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We study Ulam-Hyers stability and the well-posedness of the fixed point problem for new type of generalized contractionmapping,
so called 𝛼-𝜆-contractionmapping.The results in this paper generalize and unify several results in the literature such as the Banach
contraction principle.

1. Introduction and Preliminaries

In 1940, the stability problemof functional equations, first ini-
tial from a question of Ulam. Among those was the following
question concerning the stability of group homomorphisms
[1].

Question 1. Let 𝐺
1
be a group and let 𝐺

2
be a metric group

with a metric 𝑑 : 𝐺
2
×𝐺
2
→ [0,∞). Given 𝜖 > 0, does there

exist a 𝛿 > 0 such that if a function ℎ : 𝐺
1
→ 𝐺
2
satisfies the

inequality

𝑑 (ℎ (𝑥𝑦) , ℎ (𝑥) ℎ (𝑦)) < 𝛿, (1)

for all 𝑥, 𝑦 ∈ 𝐺
1
, then there is a homomorphism𝐻 : 𝐺

1
→

𝐺
2
with

𝑑 (ℎ (𝑥) ,𝐻 (𝑥)) < 𝜖, (2)

for all 𝑥 ∈ 𝐺
1
?

If the answer of this equation is affirmative, we say that
the functional equation for group homomorphism is stable.

Next year, some partial answer of Ulam’s question about
Banach spaces was first given by Hyers [2] which opened an
avenue for further development of analysis in this field.

Theorem 1 (see [2]). Let 𝐸
1
, 𝐸
2
be two Banach spaces and let

𝑓 : 𝐸
1
→ 𝐸
2
be a function such that
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄩
󵄩
󵄩
󵄩
≤ 𝛿, (3)

for some 𝛿 > 0 and for all 𝑥, 𝑦 ∈ 𝐸
1
. Then the limit

𝐴 (𝑥) := lim
𝑛→∞

2
−𝑛
𝑓 (2
𝑛
𝑥) (4)

exists for each 𝑥 ∈ 𝐸
1
, and𝐴 : 𝐸

1
→ 𝐸
2
is the unique additive

function such that
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝐴 (𝑥)

󵄩
󵄩
󵄩
󵄩
≤ 𝛿, (5)

for all 𝑥 ∈ 𝐸
1
. Moreover, if 𝑓(𝑡𝑥) is continuous in 𝑡 for each

fixed 𝑥 ∈ 𝐸
1
, then the function 𝐴 is linear.

Taking this result into consideration, the additive Cauchy
equation 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) is said to have the Ulam-
Hyers stability on (𝐸

1
, 𝐸
2
) if, for each function 𝑓 : 𝐸

1
→ 𝐸
2

satisfying inequality (3) for some 𝛿 ≥ 0 and for all 𝑥, 𝑦 ∈ 𝐸
1
,

there exists an additive function𝐴 : 𝐸
1
→ 𝐸
2
such that𝑓−𝐴

is bounded on 𝐸
1
.

There are a number of results studied and extended
Ulam-Hyers stability inmany directions. In particular, Ulam-
Hyers stability for fixed point problems has been studied by
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many researchers such as Bota et al. [3], Bota-Boriceanu and
Petruşel [4], Lazăr [5], Rus [6, 7], and F. A. Tişe and I. C. Tişe
[8]. Furthermore, there are several remarkable results on the
stability of certain classes of functional equations via fixed
point approach. Some interesting results in this direction are
presented by several mathematicians such as Brzdȩk et al. [9],
Brzdek and Ciepliski [10], Brzdȩk and Ciepliński [11], and
Cadariu et al. [12].

On the other hand, the concept of well-posedness of a
fixed point problem has been of great interest to several
researchers, for example, de Blasi and Myjak [13], Reich and
Zaslavski [14], Lahiri and Das [15], and Popa [16, 17].

Recently, Samet et al. [18] introduced the concept of 𝛼-
admissible mapping as follows.

