑓
󸀠
(0))
+

, for at least one 𝐴 in the
support of 𝜌. Therefore 𝑆(𝑝) − 𝑆(𝑝

󸀠

) > 0 as soon as 𝑝 is in
]√2𝜆(𝑓

󸀠
(0))
+

+ inf(supp(𝜌)), +∞[. This implies strict mono-

tonicity for 𝑆(𝑝) on ]√2𝜆(𝑓
󸀠
(0))
+

+ inf(supp(𝜌)), +∞[ and

hence also on the interval [√2𝜆(𝑓
󸀠
(0))
+

+ inf(supp(𝜌)), +∞[.
We have already seen that 𝑆(0) = 0. Moreover

since the supply is strictly increasing on [√2𝜆(𝑓
󸀠
(0))
+

+

inf(supp(𝜌)), +∞[ and increasing on [0, +∞[, it holds that
lim
𝑝→+∞

𝑆(𝑝) > 0.

For the monotonicity of the demand, let 𝑝 and 𝑝
󸀠 be such

that 𝐴 > 𝑝 > 𝑝
󸀠. Then

𝐷(𝑝) − 𝐷 (𝑝
󸀠

) =
1

2𝜆
∫

∞

0

[(𝐴 − 𝑝)
+
𝐵opt (𝑝, 𝐴)

−(𝐴 − 𝑝
󸀠

)
+

𝐵opt (𝑝
󸀠

, 𝐴)] 𝜌 (𝐴) 𝑑𝐴

=
1

2𝜆
∫

∞

0

[(𝐴 − 𝑝)
+
𝐵opt (𝑝, 𝐴)

− (𝐴 − 𝑝
󸀠

)
+

𝐵opt (𝑝, 𝐴)] 𝜌 (𝐴) 𝑑𝐴

+
1

2𝜆
∫

∞

0

[(𝐴 − 𝑝
󸀠

)
+

𝐵opt (𝑝, 𝐴)

−(𝐴 − 𝑝
󸀠

)
+

𝐵opt (𝑝
󸀠

, 𝐴)]𝜌 (𝐴) 𝑑𝐴.

(24)

Since 𝐵opt is decreasing for 𝐴 > 𝑝 > 𝑝
󸀠, we have

1

2𝜆
∫

∞

0

(𝐴 − 𝑝
󸀠

)
+

(𝐵opt (𝑝, 𝐴) − 𝐵opt (𝑝
󸀠

, 𝐴)) 𝜌 (𝐴) 𝑑𝐴 ≤ 0.

(25)

Hence,

𝐷(𝑝) − 𝐷 (𝑝
󸀠

) ≤
1

2𝜆
∫

∞

0

((𝐴 − 𝑝)
+
− (𝐴 − 𝑝

󸀠

)
+

)

× 𝐵opt (𝑝, 𝐴) 𝜌 (𝐴) 𝑑𝐴.

(26)

Note that 𝐴 > 𝑝 > 𝑝
󸀠 implies that (𝐴 − 𝑝)

+
− (𝐴 − 𝑝

󸀠

)
+
< 0.

For strict inequality it is sufficient to prove that 𝐵opt(𝑝, 𝐴) >

0. Using the same arguments as in Lemma 11, we have strict
monotonicity as soon as (𝑝 − 𝐴)

2

/2𝜆 > (𝑓
󸀠

(0))
+

.
Recalling that𝑝 < 𝐴, the latter condition can bewritten as

𝐴−𝑝 > √2𝜆(𝑓
󸀠
(0))
+

or else 𝑝 < 𝐴−√2𝜆(𝑓
󸀠
(0))
+

for at least
one𝐴 in the support of 𝜌.Therefore,𝐷(𝑝)−𝐷(𝑝

󸀠

) < 0 as soon
as 𝑝 is in ]0, sup(supp(𝜌)) − √2𝜆(𝑓

󸀠
(0))
+

[. This yields strict

monotonicity of 𝐷(𝑝) on ]0, sup(supp(𝜌)) − √2𝜆(𝑓
󸀠
(0))
+

[.

Monotonicity also holds on [0, sup(supp(𝜌)) − √2𝜆(𝑓
󸀠
(0))
+

]

by continuity.
Since sup(supp(𝜌)) − √2𝜆(𝑓

󸀠
(0))
+

> 0, we have
𝐵opt(0, 𝐴) > 0 so𝐷(0) > 0.

