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The complex-valued neural networks with unbounded time-varying delays are considered. By constructing appropriate Lyapunov-
Krasovskii functionals, and employing the free weighting matrix method, several delay-dependent criteria for checking the global
𝜇-stability of the addressed complex-valued neural networks are established in linearmatrix inequality (LMI), which can be checked
numerically using the effective LMI toolbox in MATLAB. Two examples with simulations are given to show the effectiveness and
less conservatism of the proposed criteria.

1. Introduction

The nonlinear system is everywhere in real life [1–4], while
complex network is one of the kinds of it [5–7]. And neural
network is one of the most important of complex networks
[8, 9]. In recent years, there have been increasing research
interests in analyzing the dynamic behaviors of complex-
valued neural networks due to their widespread applica-
tions in filtering, imaging, optoelectronics, speech synthesis,
computer vision, and so on. For example, see [10–16] and
the references therein. In these applications, the stability of
complex-valued neural networks plays a very important role.

In real-valued neural networks, the activation function
is usually chosen to be smooth and bounded. However,
in the complex domain, according to Liouville’s theorem
[17], every bounded entire function must be constant. Thus,
if the activation function is entire and bounded in the
complex domain, then it is a constant. This is not suitable.
Therefore, the problem of choosing activation functions is
the main challenge for complex-valued neural networks.
In [18–20], authors considered three kinds of activation
functions, respectively. In [18], authors considered a class
of continuous-time recurrent neural networks with two
types of activations functions and gave several sufficient

conditions for existence, uniqueness, and global stability of
the equilibrium point. In [19], a class of generalized discrete
complex-valued neural networks were studied. The existence
of a unique equilibrium pattern is discussed and a sufficient
condition of global exponential stability was given. In [20],
authors discuss a class of discrete-time recurrent neural
networks with complex-valued linear threshold neurons.
The boundedness, global attractivity, and complete stability
of such networks were investigated. Some conditions for
those properties were also derived. In [21], the discrete-
time delayed neural networks with complex-valued linear
threshold neurons were investigated, and several criteria on
boundedness and global exponential stability were obtained.
In [22–24], authors considered different kinds of time delays
in complex-valued neural networks. In [22], the boundedness
and complete stability of complex-valued neural networks
with time delay were studied. Some conditions to guarantee
the boundedness and complete stability for the considered
neural networks were derived by using the local inhibition
and the energy minimization method. In [23], authors
investigated the problem of the dynamic behaviors of a
class of complex-valued neural networks with mixed time
delays. Some sufficient conditions for assuring the existence,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 263847, 9 pages
http://dx.doi.org/10.1155/2014/263847

http://dx.doi.org/10.1155/2014/263847


2 Abstract and Applied Analysis

uniqueness, and exponential stability of the equilibriumpoint
of the system are derived using the vector Lyapunov function
method, homeomorphism mapping lemma, and the matrix
theory. In [24], the complex-valued neural networks with
both leakage time delay and discrete time delay as well as two
types of activation functions on time scales were considered.
Several delay-dependent criteria for checking the global
stability of the addressed complex-valued neural networks
are established in linear matrix inequality by constructing
appropriate Lyapunov-Krasovskii functionals and employing
the free weighting matrix method. However, the obtained
results were based on the assumption that the time delay is
bounded. As we know, time delays occur and vary frequently
and irregularly in many engineering systems, and sometimes
they depend on the histories heavily and may be unbounded
[25–27].

How to guarantee the desirable stability if the time delays
are unbounded? Recently, the authors proposed two new
concepts, power stability and 𝜇-stability [28, 29], which can
be applied to dynamical systems with unbounded time-
varying delays. In [28], authors considered the dynamical sys-
tems with unbounded time-varying delays. Two approaches
were developed to derive sufficient conditions ensuring the
existence, uniqueness of the equilibrium, and its global sta-
bility. Moreover, under mild conditions, authors proved that
the dynamical systems with unbounded time-varying delays
were globally power stable. In [29], authors discussed the 𝜇-
stability of dynamical systems with unbounded time-varying
delays and explored that under mild conditions; the delayed
system with very large time delays has a unique equilibrium,
which is 𝜇-stable globally. In [30], authors investigated
the global robust stability for uncertain stochastic neural
networks with unbounded time-varying delays and norm-
bounded parameter uncertainties. A new concept of global
robust 𝜇-stability in themean square for neural networks was
given first, and then by means of the linear matrix inequality
approach, stability criteria were presented. To the best of
our knowledge, however, few authors have considered the
problem on 𝜇-stability of complex-valued neural networks
with unbounded time-varying delays.