Definition 2 (see [18]). Let 𝑋 be a nonempty set and let 𝛼 :
𝑋 × 𝑋 → [0,∞) be a mapping. A mapping 𝑇 : 𝑋 → 𝑋 is
said to be 𝛼-admissible if it satisfies the following condition:

for 𝑥, 𝑦 ∈ 𝑋 for which 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1.
(6)

Example 3. Let 𝑋 = (0,∞). Define 𝑇 : 𝑋 → 𝑋 and 𝛼 :
𝑋 × 𝑋 → [0,∞) by 𝑇𝑥 = ln(𝑥 + 1) for all 𝑥 ∈ 𝑋 and

𝛼 (𝑥, 𝑦) =

{
{
{
{

{
{
{
{

{

𝜋 − ⌊sin𝑥 + cos𝑦⌋ if 𝑥 ≥ 𝑦,

1

1 + 𝑥 + 𝑦

if 𝑥 < 𝑦.
(7)

Then, 𝑇 is 𝛼-admissible.

Example 4. Let 𝑋 = [1,∞). Define 𝑇 : 𝑋 → 𝑋 and 𝛼 :
𝑋 × 𝑋 → [0,∞) by 𝑇𝑥 = 𝑥2 + 𝑥 + 2 for all 𝑥 ∈ 𝑋 and

𝛼 (𝑥, 𝑦) = {

𝑥
2
+ 𝑦
2 if 𝑥 ≥ 𝑦,

0 if 𝑥 < 𝑦.
(8)

Then, 𝑇 is 𝛼-admissible.

Remark 5. In the setting of Examples 3 and 4 every nonde-
creasing self-mapping 𝑇 is 𝛼-admissible.

They also introduced the new type of extension of
Banach contraction and proved a fixed point theorem for
such mapping via the concept of 𝛼-admissible mapping. As
application, they showed that these results can be utilized
to derive fixed point theorems in partially ordered spaces.
Furthermore, they apply the main results to the ordinary
differential equations. Subsequently, there are a number of
results proved for generalized contraction mappings via the
concept of 𝛼-admissible mapping in metric spaces and other
spaces (see [19–26] and references therein).

With this work we have two purposes. The first aim of
this work is to present new type of contraction mapping.
We also establish some existence and uniqueness of fixed
point theorems for such mappings in metric spaces via the
concept of 𝛼-admissible mapping. Our second purpose is to
present Ulam-Hyers stability and well-posedness of a fixed
point problem for this mapping in metric spaces.

2. Main Results

For nonempty set 𝑋 and self-mapping 𝑓 : 𝑋 → 𝑋, let Λ
𝑓

be the class of functions 𝜆 : 𝑋 → [0, 1) for which 𝜆(𝑓(𝑥)) ≤
𝜆(𝑥) for all 𝑥 ∈ 𝑋.

First we give the following definition as a generalization
of Banach contraction mappings.

Definition 6. Let (𝑋, 𝑑) be a metric space and let 𝑓 : 𝑋 → 𝑋

be a given mapping. One says that 𝑓 is an 𝛼-𝜆-contraction
mapping if there exist two functions 𝛼 : 𝑋 × 𝑋 → [0,∞)

and 𝜆 ∈ Λ
𝑓
such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝜆 (𝑥) 𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (9)

Remark 7. It is easy to check that an𝛼-𝜆-contractionmapping
is reduced to a Banach contractionmapping if 𝛼(𝑥, 𝑦) = 1 for
all 𝑥, 𝑦 ∈ 𝑋 and 𝜆(𝑥) = 𝑘 for all 𝑥 ∈ 𝑋, where 𝑘 ∈ [0, 1).

Now, we give some examples which show that the concept
of an 𝛼-𝜆-contraction mapping is real generalization of
Banach contraction mapping.

Example 8. Let 𝑋 = [0,∞), and the metric 𝑑 : 𝑋 × 𝑋 →

[0,∞) is defined by

𝑑 (𝑥, 𝑦) =
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

(10)

for all 𝑥, 𝑦 ∈ 𝑋. Define𝑓 : 𝑋 → 𝑋 and 𝛼 : 𝑋×𝑋 → [0,∞)

by

𝑓 (𝑥) =

{

{

{

𝑥

3

, 𝑥 ∈ [0, 1] ,

5𝑥, 𝑥 > 1,

𝛼 (𝑥, 𝑦) = {

2, 𝑥, 𝑦 ∈ [0, 1] ,

0, otherwise.

(11)

We obtain that

𝑑 (𝑓 (2) , 𝑓 (3)) = 𝑑 (10, 15) = 5 > 1 = 𝑑 (2, 3) . (12)

Therefore, 𝑓 is not a Banach contraction. It is easy to see that
𝑓 is an 𝛼-𝜆-contraction mapping, where 𝜆 : 𝑋 → [0, 1) is
defined by 𝜆(𝑥) = 2/3 for all 𝑥 ∈ 𝑋.