Hence, demand is strictly decreasing. Previously we also
proved that lim

𝑝→+∞
𝐷(𝑝) = 0.

The above results can be summarized in the following.

Theorem 13. Under Assumptions 3 and 9 and supposing
(𝑓
󸀠

(0))
+

< ∞ the following hold:

(A) there exists at least a 𝑝
∗

≥ 0 such that 𝑇𝑉(𝑝
∗

) ≥

𝑇𝑉(𝑝), ∀𝑝 ≥ 0; moreover𝐷(𝑝
∗

) = 𝑆(𝑝
∗

);

(B) suppose that diam(supp(𝜌)) > 2√2𝜆(𝑓
󸀠
(0))
+

; then

(1) the functions 𝐵opt and 𝜃opt are well defined,
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Figure 1: Illustration of Remark 14.

(2) there exists a unique 𝑝∗ > 0 such that 𝑇𝑉(𝑝
∗

) ≥

𝑇𝑉(𝑝), ∀𝑝 ≥ 0. Moreover 𝑝
∗ is the unique

solution of the equation𝐷(𝑝
∗

) = 𝑆(𝑝
∗

).

Note that the results of [19] are a special case of thisTheorem
(any convex 𝐶

2 function is l.s.c.).

Remark 14. If diam(supp(𝜌)) ≤ 2√2𝜆(𝑓
󸀠
(0))
+

, then TV ≡ 0

and 𝑆(𝑝) = 𝐷(𝑝) = 0, ∀𝑝 (see Figure 1).

Remark 15. Since we assume the distribution 𝜌 to be abso-
lutely continuous with respect to the Lebesgue measure, it
holds that diam(supp(𝜌)) > 0. Thus one can always find a
critical value 𝜆∗ defined as

𝜆
∗

=

{{{

{{{

{

diam (supp (𝜌))2

8(𝑓
󸀠
(0))
+

if (𝑓󸀠(0))
+

> 0,

0 if (𝑓󸀠(0))
+

= 0,

(27)

such that for any 𝜆 < 𝜆
∗, the assumptions of Theorem 13 are

satisfied; that is, there exists a market price maximizing the
volume and clearing the market. On the contrary there exists
no such market price for 𝜆 ≥ 𝜆

∗. The results of [19] are a
special case of this remark. In fact, under the assumptions
given in [19], (𝑓󸀠(0))

+

= 𝑓
󸀠

(0) = 0 and thus 𝜆∗ = 0.
The critical value 𝜆∗ can be interpreted as the maximum

risk aversion allowing the market to function. If the risk
aversion becomes larger than the critical value, the market
stops and a liquidity crisis occurs. In the latter case, several
actions can be proposed to stop the liquidity crisis:

(i) lowering the perception of risk, that is, lower the 𝜆 of
the agents;

(ii) making 𝜆
∗ higher by lowering (𝑓

󸀠

(0))
+

, that is,
lower the marginal cost of information around zero
precision. In other words, eliminate any entry barriers

for new agents on that market by largely spreading
information about the real situation of the asset 𝑉;

(iii) making 𝜆
∗ higher by increasing diam(supp(𝜌)). This

means inviting to the market agents with new, dif-
ferent evaluation procedures. This can be carried
out for instance by eliminating any entry barrier for
newcomers when they have a different background
and different evaluation procedures.

3.1. Necessary and Sufficient Results for General Functions. In
this section we relax the assumption (𝑓

󸀠

(0))
+

< ∞. For any
function ℎ we denote by ℎ

∗ the Legendre-Fenchel transform
(cf. [27]) of ℎ and by ℎ

∗∗ the Legendre-Fenchel transform
applied twice, and so on. We show in this section that the
twice Legendre-Fenchel transform 𝑓

∗∗ of the cost function
𝑓 has remarkable properties; that is, we can replace 𝑓 by 𝑓∗∗
for any practical means. In particular this means that from a
technical point of view one can suppose that𝑓 is convex even
if the actual function is not.

Theorem 16. Let 𝑓 be a function satisfying Assumption 3.The
following properties hold for 𝑓∗∗:

(1) 𝑓∗∗ also satisfies Assumption 3;
(2) except for a countable set of values 𝛼(𝑝, 𝐴), one has

𝐵opt (𝑝, 𝐴; 𝑓) = 𝐵opt (𝑝, 𝐴; 𝑓
∗∗

) ,

𝜃opt (𝑝, 𝐴; 𝑓) = 𝜃opt (𝑝, 𝐴; 𝑓
∗∗

) ;

(28)

(3) as a consequence

𝑆 (𝑓, 𝑝) = 𝑆 (𝑓
∗∗

, 𝑝) , 𝐷 (𝑓, 𝑝) = 𝐷 (𝑓
∗∗

, 𝑝) , ∀𝑝 ≥ 0.