Motivated by the above discussions, the objective of this
paper is to study the global 𝜇-stability of complex-valued
neural networks with unbounded time-varying delays by
employing a combination of Lyapunov-Krasovskii function-
als and the free weighting matrix method. The obtained
sufficient conditions donot require the existence of the partial
derivatives of the activation functions, and are expressed
in linear matrix inequality (LMI), which can be checked
numerically using the effective LMI toolbox in MATLAB.
Two examples are given to show the effectiveness and less
conservatism of the proposed criteria.

In the literature, the usual method analyzing complex-
valued neural networks is to separate it into real part and
imaginary part and then to recast it into equivalent real-
valued neural networks [18, 24]. However, this separation is
not always expressible in an analytical form if the real and
imaginary parts of activation functions cannot be separated.
In this paper, we do not separate the complex-valued neural
networks and directly consider its properties on C𝑛.

Notations. The notations are quite standard. Throughout this
paper, let 𝑖 denote the imaginary unit; that is, 𝑖 = √−1. C𝑛,
R𝑚×𝑛, andC𝑚×𝑛 denote, respectively, the set of 𝑛-dimensional
complex vectors,𝑚 × 𝑛 real matrices, and complex matrices.
The subscripts 𝑇 and ∗ denote matrix transposition, matrix
complex conjugation and transposition, respectively. For
complex vector 𝑧 ∈ C𝑛, let |𝑧| = (|𝑧

1
|, |𝑧
2
|, . . . , |𝑧

𝑛
|)
𝑇 be the

module of the vector 𝑧 and ‖𝑧‖ = √∑
𝑛

𝑘=1
|𝑧
𝑘
|2 the norm of the

vector 𝑧.The notation𝑋 ≥ 𝑌 (resp.,𝑋 > 𝑌) means that𝑋−𝑌

is positive semidefinite (resp., positive definite). 𝜆max(𝑃) and
𝜆min(𝑃) are defined as the largest and the smallest eigenvalue
of positive definite matrix 𝑃, respectively. Sometimes, the
arguments of a function or a matrix will be omitted in the
analysis when no confusion can arise.

2. Problems Formulation and Preliminaries

In this section, we will recall some definitions and lemmas
which will be used in the proofs of our main results.

In this paper, we consider the following complex-valued
neural networks with time-varying delays:

𝑢̇ (𝑡) = −𝐶𝑢 (𝑡) + 𝐷𝑓 (𝑢 (𝑡)) + 𝐸𝑓 (𝑢 (𝑡 − 𝜏 (𝑡))) + 𝐻 (1)

for 𝑡 > 0, where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡))
𝑇

∈ C𝑛

is the state vector of the neural networks with 𝑛 neu-
rons at time 𝑡. 𝐶 = diag{𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
} ∈ R𝑛×𝑛 is the

self-feedback connection weight matrix with 𝑐
𝑘
> 0 (𝑘 = 1,

2, . . . , 𝑛). 𝐷 = (𝑑
𝑘𝑗
)
𝑛×𝑛

∈ C𝑛×𝑛 and 𝐸 = (𝑒
𝑘𝑗
)
𝑛×𝑛

∈

C𝑛×𝑛 are the connection weight matrix and the delayed
connection weight matrix, respectively. 𝑓(𝑢(𝑡)) = (𝑓

1
(𝑢
1
(𝑡)),

𝑓
2
(𝑢
2
(𝑡)), . . . , 𝑓

𝑛
(𝑢
𝑛
(𝑡)))
𝑇

∈ C𝑛 denotes the neuron activation
at time 𝑡. 𝐻 = (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
)
𝑇

∈ C𝑛 is the external input
vector.

The initial condition associated with neural network (1) is
given by

𝑢 (𝑠) = 𝜓 (𝑠) , 𝑠 ∈ (−∞, 0] , (2)

where 𝜓(𝑠) = (𝜓
1
(𝑠), 𝜓
2
(𝑠), . . . , 𝜓

𝑛
(𝑠))
𝑇 is continuous in

(−∞, 0].
As we know, the activation functions play a very impor-

tant role in the study of global stability of neural networks.
However, in the complex domain, the activation functions
cannot be both entire and bounded. In this paper, we will
consider the following two types of activation functions.