Next, we give nontrivial example of an 𝛼-𝜆-contraction
mapping.

Example 9. Let 𝑋 = [0, 1], and the metric 𝑑 : 𝑋 × 𝑋 →

[0,∞) is defined by

𝑑 (𝑥, 𝑦) =
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, (13)

for all 𝑥, 𝑦 ∈ 𝑋. Define𝑓 : 𝑋 → 𝑋 and 𝛼 : 𝑋×𝑋 → [0,∞)

by

𝑓 (𝑥) =

{

{

{

𝑥
2

2

, 𝑥 ∈ [0, 1) ,

1, 𝑥 = 1,

𝛼 (𝑥, 𝑦) = {

1, 𝑥, 𝑦 ∈ [0, 1) ,

0, otherwise.

(14)
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We obtain that

𝑑(𝑓(

1

2

) , 𝑓 (1)) = 𝑑 (

1

8

, 1) =

7

8

>

1

2

= 𝑑 (

1

2

, 1) . (15)

This implies that𝑓 is not a Banach contraction.Next, we show
that 𝑓 is an 𝛼-𝜆-contraction mapping, where 𝜆 : 𝑋 → [0, 1)

is defined by

𝜆 (𝑥) =

{
{

{
{

{

𝑥 + 1

2

, 𝑥 ∈ [0, 1)

2

3

, 𝑥 = 1.

(16)

Firstly, we show that 𝜆 ∈ Λ
𝑓
. For 𝑥 ∈ [0, 1), we get

𝜆 (𝑓 (𝑥)) = 𝜆(

𝑥
2

2

)

=

1

2

(

𝑥
2

2

+ 1)

=

𝑥
2

4

+

1

2

≤

𝑥
2

2

+

1

2

≤

𝑥 + 1

2

≤ 𝜆 (𝑥) .

(17)

Also, we get

𝜆 (𝑓 (1)) = 𝜆 (1) =

2

3

= 𝜆 (1) . (18)

From (17) and (18), we conclude that 𝜆 ∈ Λ
𝑓
.

Secondarily, we claim that inequality (9) holds. For 𝑥, 𝑦 ∈
[0, 1), we have

𝛼 (𝑥, 𝑦) 𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
2
− 𝑦
2

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= (

󵄨
󵄨
󵄨
󵄨
𝑥 + 𝑦

󵄨
󵄨
󵄨
󵄨

2

)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

≤ (

𝑥 + 1

2

)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

= 𝜆 (𝑥) 𝑑 (𝑥, 𝑦) .

(19)

Otherwise, we see that inequality (9) holds.Therefore,𝑓 is an
𝛼-𝜆-contraction mapping.

Our first main result is the following.

Theorem 10. Let (𝑋, 𝑑) be a complete metric space and let
𝑓 : 𝑋 → 𝑋 be an 𝛼-𝜆-contraction mapping satisfying the
following conditions:

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1;

(iii) 𝑓 is continuous.

Then the fixed point problem of 𝑓 has a solution; that is, there
exists 𝑥∗ ∈ 𝑋 such that 𝑥∗ = 𝑓(𝑥∗).

Proof. Let 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1 (such a point

exists from condition (ii)). Define the sequence {𝑥
𝑛
} in𝑋 by

𝑥
𝑛
= 𝑓 (𝑥

𝑛−1
) , ∀𝑛 ∈ N. (20)

If 𝑥
𝑛
= 𝑥
𝑛−1

for some 𝑛 ∈ N, then 𝑥∗ = 𝑥
𝑛
is a fixed point for

𝑓 and the proof finishes. Therefore, we may assume that
𝑥
𝑛
̸= 𝑥
𝑛−1

∀𝑛 ∈ N. (21)
Since 𝑓 is 𝛼-admissible and 𝛼(𝑥

0
, 𝑥
1
) = 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1, we

get 𝛼(𝑓(𝑥
0
), 𝑓(𝑥

1
)) = 𝛼(𝑥

1
, 𝑥
2
) ≥ 1. By induction, we get

𝛼 (𝑥
𝑛−1
, 𝑥
𝑛
) ≥ 1, ∀𝑛 ∈ N. (22)

Applying inequality (9) with 𝑥 = 𝑥
0
and 𝑦 = 𝑥

1
and using

(22), we have
𝑑 (𝑥
1
, 𝑥
2
) = 𝑑 (𝑓 (𝑥

0
) , 𝑓 (𝑥

1
))

≤ 𝛼 (𝑥
0
, 𝑥
1
) 𝑑 (𝑓 (𝑥

0
) , 𝑓 (𝑥

1
))

≤ 𝜆 (𝑥
0
) 𝑑 (𝑥
0
, 𝑥
1
) .