(29)

Proof. To prove point (1) we recall that 𝑓
∗∗ is a convex

function and ∀𝑏 ≥ 0, 𝑓∗∗(𝑏) ≤ 𝑓(𝑏). In particular 𝑓∗∗ is l.s.c.
and continuous in 0. Let us now check the growth condition
and take 𝛽 that satisfies Assumption 3 for 𝑓. Take also 𝐶

1
as

the constant in Lemma 5; that is,𝑓(𝑥) ≥ 𝐶
1
𝑥
1+𝛽 for all𝑥 ≥ 𝑥

1
.

Consider now the function

𝑓
1
(𝑥) = {

0 if 𝑥 ≤ 𝑥
1

𝐶
1
𝑥
1+𝛽 if 𝑥 > 𝑥

1
.

(30)

Then it is straightforward to see that

𝑓
∗∗

1
(𝑥) =

{{{

{{{

{

0 if 𝑥 ≤ 𝑥
1

𝐶
1
(1 + 𝛽) 𝑥

𝛽

2
(𝑥 − 𝑥

1
) if 𝑥

1
≤ 𝑥 ≤ 𝑥

2

𝐶
1
𝑥
1+𝛽 if 𝑥 ≥ 𝑥

2
,

(31)

where 𝑥
2

= ((1 + 𝛽)/𝛽)𝑥
1
; of course 𝑓

1
≤ 𝑓 and is

l.s.c. Then we also have the inequality 𝑓
∗∗

1
≤ 𝑓
∗∗. But

obviously lim inf
𝑥→∞

𝑓
∗∗

1
(𝑥)/𝑥
1+𝛽

= 𝐶
1

> 0. Hence
lim inf

𝑥→∞
𝑓
∗∗

(𝑥)/𝑥
1+𝛽

> 0.
To prove point (2) we recall that the cost function 𝑓 is

used only as a part of the function 𝑔
𝛼
. Let us take a point 𝛼

0

and 𝑥
0
a minimum of 𝑔

𝛼
0

. This implies

𝛼
0
𝑥
0
− 𝑓 (𝑥

0
) ≥ 𝛼
0
𝑥 − 𝑓 (𝑥) ∀𝑥 (32)
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which can also be written as

𝑓 (𝑥) ≥ 𝑓 (𝑥
0
) + 𝛼
0
(𝑥 − 𝑥

0
) . (33)

That is, as stated in [27], the function 𝑓 has a supporting
hyperplane at 𝑥

0
. Since 𝑓 has a supporting hyperplane at

𝑥
0
this implies that 𝑓(𝑥

0
) = 𝑓

∗∗

(𝑥
0
); recall that 𝑓∗∗ is the

convex hull of 𝑓, that is, the largest convex function such that
𝑓
∗∗

≤ 𝑓. Hence, recall that for any function 𝑓
∗∗∗

= 𝑓
∗,

𝛼
0
𝑥
0
− 𝑓
∗∗

(𝑥
0
) = 𝛼
0
𝑥
0
− 𝑓 (𝑥

0
) = 𝑓
∗

(𝛼
0
)

= 𝑓
∗∗∗

(𝛼
0
) = max
𝑥

𝛼
0
𝑥 − 𝑓
∗∗

(𝑥) .

(34)

We thus obtained that 𝑥
0
is a maximum of 𝛼

0
𝑥 − 𝑓
∗∗

(𝑥).
Therefore, if 𝑓 is replaced by 𝑓

∗∗, the minimization
problem involving 𝑔

𝛼
gives the same solution, except possibly

a countable set of values 𝛼 where the maximum is attained
(either for 𝑓 or 𝑓∗∗) in more than one point.

Point (3) is a mere consequence of point (2).

For all purposes of calculating aggregate supply and
demand we can thus replace 𝑓 by 𝑓

∗∗, that is, replace 𝑓 by
its convex hull. Therefore, one can work as if 𝑓 was convex.