(H1) Let 𝑢 = 𝑥 + 𝑖𝑦. 𝑓
𝑗
(𝑢) can be expressed by separating

into its real and imaginary part as

𝑓
𝑗
(𝑢) = 𝑓

𝑅

𝑗
(𝑥, 𝑦) + 𝑖𝑓

𝐼

𝑗
(𝑥, 𝑦) (3)

for 𝑗 = 1, 2, . . . , 𝑛, where 𝑓𝑅
𝑗
(⋅, ⋅) : R2 → R and 𝑓

𝐼

𝑗
(⋅, ⋅) :

R2 → R. Suppose there exist positive constants 𝜉𝑅1
𝑗
, 𝜉𝑅2
𝑗
, 𝜉𝐼1
𝑗
,

and 𝜉𝐼2
𝑗
such that

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑅

𝑗
(𝑥
1
, 𝑦
1
) − 𝑓
𝑅

𝑗
(𝑥
2
, 𝑦
2
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜉
𝑅1

𝑗

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 + 𝜉
𝑅2

𝑗

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑓
𝐼

𝑗
(𝑥
1
, 𝑦
1
) − 𝑓
𝐼

𝑗
(𝑥
2
, 𝑦
2
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜉
𝐼1

𝑗

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 + 𝜉
𝐼2

𝑗

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨

(4)
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for any 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R, 𝑗 = 1, 2, . . . , 𝑛. Moreover, we define

Γ = diag{𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
}, where 𝛾

𝑗
= 2[(𝜉

𝑅

𝑗
)
2

+ (𝜉
𝐼

)
2

𝑗
], 𝜉𝑅
𝑗

=

max{𝜉𝑅1
𝑗
, 𝜉
𝑅2

𝑗
}, and 𝜉𝐼

𝑗
= max{𝜉𝐼1

𝑗
, 𝜉
𝐼2

𝑗
}.

(H2) The real and imaginary parts of 𝑓
𝑗
(⋅) cannot be

separated, but 𝑓
𝑗
(⋅) is bounded and satisfies the following

condition:
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑧
1
) − 𝑓
𝑗
(𝑧
2
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜂
𝑗

󵄨󵄨󵄨󵄨𝑧1 − 𝑧
2

󵄨󵄨󵄨󵄨 (5)

for any 𝑧
1
, 𝑧
2
∈ C, 𝑗 = 1, 2, . . . , 𝑛, where 𝜂

𝑗
is a constant.

Moreover, we define Π = diag{𝜂2
1
, 𝜂
2

2
, . . . , 𝜂

2

𝑛
}.

For the time-varying delays 𝜏(𝑡), we give the following
assumption.

(H3) 𝜏(𝑡) is nonnegative and differentiable and satisfies
̇𝜏(𝑡) ≤ 𝜌 < 1, where 𝜌 is a nonnegative constant.

As usual, a vector 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇 is said to be an

equilibrium point of neural network (1) if it satisfies

−𝐶𝑢 + (𝐷 + 𝐸)𝑓 (𝑢) + 𝐻 = 0. (6)

Throughout the paper, the equilibrium of neural network
(1) is assumed to exist. For notational convenience, we
will always shift an intended equilibrium point 𝑢 of neural
network (1) to the origin by letting 𝑧(𝑡) = 𝑢(𝑡) − 𝑢. It is easy
to transform neural network (1) into the following form:

𝑧̇ (𝑡) = −𝐶𝑧 (𝑡) + 𝐷𝑔 (𝑧 (𝑡)) + 𝐸𝑔 (𝑧 (𝑡 − 𝜏 (𝑡))) ,

𝑧 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ (−∞, 0] ,

(7)

for 𝑡 > 0, where𝑔(𝑧(⋅)) = 𝑔(𝑧(⋅)+𝑢)−𝑔(𝑢) and𝜙(𝑠) = 𝜓(𝑠)−𝑢.
Next we introduce some definitions and lemmas to be

used in the stability analysis.

Definition 1. Suppose that 𝜇(𝑡) is a positive continuous
function and satisfies 𝜇(𝑡) → ∞ as 𝑡 → ∞. If there exist
scalars𝑀 > 0 and 𝑇 ≥ 0 such that

‖𝑧 (𝑡)‖ ≤
𝑀

𝜇 (𝑡)
, 𝑡 ≥ 𝑇, (8)

then neural network (1) is said to be 𝜇-stable.