(23)

Again, applying inequality (9) with 𝑥 = 𝑥
1
and 𝑦 = 𝑥

2
and

using (22) and the property of function 𝜆, we get

𝑑 (𝑥
2
, 𝑥
3
) = 𝑑 (𝑓 (𝑥

1
) , 𝑓 (𝑥

2
))

≤ 𝛼 (𝑥
1
, 𝑥
2
) 𝑑 (𝑓 (𝑥

1
) , 𝑓 (𝑥

2
))

≤ 𝜆 (𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
)

= 𝜆 (𝑓 (𝑥
0
)) 𝑑 (𝑥

1
, 𝑥
2
)

≤ 𝜆 (𝑥
0
) 𝑑 (𝑥
1
, 𝑥
2
)

≤ [𝜆 (𝑥
0
)]
2

𝑑 (𝑥
0
, 𝑥
1
) .

(24)

By the same procedure, we get

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ [𝜆 (𝑥

0
)]
𝑛

𝑑 (𝑥
0
, 𝑥
1
) , ∀𝑛 ∈ N. (25)

Since 𝜆(𝑥
0
) ∈ [0, 1), we obtain that {𝑥

𝑛
} is a Cauchy

sequence in metric spaces 𝑋. By the completeness of 𝑋, we
get lim

𝑛→∞
𝑥
𝑛
= 𝑥
∗ for some 𝑥∗ ∈ 𝑋. Since 𝑓 is continuous,

𝑥
∗
= lim
𝑛→∞

𝑥
𝑛+1
= lim
𝑛→∞

𝑓 (𝑥
𝑛
) = 𝑓 ( lim

𝑛→∞
𝑥
𝑛
) = 𝑓 (𝑥

∗
) ;

(26)

that is, 𝑥∗ is a fixed point of 𝑓 and thus the fixed point
problem of 𝑓 has a solution. This completes the proof.

Example 11. Let 𝑋 = [0,∞), and the metric 𝑑 : 𝑋 × 𝑋 →

[0,∞) is defined by
𝑑 (𝑥, 𝑦) =

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, (27)

for all 𝑥, 𝑦 ∈ 𝑋. Define𝑓 : 𝑋 → 𝑋 and 𝛼 : 𝑋×𝑋 → [0,∞)

by

𝑓 (𝑥) =

{
{
{
{

{
{
{
{

{

𝑥

2

, 𝑥 ∈ [0, 1] ,

5𝑥 − 3

4

, 𝑥 > 1,

(28)

𝛼 (𝑥, 𝑦) = {

1, 𝑥, 𝑦 ∈ [0, 1]

0, otherwise.
(29)
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We observe that 𝑓 is an 𝛼-𝜆-contraction mapping, where 𝜆 :
𝑋 → [0, 1) is defined by 𝜆(𝑥) = 1/2 for all 𝑥 ∈ 𝑋. Also, 𝑓 is
𝛼-admissible and continuous. It is easy to see that there exist
𝑥
0
= 1 ∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) = 𝛼(1, 𝑓(1)) = 𝛼(1, 1/2) =

1. Therefore, all hypotheses ofTheorem 10 hold. Then we can
apply Theorem 10. Indeed, the fixed points of 𝑓 are 0 and 3.

In the following theorem, we will omit the continuity
hypothesis of 𝑓 by adding a new condition.

Theorem 12. Let (𝑋, 𝑑) be a complete metric space and let
𝑓 : 𝑋 → 𝑋 be an 𝛼-𝜆-contraction mapping satisfying the
following conditions:

(i) 𝑓 is 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1

for all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then

𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N.

Then the fixed point problem of 𝑓 has a solution; that is, there
exists 𝑥∗ ∈ 𝑋 such that 𝑥∗ = 𝑓(𝑥∗).