Remark 17. This result is particularly useful when𝑓(0) ̸= 𝑓(0)

because in this situation (𝑓
󸀠

(0))
+

= ∞. Then one cannot
use the previous results that guarantee the uniqueness of the
market clearing price. When 𝑓 is replaced by 𝑓

∗∗ it can be
shown that (𝑓󸀠(0) )

+

becomes finite and the results apply for
𝑓
∗∗. However Theorem 16 allows recovering the results for

the initial function 𝑓 and obtaining the full information on
the supply and demand functions and on the market price.

We obtain the following.

Theorem 18. Suppose that Assumptions 3 and 9 are satisfied.
Then there exists at least one priceP ≥ 0 such that

𝑇𝑉(P) ≥ 𝑇𝑉 (𝑝) , ∀𝑝 ≥ 0. (35)

This price also satisfies

𝐷(P) = 𝑆 (P) . (36)

Furthermore, consider the following.

(I) If there exists 𝐵 > 0 such that 𝑓(𝐵) < 𝑓(0),
then 𝐷(𝑝; 𝑓) and 𝑆(𝑝; 𝑓) are always strictly positive
and strictly monotonic, 𝑆(0) = 0 = lim

𝑝→∞
𝐷(𝑝).

Moreover the priceP satisfying (35) is unique.
(II) Suppose now that 𝑓(𝐵) ≥ 𝑓(0), ∀𝐵 ≥ 0; then the

following hold:

(a) (alternative 1) suppose that diam(supp(𝜌)) >

2√2𝜆((𝑓
∗∗

)
󸀠

(0))
+

; then

(i) the functions 𝐵opt and 𝜃opt are well defined,

(ii) the price P satisfying (35) is unique and
𝑇𝑉(P) > 0; P is also the unique solution
of (36);

(b) (alternative 2) if on the contrary one supposes that

diam (supp (𝜌)) ≤ 2√2𝜆((𝑓
∗∗
)
󸀠

(0))
+

, (37)

then 𝑇𝑉(𝑝) = 0, ∀𝑝 ≥ 0.

Proof. We prove first point (I). If 𝑓(𝐵∗) < 𝑓(0), then for all
𝛼 ≥ 0, 𝛼𝐵∗ − 𝑓(𝐵

∗

) > 𝛼 ⋅ 0 − 𝑓(0); thus 𝐵opt(𝑝, 𝐴) > 0 for
all 𝑝, 𝐴. As a consequence we obtain 𝐷(𝑝; 𝑓) > 0 for all 𝑝
and the same for 𝑆(𝑝; 𝑓). For strict monotonicity it suffices to
use same arguments as in the proof of Lemma 11. Of course,
𝑆(0) = 0 = lim

𝑝→∞
𝐷(𝑝) due to Lemma 10.

The point (IIa) follows from the discussion above.
To prove (IIb) we need to analyze in greater detail the

values of 𝐷(𝑝) and 𝑆(𝑝). If we consider 𝐵opt(𝑝, 𝐴; 𝑓
∗∗

) > 0,
then 𝛼𝐵opt(𝑝, 𝐴; 𝑓

∗∗

) − 𝑓
∗∗

(𝐵opt(𝑝, 𝐴; 𝑓
∗∗

)) > 𝛼 ⋅ 0 − 𝑓
∗∗

(0)

(we exclude the null measure set of 𝛼 where more than one
maximum can exists; that is, we can suppose the inequality
to be strict); hence

𝑓
∗∗

(𝐵opt (𝑝, 𝐴; 𝑓
∗∗

)) < 𝑓
∗∗

(0) + 𝛼𝐵opt (𝑝, 𝐴; 𝑓
∗∗

) , (38)

or, for some 𝛼
1
< 𝛼,

𝑓
∗∗

(𝐵opt (𝑝, 𝐴; 𝑓
∗∗

)) ≤ 𝑓
∗∗

(0) + 𝛼
1
𝐵opt (𝑝, 𝐴; 𝑓

∗∗

) . (39)

Since 𝑓
∗∗ is convex we have for arbitrary 𝐵 ∈

[0, 𝐵opt(𝑝, 𝐴; 𝑓
∗∗

)], 𝑓∗∗(𝐵) ≤ 𝑓
∗∗

(0) + 𝛼
1
𝐵. But this means

((𝑓
∗∗

)
󸀠

(0))
+

≤ 𝛼
1
< 𝛼; that is, |𝐴 − 𝑝| > √2𝜆((𝑓

∗∗
)
󸀠

(0))
+

.
If𝐷(𝑝) is always zero, the conclusion is reached. Suppose

now 𝑝 exists such that 𝐷(𝑝) > 0; then at least some 𝐴 in
the support of 𝜌 exists such that 𝐵opt(𝑝, 𝐴; 𝑓