Definition 2. If there exist scalars 𝑀 > 0, 𝜀 > 0, and 𝑇 ≥ 0

such that

‖𝑧 (𝑡)‖ ≤
𝑀

𝑒𝜀𝑡
, 𝑡 ≥ 𝑇, (9)

then neural network (1) is said to be exponentially stable.

Definition 3. If there exist scalars 𝑀 > 0, 𝜀 > 0, and 𝑇 ≥ 0

such that

‖𝑧 (𝑡)‖ ≤
𝑀

𝑡𝜀
, 𝑡 ≥ 𝑇, (10)

then neural network (1) is said to be power stable.

Remark 4. It is obvious that both 𝑒
𝜀𝑡 and 𝑡

𝜀 approaches
+∞, when 𝑡 approaches +∞. Therefore, neural network (1)
is 𝜇-stable if it is exponentially stable or power stable. In
other words, exponential stability and power stability are two
special cases of 𝜇-stability.

Lemma 5 (see [22]). Given a Hermitianmatrix𝑄, then𝑄 < 0

is equivalent to

(
𝑄
𝑅

𝑄
𝐼

−𝑄
𝐼

𝑄
𝑅
) < 0, (11)

where 𝑄𝑅 = Re (𝑄) and 𝑄𝐼 = Im (𝑄).

3. Main Results

In this section, we are going to give several criteria for
checking the global 𝜇-stability of the complex-valued neural
networks (1).

Theorem 6. Assume that assumptions (H1) and (H3) hold.
Neural network (1) is globally𝜇-stable, if there exist two positive
definite Hermitian matrices 𝑃

1
= 𝑃
𝑅

1
+ 𝑖𝑃
𝐼

1
and 𝑃

2
= 𝑃
𝑅

2
+ 𝑖𝑃
𝐼

2
,

two real positive diagonal matrices 𝑅
1
> 0 and 𝑅

2
> 0, two

complex matrices 𝑄
1
= 𝑄
𝑅

1
+ 𝑖𝑄
𝐼

1
, 𝑄
2
= 𝑄
𝑅

2
+ 𝑖𝑄
𝐼

2
, a positive

differential function𝜇(𝑡) defined on [0,∞), and three constants
𝛼 ≥ 0, 𝛽 > 0, and 𝑇 > 0 such that

𝜇̇ (𝑡)

𝜇 (𝑡)
≤ 𝛼,

𝜇 (𝑡 − 𝜏 (𝑡))

𝜇 (𝑡)
≥ 𝛽, ∀𝑡 ∈ [𝑇,∞) , (12)

and the following LMI holds

(
Ω
𝑅

Ω
𝐼

−Ω
𝐼

Ω
𝑅
) < 0, (13)

where

Ω
𝑅

=
(
(
(

(

Ω
𝑅

11
Ω
𝑅

12
0 Ω

𝑅

14
Ω
𝑅

15

Ω
𝑅

21
Ω
𝑅

22
0 Ω

𝑅

24
Ω
𝑅

25

0 0 Ω
𝑅

33
0 0

Ω
𝑅

41
Ω
𝑅

42
0 −𝑅

1
0

Ω
𝑅

51
Ω
𝑅

52
0 0 −𝑅

2

)
)
)

)

,

Ω
𝐼

=
(
(
(

(

Ω
𝐼

11
Ω
𝐼

12
0 Ω

𝐼

14
Ω
𝐼

15

Ω
𝐼

21
Ω
𝐼

22
0 Ω

𝐼

24
Ω
𝐼

25

0 0 Ω
𝐼

33
0 0

Ω
𝐼

41
Ω
𝐼

42
0 0 0

Ω
𝐼

51
Ω
𝐼

52
0 0 0

)
)
)

)