Proof. Following the proof ofTheorem 10, we know that {𝑥
𝑛
}

is a Cauchy sequence in the complete metric space 𝑋. Then,
there exists 𝑥∗ ∈ 𝑋 such that 𝑥

𝑛
→ 𝑥
∗ as 𝑛 → ∞.

On the other hand, from (22) and hypothesis (iii), we have

𝛼 (𝑥
𝑛
, 𝑥
∗
) ≥ 1, ∀𝑛 ∈ N. (30)

Now, using the triangular inequality, (9) and (30), we get

𝑑 (𝑥
∗
, 𝑓 (𝑥
∗
)) ≤ 𝑑 (𝑥

∗
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑓 (𝑥
∗
))

= 𝑑 (𝑥
∗
, 𝑥
𝑛+1
) + 𝑑 (𝑓 (𝑥

𝑛
) , 𝑓 (𝑥

∗
))

≤ 𝑑 (𝑥
∗
, 𝑥
𝑛+1
) + 𝛼 (𝑥

𝑛
, 𝑥
∗
) 𝑑 (𝑓 (𝑥

𝑛
) , 𝑓 (𝑥

∗
))

≤ 𝑑 (𝑥
∗
, 𝑥
𝑛+1
) + 𝜆 (𝑥

𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
∗
) ,

(31)

for all 𝑛 ∈ N. According to the proof ofTheorem 10, we obtain
that 𝜆(𝑥

𝑛
) ≤ 𝜆(𝑥

0
) for all 𝑛 ∈ N. Therefore, we have

𝑑 (𝑥
∗
, 𝑓 (𝑥
∗
)) ≤ 𝑑 (𝑥

∗
, 𝑥
𝑛+1
) + 𝜆 (𝑥

0
) 𝑑 (𝑥
𝑛
, 𝑥
∗
) , (32)

for all 𝑛 ∈ N. Letting 𝑛 → ∞ in above relation, we obtain
that 𝑑(𝑥∗, 𝑓(𝑥∗)) = 0; that is, 𝑥∗ = 𝑓(𝑥∗). Therefore, the
fixed point problem of 𝑓 has a solution. This completes the
proof.

Example 13. Let 𝑋 = [0,∞), and the metric 𝑑 : 𝑋 × 𝑋 →

[0,∞) is defined by

𝑑 (𝑥, 𝑦) =
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, (33)

for all 𝑥, 𝑦 ∈ 𝑋. Define𝑓 : 𝑋 → 𝑋 and 𝛼 : 𝑋×𝑋 → [0,∞)

by

𝑓 (𝑥) =

{
{
{
{

{
{
{
{

{

𝑥

5

, 𝑥 ∈ [0, 1] ,

3𝑥 − 2

2

, 𝑥 > 1,

𝛼 (𝑥, 𝑦) = {

2, 𝑥, 𝑦 ∈ [0, 1]

0, otherwise.

(34)

We can prove that 𝑓 is an 𝛼-𝜆-contraction mapping, where
𝜆 : 𝑋 → [0, 1) is defined by 𝜆(𝑥) = 4/5 for all 𝑥 ∈ 𝑋 and
𝑓 is also 𝛼-admissible. It is easy to see that there exist 𝑥

0
=

1 ∈ 𝑋 such that 𝛼(𝑥
0
, 𝑓(𝑥
0
)) = 𝛼(1, 𝑓(1)) = 𝛼(1, 1/5) = 1.

Moreover, condition (iii) in Theorem 12 holds. Therefore, all
hypotheses of Theorem 12 hold and thus Theorem 12 assures
the existence of fixed points of 𝑓 which are points 0 and 2.

Remark 14. Theorem 10 cannot be used in case of Example 13
because 𝑓 is not continuous. Also, the Banach contraction
principle cannot be used since 𝑓 does not satisfy Banach
contractive condition.

We obtain that Theorems 10 and 12 do not claim the
uniqueness of fixed point. To assure the uniqueness of the
fixed point, we will consider the following hypotheses.

(H
0
) : 𝛼(𝑎, 𝑏) ≥ 1 for all fixed points 𝑎, 𝑏 of mapping 𝑓 :
𝑋 → 𝑋.

(H
1
) : for all𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that𝛼(𝑥, 𝑧) ≥
1 and 𝛼(𝑦, 𝑧) ≥ 1.

Theorem 15. Adding condition (𝐻
0
) or (𝐻

1
) to the hypotheses

of Theorem 10 (resp., Theorem 12) we obtain uniqueness of the
fixed point of 𝑓.