∗∗

) > 0 and
(𝐴 − 𝑝)

+
> 0; the three conditions imply

sup (supp (𝜌)) − √2𝜆((𝑓
∗∗
)
󸀠

(0))
+

> 0. (40)

Moreover, we have 𝐷(𝑝) = 0 for 𝑝 ≥ sup(supp(𝜌)) −

√2𝜆((𝑓
∗∗
)
󸀠

(0))
+

.
From (40) and (37), we conclude that

0 < sup (supp (𝜌)) − √2𝜆((𝑓
∗∗
)
󸀠

(0))
+

≤ √2𝜆((𝑓
∗∗
)
󸀠

(0))
+

+ inf (supp (𝜌)) .

(41)

A similar reasoning as the above shows that 𝑆(𝑝) = 0 for 𝑝 ≤

√2𝜆((𝑓
∗∗
)
󸀠

(0))
+

+ inf(supp(𝜌)). Therefore for any 𝑝 either
𝐷(𝑝) = 0 or 𝑆(𝑝) = 0 and the conclusion follows.

In general, the priceP has an implicit dependence on the
cost function 𝑓(⋅) with no particular properties. But when
the distribution 𝜌 is completely symmetric around some
particular value 𝑝1; we obtain the following result.
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Theorem 19. Suppose that Assumptions 3 and 9 are satisfied
and there exists 𝑝1 > 0 such that

∀𝑦 ∈ R : 𝜌 (𝑝
1

− 𝑦) = 𝜌 (𝑝
1

+ 𝑦) , (42)

(with the convention that 𝜌 is null onR
−
); then one can take in

Theorem 18 P = 𝑝
1.

Proof. The proof follows from the remark that, except pos-
sibly for a null measure set of values 𝛼(𝑝, 𝐴), the function
𝐵opt(𝑝, 𝐴; 𝑓) is symmetric around 𝑝; that is, 𝐵opt(𝑝, 𝐴; 𝑓) =

𝐵opt(𝑝, 2𝑝 − 𝐴; 𝑓); thus 𝜃opt(𝑝, 𝐴; 𝑓) is antisymmetric. Since
the distribution 𝜌 is symmetric then𝐷(𝑝

1

) = 𝑆(𝑝
1

).

4. An Application: The
Grossman-Stiglitz Framework

We follow [9] to analyze a classical situation where costly
information can be used to lower the uncertainty of the esti-
mation. Note however that in the cited work the equilibrium
is reached without modeling the variations in supply and in
the absence of the distribution 𝜌(𝐴).

In the Grossman-Stiglitz model agents can either pay
nothing and have a precision 𝐵

1
or pay a fixed cost 𝑐

𝑏
to gain

precision up to level 𝐵
2
> 𝐵
1
. This leads to the function

𝑓 (𝐵) =

{{

{{

{

0 if 𝐵 ≤ 𝐵
1

𝑐
𝑏

if 𝐵
1
< 𝐵 ≤ 𝐵

2

+∞ if 𝐵 > 𝐵
2
.

(43)

The function 𝑓 does not satisfy assumption in [19] and as
such the result therein cannot be used. It however satisfies
the Assumption 3; thus using the Theorem 18 we can replace
𝑓 with the following convex function 𝑓GS = 𝑓

∗∗ defined as

𝑓GS (𝐵) =

{{{

{{{

{

0 if 𝐵 ≤ 𝐵
1

𝑐
𝑏

𝐵 − 𝐵
1

𝐵
2
− 𝐵
1

if 𝐵
1
≤ 𝐵 ≤ 𝐵

2

+∞ if 𝐵 > 𝐵
2
.

(44)

Note that 𝑓GS fulfills Assumption 3 with an arbitrary 𝛽 ≥ 0.
Suppose that the distribution 𝜌(𝐴) fulfills the requirements in
Assumption 9; absolute continuity with respect to Lebesgue
measure and a moment of order 1 + 𝜖 (with arbitrary small 𝜖)
has to exist. Then a (equilibrium) market price exists and is
unique. Note that 𝑓󸀠GS(0) = 0; thus 𝜆∗GS = 0.