,

(14)

in which

Ω
𝑅

11
= 2𝛼𝑃

𝑅

1
+ 𝑃
𝑅

2
+ 𝐶𝑄
𝑅

1
+ (𝑄
𝑅

1
)
𝑇

𝐶 + 𝑅
1
Γ,

Ω
𝑅

12
= 𝑃
𝑅

1
+ (𝑄
𝑅

1
)
𝑇

+ 𝐶𝑄
𝑅

2
,

Ω
𝑅

14
= − (𝑄

𝑅

1
)
𝑇

𝐷
𝑅

− (𝑄
𝐼

1
)
𝑇

𝐷
𝐼

,

Ω
𝑅

15
= − (𝑄

𝑅

1
)
𝑇

𝐸
𝑅

− (𝑄
𝐼

1
)
𝑇

𝐸
𝐼

,
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Ω
𝑅

21
= 𝑃
𝑅

1
+ 𝑄
𝑅

1
+ (𝑄
𝑅

2
)
𝑇

𝐶,

Ω
𝑅

22
= 𝑄
𝑅

2
+ (𝑄
𝑅

2
)
𝑇

,

Ω
𝑅

24
= − (𝑄

𝑅

2
)
𝑇

𝐷
𝑅

− (𝑄
𝐼

2
)
𝑇

𝐷
𝐼

,

Ω
𝑅

25
= − (𝑄

𝑅

2
)
𝑇

𝐸
𝑅

− (𝑄
𝐼

2
)
𝑇

𝐸
𝐼

,

Ω
𝑅

33
= − 𝛽

2

(1 − 𝜌) 𝑃
𝑅

2
+ 𝑅
2
Γ,

Ω
𝑅

41
= − (𝐷

𝑅

)
𝑇

𝑄
𝑅

1
− (𝐷
𝐼

)
𝑇

𝑄
𝐼

1
,

Ω
𝑅

42
= − (𝐷

𝑅

)
𝑇

𝑄
𝑅

2
− (𝐷
𝐼

)
𝑇

𝑄
𝐼

2
,

Ω
𝑅

51
= − (𝐸

𝑅

)
𝑇

𝑄
𝑅

1
− (𝐸
𝐼

)
𝑇

𝑄
𝐼

1
,

Ω
𝑅

52
= − (𝐸

𝑅

)
𝑇

𝑄
𝑅

2
− (𝐸
𝐼

)
𝑇

𝑄
𝐼

2
,

Ω
𝐼

11
= 2𝛼𝑃

𝐼

1
+ 𝑃
𝐼

2
+ 𝐶𝑄
𝐼

1
− (𝑄
𝐼

1
)
𝑇

𝐶,

Ω
𝐼

12
= 𝑃
𝐼

1
− (𝑄
𝐼

1
)
𝑇

+ 𝐶𝑄
𝐼

2
,

Ω
𝐼

14
= (𝑄
𝐼

1
)
𝑇

𝐷
𝑅

− (𝑄
𝑅

1
)
𝑇

𝐷
𝐼

,

Ω
𝐼

15
= (𝑄
𝐼

1
)
𝑇

𝐸
𝑅

− (𝑄
𝑅

1
)
𝑇

𝐸
𝐼

,

Ω
𝐼

21
= 𝑃
𝐼

1
+ 𝑄
𝐼

1
− (𝑄
𝐼

2
)
𝑇

𝐶,

Ω
𝐼

22
= 𝑄
𝐼

2
− (𝑄
𝐼

2
)
𝑇

,

Ω
𝐼

24
= (𝑄
𝐼

2
)
𝑇

𝐷
𝑅

− (𝑄
𝑅

2
)
𝑇

𝐷
𝐼

,

Ω
𝐼

25
= (𝑄
𝐼

2
)
𝑇

𝐸
𝑅

− (𝑄
𝑅

2
)
𝑇

𝐸
𝐼

,

Ω
𝐼

33
= − 𝛽

2

(1 − 𝜌) 𝑃
𝐼

2
,

Ω
𝐼

41
= (𝐷
𝐼

)
𝑇

𝑄
𝑅

1
− (𝐷
𝑅

)
𝑇

𝑄
𝐼

1
,

Ω
𝐼

42
= (𝐷
𝐼

)
𝑇

𝑄
𝑅

2
− (𝐷
𝑅

)
𝑇

𝑄
𝐼

2
,

Ω
𝐼

51
= (𝐸
𝐼

)
𝑇

𝑄
𝑅

1
− (𝐸
𝑅

)
𝑇

𝑄
𝐼

1
,

Ω
𝐼

52
= (𝐸
𝐼

)
𝑇

𝑄
𝑅

2
− (𝐸
𝑅

)
𝑇

𝑄
𝐼

2
.