Proof. Suppose that 𝑥∗ and 𝑦∗ are two fixed points of 𝑓. If
condition (H

0
) holds, then we get the uniqueness of the fixed

point of 𝑓 from (9). So we only show that the case of (H
1
)

holds. From condition (H
1
), there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑥
∗
, 𝑧) ≥ 1, 𝛼 (𝑦

∗
, 𝑧) ≥ 1. (35)

Since 𝑓 is 𝛼-admissible, from (35), we get

𝛼 (𝑥
∗
, 𝑓
𝑛
(𝑧)) ≥ 1, 𝛼 (𝑦

∗
, 𝑓
𝑛
(𝑧)) ≥ 1, (36)

for all 𝑛 ∈ N. From (36) and (9), we have

𝑑 (𝑥
∗
, 𝑓
𝑛
(𝑧)) = 𝑑 (𝑓 (𝑥

∗
) , 𝑓 (𝑓

𝑛−1
(𝑧)))

≤ 𝛼 (𝑥
∗
, 𝑓
𝑛−1
(𝑧)) 𝑑 (𝑓 (𝑥

∗
) , 𝑓 (𝑓

𝑛−1
(𝑧)))

≤ 𝜆 (𝑥
∗
) 𝑑 (𝑥

∗
, 𝑓
𝑛−1
(𝑧)) ,

(37)

for all 𝑛 ∈ N. Proceeding inductively, we get

𝑑 (𝑥
∗
, 𝑓
𝑛
(𝑧)) ≤ [𝜆 (𝑥

∗
)]
𝑛

𝑑 (𝑥
∗
, 𝑧) , (38)
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for all 𝑛 ∈ N. Letting 𝑛 → ∞ in previous inequality, we get

lim
𝑛→∞

𝑓
𝑛
(𝑧) = 𝑥

∗
. (39)

Similarly, using (36) and (9), we get

lim
𝑛→∞

𝑓
𝑛
(𝑧) = 𝑦

∗
. (40)

By the uniqueness of the limit of a sequence {𝑓𝑛(𝑧)}, we have
𝑥
∗
= 𝑦
∗. This finishes the proof.

Remark 16. Since a Banach contraction mapping is an 𝛼-𝜆-
contraction mapping, the Banach contraction principle can
be considered as a corollary of our main results.

3. Ulam-Hyers Stability and Well-Posedness
Results through the Fixed Point Problems

First we give the notion of Ulam-Hyers stability and well-
posedness in sense of a fixed point problem (see also [7]).

Definition 17. Let (𝑋, 𝑑) be ametric space and let𝑓 : 𝑋 → 𝑋

be a mapping. The fixed point problem

𝑥 = 𝑓 (𝑥) (41)

is called Ulam-Hyers stable if and only if there exists 𝑐 > 0
such that, for each 𝜀 > 0 and for each 𝑤∗ ∈ 𝑋 called an 𝜀-
solution of the fixed point equation (41), that is, 𝑤∗ satisfies
the inequality

𝑑 (𝑤
∗
, 𝑓 (𝑤

∗
)) ≤ 𝜀, (42)

there exists a solution 𝑥∗ ∈ 𝑋 of (41) such that

𝑑 (𝑥
∗
, 𝑤
∗
) ≤ 𝑐𝜀. (43)

Definition 18. Let (𝑋, 𝑑) be ametric space and let𝑓 : 𝑋 → 𝑋

be a mapping.The fixed point problem of 𝑓 is said to be well-
posed if it satisfies the following conditions:

(i) 𝑓 has a unique fixed point 𝑥∗ in𝑋;
(ii) for any sequence {𝑥

𝑛
} in 𝑋 such that

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑓(𝑥
𝑛
)) = 0, one has

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
∗
) = 0.

Theorem 19. Let (𝑋, 𝑑) be a complete metric space. Suppose
that all the hypotheses of Theorem 15 hold. Then the following
assertion holds:

(a) if 𝛼(𝑎, 𝑏) ≥ 1 for all 𝜀-solutions 𝑎, 𝑏 of the fixed point
equation (41), then the fixed point problem is Ulam-
Hyers stable;

(b) if 𝛼(𝑥∗, 𝑥
𝑛
) ≥ 1 for all 𝑛 ∈ N, where 𝑥

𝑛
∈ 𝑋 with

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑓(𝑥
𝑛
)) = 0 and 𝑥∗ is a fixed point of 𝑓,

then the fixed point problem is well-posed.