The unsigned demand is

𝜃opt (𝑝, 𝐴) =

{{{{

{{{{

{

(𝐴 − 𝑝) 𝐵
1

𝜆
if 󵄨󵄨󵄨󵄨

𝐴 − 𝑝
󵄨󵄨󵄨󵄨
<

2𝜆𝑐
𝑏

(𝐵
2
− 𝐵
1
)

(𝐴 − 𝑝) 𝐵
2

𝜆
if 󵄨󵄨󵄨󵄨

𝐴 − 𝑝
󵄨󵄨󵄨󵄨
≥

2𝜆𝑐
𝑏

(𝐵
2
− 𝐵
1
)
.

(45)

The optimal precision is either 𝐵
1
(first case of (45)) or 𝐵

2

(second case).

5. Transaction Volume and Marginal Costs

Wedescribe in the following the relationship between the cost
function 𝑓 and the trading volume.

Theorem 20. Suppose that 𝑓
1

and 𝑓
2

both satisfy
Assumption 3 and that 𝜌 satisfies Assumption 9.

(A) Assume that

𝑓
2
(𝑦) − 𝑓

2
(𝑥)

𝑦 − 𝑥
≥

𝑓
1
(𝑦) − 𝑓

1
(𝑥)

𝑦 − 𝑥
, ∀𝑥, 𝑦 ≥ 0, 𝑥 ̸= 𝑦.

(46)

Then 𝑇𝑉
𝑓
1

≥ 𝑇𝑉
𝑓
2

.
(B) In particular if 𝑓

1
and 𝑓

2
are such that

𝑓
󸀠

1
(𝑋
+

) ≤ 𝑓
󸀠

2
(𝑋
+

) , 𝑓
󸀠

1
(𝑋
−

) ≤ 𝑓
󸀠

2
(𝑋
−

) , ∀𝑋 ≥ 0, (47)

(all are lateral derivatives) then 𝑇𝑉
𝑓
1

≥ 𝑇𝑉
𝑓
2

.

Remark 21. Note that if 𝑓
1
and 𝑓

2
are convex, both lateral

derivatives are defined at each point and (A) implies (B); thus
for practical purposes (cf. also Section 3.1) the point (B) is not
weaker than point (A).

Remark 22. If𝑓󸀠
1
(𝑋) and𝑓󸀠

2
(𝑋) exist at a certain point𝑋, then

(47) implies that 𝑓󸀠
1
(𝑋) ≤ 𝑓

󸀠

2
(𝑋). Thus, the above result is a

generalization of the analogous theorem in [19].

Proof. (A) We first show that, except for a countable set of
values 𝛼(𝑝, 𝐴), we have 𝐵opt(𝑝, 𝐴; 𝑓

1
) ≥ 𝐵opt(𝑝, 𝐴; 𝑓

2
). Fix

𝑝, 𝐴 and denote 𝐵
𝑘
= 𝐵
𝑜𝑝𝑡

(𝑝, 𝐴; 𝑓
𝑘
) for 𝑘 = 1, 2. Suppose, by

contradiction, that 𝐵
1
< 𝐵
2
; recall that, since 𝐵

1
is optimal,

𝛼𝐵
1
− 𝑓
1
(𝐵
1
) > 𝛼𝐵

2
− 𝑓
1
(𝐵
2
) . (48)

Thus

𝑓
1
(𝐵
2
) − 𝑓
1
(𝐵
1
)

𝐵
2
− 𝐵
1

> 𝛼. (49)

Note that we wrote strict inequality in (48) because we
exclude the countable set of values 𝛼(𝑝, 𝐴) where the max-
imum of 𝑔

𝑝,𝐴
(𝐵) = 𝛼𝐵−𝑓

1
(𝐵) is not unique. We do the same

for 𝐵
2
:

𝛼𝐵
2
− 𝑓
2
(𝐵
2
) > 𝛼𝐵

1
− 𝑓
2
(𝐵
1
) . (50)

Thus

𝛼 >
𝑓
2
(𝐵
2
) − 𝑓
2
(𝐵
1
)

𝐵
2
− 𝐵
1

. (51)

Combining (49) and (51) we obtain

𝑓
1
(𝐵
2
) − 𝑓
1
(𝐵
1
)

𝐵
2
− 𝐵
1

>
𝑓
2
(𝐵
2
) − 𝑓
2
(𝐵
1
)

𝐵
2
− 𝐵
1

. (52)

This, however, contradicts (46) for 𝑦 = 𝐵
2
and 𝑥 = 𝐵

1
.

Thus, with the possible exception of a countable set of values
𝛼(𝑝, 𝐴), we have 𝐵opt(𝑝, 𝐴; 𝑓

1
) ≥ 𝐵opt(𝑝, 𝐴; 𝑓

2
).
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The demand and supply of the agents are monotonic and
given for 𝑘 = 1, 2 by the formulas

𝐷(𝑓
𝑘
, 𝑝) =

1

2𝜆
∫

∞

0

(𝐴 − 𝑝)
+
𝐵opt (𝑝, 𝐴; 𝑓

𝑘
) 𝜌 (𝐴) 𝑑𝐴,

𝑆 (𝑓
𝑘
, 𝑝) =

1

2𝜆
∫

∞

0

(𝐴 − 𝑝)
−
𝐵opt (𝑝, 𝐴; 𝑓

𝑘
) 𝜌 (𝐴) 𝑑𝐴.

(53)

Let 𝑃
𝐴

𝑓
𝑘

be the market price for which supply equals
demand for the cost function 𝑓

𝑘
; that is, 𝐷(𝑓

𝑘
, 𝑃
𝐴

𝑓
𝑘

) =

𝑆(𝑓
𝑘
, 𝑃
𝐴

𝑓
𝑘

).We further take𝑃𝐴
𝑓
2

= min{𝑃 : 𝐷(𝑓
2
, 𝑃) = 𝑆(𝑓

2
, 𝑃)}

and 𝑃
𝐴

𝑓
1

= min{𝑃 : 𝐷(𝑓
1
, 𝑃) = 𝑆(𝑓

1
, 𝑃)}.

It has been proved that 𝐵opt(𝑝, 𝐴; 𝑓
1
) ≥ 𝐵opt(𝑝, 𝐴; 𝑓

2
).

Thus, 𝐷(𝑓
1
, 𝑝) ≥ 𝐷(𝑓

2
, 𝑝) and 𝑆(𝑓

1
, 𝑝) ≥ 𝑆(𝑓

2
, 𝑝), ∀𝑝. In

particular,𝐷(𝑓
2
, 𝑃
𝐴

𝑓
2

) ≤ 𝐷(𝑓
1
, 𝑃
𝐴

𝑓
2

).
Let 𝑃
1
be the solution of 𝐷(𝑓

1
, 𝑃
1
) = 𝑆(𝑓

2
, 𝑃
1
). Let us

prove that 𝑃
1
≥ 𝑃
𝐴

𝑓
2

. Suppose, on the contrary, that 𝑃
1
< 𝑃
𝐴

𝑓
2

.
Then

𝐷(𝑓
1
, 𝑃
𝐴

𝑓
2

) ≥ 𝐷 (𝑓
2
, 𝑃
𝐴

𝑓
2

) = 𝑆 (𝑓
2
, 𝑃
𝐴

𝑓
2

)

≥ 𝑆 (𝑓
2
, 𝑃
1
) = 𝐷 (𝑓

1
, 𝑃
1
) ≥ 𝐷 (𝑓

1
, 𝑃
𝐴

𝑓
2

) ,

(54)

which means that all inequalities in (54) are in fact equalities,
in particular 𝑆(𝑓

2
, 𝑃
𝐴

𝑓
2

) = 𝑆(𝑓
2
, 𝑃
1
) and𝐷(𝑓

1
, 𝑃
1
) = 𝐷(𝑓

2
, 𝑃
𝐴

𝑓
2

).
But we also have

𝐷(𝑓
1
, 𝑃
1
) ≥ 𝐷 (𝑓

2
, 𝑃
1
) ≥ 𝐷 (𝑓

2
, 𝑃
𝐴

𝑓
2

) = 𝐷 (𝑓
1
, 𝑃
1
) (55)

which means again that all terms are equal, in particular
𝐷(𝑓
2
, 𝑃
1
) = 𝐷(𝑓

2
, 𝑃
𝐴

𝑓
2

). Thus

𝐷(𝑓
2
, 𝑃
1
) = 𝐷 (𝑓

2
, 𝑃
𝐴

𝑓
2

) = 𝑆 (𝑓
2
, 𝑃
𝐴

𝑓
2

) = 𝑆 (𝑓
2
, 𝑃
1
) , (56)

whichmeans that𝑃
1
is a member of {𝑃 : 𝐷(𝑓

2
, 𝑃) = 𝑆(𝑓

2
, 𝑃)}.