Proof. According to the proof ofTheorem 15, we know that 𝑓
has a unique fixed point and so let 𝑥∗ be a unique fixed point
of 𝑓.

Here, we show that the fixed point problem of 𝑓 is Ulam-
Hyers stable under the hypothesis in (a). Let 𝜀 > 0 and𝑤∗ ∈ 𝑋
be a solution of (42); that is,

𝑑 (𝑤
∗
, 𝑓 (𝑤

∗
)) ≤ 𝜀. (44)

It is obvious that the unique fixed point 𝑥∗ of 𝑓 is also a
solution of (42). Fromhypothesis in (a), we get𝛼(𝑥∗, 𝑤∗) ≥ 1.
Now we have
𝑑 (𝑥
∗
, 𝑤
∗
) = 𝑑 (𝑓 (𝑥

∗
) , 𝑤
∗
)

≤ 𝑑 (𝑓 (𝑥
∗
) , 𝑓 (𝑤

∗
)) + 𝑑 (𝑓 (𝑤

∗
) , 𝑤
∗
)

≤ 𝛼 (𝑥
∗
, 𝑤
∗
) 𝑑 (𝑓 (𝑥

∗
) , 𝑓 (𝑤

∗
)) + 𝜀

≤ 𝜆 (𝑥
∗
) 𝑑 (𝑥
∗
, 𝑤
∗
) + 𝜀.

(45)

This implies that

𝑑 (𝑥
∗
, 𝑤
∗
) ≤

1

1 − 𝜆 (𝑥
∗
)

𝜀. (46)

Consequently, the fixed point problem of 𝑓 is Ulam-Hyers
stable.

Next, we prove that the fixed point problem of 𝑓 is well-
posed under the assumption in (b). Let {𝑥

𝑛
} be a sequence in

𝑋 such that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑓(𝑥
𝑛
)) = 0. From assumption in

(b), we get 𝛼(𝑥∗, 𝑥
𝑛
) ≥ 1 for all 𝑛 ∈ N. Now, we obtain that

𝑑 (𝑥
∗
, 𝑥
𝑛
) ≤ 𝑑 (𝑥

∗
, 𝑓 (𝑥
𝑛
)) + 𝑑 (𝑓 (𝑥

𝑛
) , 𝑥
𝑛
)

= 𝑑 (𝑓 (𝑥
∗
) , 𝑓 (𝑥

𝑛
)) + 𝑑 (𝑓 (𝑥

𝑛
) , 𝑥
𝑛
)

≤ 𝛼 (𝑥
∗
, 𝑥
𝑛
) 𝑑 (𝑥
∗
, 𝑥
𝑛
) + 𝑑 (𝑓 (𝑥

𝑛
) , 𝑥
𝑛
)

≤ 𝜆 (𝑥
∗
) 𝑑 (𝑥
∗
, 𝑥
𝑛
) + 𝑑 (𝑓 (𝑥

𝑛
) , 𝑥
𝑛
)

(47)

for all 𝑛 ∈ N. This implies that

𝑑 (𝑥
∗
, 𝑥
𝑛
) ≤

1

1 − 𝜆 (𝑥
∗
)

𝑑 (𝑓 (𝑥
𝑛
) , 𝑥
𝑛
) (48)

for all 𝑛 ∈ N. Since lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑓(𝑥
𝑛
)) = 0, we have

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
∗
) = 0 and so the fixed point problem is well-

posed.

Interesting Problems. Consider the following.

(i) In Theorem 15, can we replace conditions (H
0
) and

(H
1
) by other conditions or more general conditions?

(ii) InTheorem 19, canwe drop some condition in (a) and
(b)?

(iii) InTheorem 19, can we prove other types of stability of
fixed point problem?

(iv) Can we extend the result in this paper to other spaces
such as complex valued metric space, partial metric
space, 𝑏-metric space, or circular metric space?
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ity results for fixed point problems via𝛼-𝜓-contractivemapping
in (𝑏)-metric space,” Abstract and Applied Analysis, vol. 2013,
Article ID 825293, 6 pages, 2013.

[4] M. F. Bota-Boriceanu andA. Petruşel, “Ulam-Hyers stability for
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