However as 𝑃𝐴
𝑓
2

is the minimum of such elements we arrive at
a contradiction. It follows that 𝑃

1
≥ 𝑃
𝐴

𝑓
2

.
Similarly we prove that 𝑃

1
≥ 𝑃
𝐴

𝑓
1

(see Figure 2). Hence it
holds that

TV
𝑓
2

= 𝑆 (𝑓
2
, 𝑃
𝐴

𝑓
2

) ≤ 𝑆 (𝑓
2
, 𝑃
1
) = 𝐷 (𝑓

1
, 𝑃
1
)

≤ 𝐷 (𝑓
1
, 𝑃
𝐴

𝑓
1

) = TV
𝑓
1

,

(57)

which concludes the proof.
(B) We prove that (47) implies (46). Of course, it is

enough to consider 𝑥 < 𝑦. Denote

𝐺 (𝑦, 𝑥) =
𝑓
2
(𝑦) − 𝑓

2
(𝑥)

𝑦 − 𝑥
−

𝑓
1
(𝑦) − 𝑓

1
(𝑥)

𝑦 − 𝑥
,

∀𝑥, 𝑦 ≥ 0, 𝑥 ̸= 𝑦.

(58)

Suppose that 𝑥
0
and 𝑦

0
> 𝑥
0
exist such that 𝜉 := 𝐺(𝑦

0
,

𝑥
0
) < 0. Note that

𝐺 (𝑦, 𝑥) =
1

2
𝐺(𝑦,

𝑥 + 𝑦

2
) +

1

2
𝐺(

𝑥 + 𝑦

2
, 𝑥) . (59)

Price

Vo
lu
m
e

S(f1, p)

S(f2, p)

D(f1, p)

D(f2, p)

PA
f2

PA
f1

P1

TVf1

TVf2

Figure 2: Illustration of the proof of Theorem 20.

Then, either𝐺(𝑦
0
, (𝑥
0
+𝑦
0
)/2) ≤ 𝜉 < 0 or𝐺((𝑥

0
+𝑦
0
)/2, 𝑥
0
) ≤

𝜉 < 0. Iterating the argument we obtain two convergent
sequences 𝑥

𝑛
and 𝑦

𝑛
with lim

𝑛→+∞
𝑦
𝑛

= lim
𝑛→+∞

𝑥
𝑛

=

𝑥
∞
, 𝑥
𝑛

< 𝑦
𝑛
, and 𝐺(𝑦

𝑛
, 𝑥
𝑛
) ≤ 𝜉 < 0. Up to extracting

subsequences only three alternatives exist:

(1) 𝑥
∞

≤ 𝑥
𝑛
< 𝑦
𝑛
for all 𝑛,

(2) 𝑥
𝑛
< 𝑦
𝑛
≤ 𝑥
∞

for all 𝑛,
(3) 𝑥
𝑛
≤ 𝑥
∞

≤ 𝑦
𝑛
for all 𝑛.

Alternative (3) can be reduced to (1) or (2) by noting that
since 𝐺(𝑦

𝑛
, 𝑥
𝑛
) = ((𝑦

𝑛
− 𝑥
∞
)/(𝑦
𝑛
− 𝑥
𝑛
)) 𝐺(𝑦

𝑛
, 𝑥
∞
) + ((𝑥

∞
−

𝑥
𝑛
)/(𝑦
𝑛
− 𝑥
𝑛
))𝐺(𝑥

∞
, 𝑥
𝑛
) then either 𝐺(𝑦

𝑛
, 𝑥
∞
) ≤ 𝜉 or

𝐺(𝑥
∞
, 𝑥
𝑛
) ≤ 𝜉 < 0.

We only prove (1), the proof of (2) being completely
similar. When 𝑥

∞
≤ 𝑥
𝑛
< 𝑦
𝑛
we obtain

0 > 𝜉 ≥ lim
𝑛→+∞

𝐺 (𝑦
𝑛
, 𝑥
𝑛
) = 𝑓
󸀠

2
(𝑥
+

∞
) − 𝑓
󸀠

1
(𝑥
+

∞
) ≥ 0, (60)

which is a contradiction. Thus (47) implies (46).

6. Concluding Remarks

Themain focus of this work is to establish the existence of an
equilibrium and its optimality in terms of trading volumes for
the model in Section 2.The results are proved under minimal
assumptions on the cost function and a relationship with the
convex hull of the cost function is proved. The model can be
used to investigate the determinants of the trading volume
andmay give hints on how to exit a situationwhen the volume
is abnormally low.
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