(15)

Proof. Consider the following Lyapunov-Krasovskii func-
tional candidates:

𝑉 (𝑡) = 𝜇
2

(𝑡) 𝑧
∗

(𝑡) 𝑃
1
𝑧 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝜇
2

(𝑠) 𝑧
∗

(𝑠) 𝑃
2
𝑧 (𝑠) d𝑠.

(16)

Calculate the derivative of 𝑉(𝑡) along the trajectories of
neural network (7). We obtain

𝑉̇ (𝑡) = 2𝜇̇ (𝑡) 𝜇 (𝑡) 𝑧
∗

(𝑡) 𝑃
1
𝑧 (𝑡) + 𝜇

2

(𝑡) 𝑧̇
∗

(𝑡) 𝑃
1
𝑧 (𝑡)

+ 𝜇
2

(𝑡) 𝑧
∗

(𝑡) 𝑃
1
𝑧̇ (𝑡) + 𝜇

2

(𝑡) 𝑧
∗

(𝑡) 𝑃
2
𝑧 (𝑡)

− 𝜇
2

(𝑡 − 𝜏 (𝑡)) 𝑧
∗

(𝑡 − 𝜏 (𝑡)) 𝑃
2
𝑧 (𝑡 − 𝜏 (𝑡))

× (1 − ̇𝜏 (𝑡))

≤ 𝜇
2

(𝑡) [2𝛼𝑧
∗

(𝑡) 𝑃
1
𝑧 (𝑡) + 𝑧̇

∗

(𝑡) 𝑃
1
𝑧 (𝑡)

+ 𝑧
∗

(𝑡) 𝑃
1
𝑧̇ (𝑡) + 𝑧

∗

(𝑡) 𝑃
2
z (𝑡) − 𝛽

2

(1 − 𝜌)

× 𝑧
∗

(𝑡 − 𝜏 (𝑡)) 𝑃
2
𝑧 (𝑡 − 𝜏 (𝑡))] , 𝑡 ≥ 𝑇.

(17)

In deriving inequality (17), we have made use of condition
(12) and assumption (H3).

From assumption (H1), we get

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑅

𝑗
(𝑥
𝑗
, 𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜉
𝑅1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝜉
𝑅2

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝐼

𝑗
(𝑥
𝑗
, 𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜉
𝐼1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝜉
𝐼2

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗

󵄨󵄨󵄨󵄨󵄨

(18)

for all 𝑗 = 1, 2, . . . , 𝑛, where 𝑥
𝑗
= Re(𝑧

𝑗
), 𝑦
𝑗
= Im(𝑧

𝑗
). Hence,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑧
𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨

2

≤ [(𝜉
𝑅

𝑗
)
2

+ (𝜉
𝐼

)
2

𝑗

] (
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗

󵄨󵄨󵄨󵄨󵄨
)
2

≤ 2 [(𝜉
𝑅

𝑗
)
2

+ (𝜉
𝐼

)
2

𝑗

]
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

2

= 𝛾
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

,

(19)

where 𝜉𝑅
𝑗
= max{𝜉𝑅1

𝑗
, 𝜉
𝑅2

𝑗
}, 𝜉𝐼
𝑗
= max{𝜉𝐼1

𝑗
, 𝜉
𝐼2

𝑗
}, 𝛾
𝑗
= 2[(𝜉

𝑅

𝑗
)
2

+

(𝜉
𝐼

)
2

𝑗
], 𝑗 = 1, 2, . . . , 𝑛. Let 𝑅

1
= diag(𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
) > 0. It

follows from (19) that

𝑟
𝑗
𝜇
2

(𝑡) 𝑔
∗

𝑗
(𝑧
𝑗
(𝑡)) 𝑔
𝑗
(𝑧
𝑗
(𝑡)) − 𝑟

𝑗
𝜇
2

(𝑡) 𝛾
𝑗
𝑧
∗

𝑗
(𝑡) 𝑧
𝑗
(𝑡) ≤ 0

(20)

for 𝑗 = 1, 2, . . . , 𝑛. Thus

𝜇
2

(𝑡) 𝑔
∗

(𝑧 (𝑡)) 𝑅
1
𝑔 (𝑧 (𝑡)) − 𝜇

2

(𝑡) 𝑧
∗

(𝑡) 𝑅
1
Γ𝑧 (𝑡) ≤ 0. (21)

Also, we can get that

𝜇
2

(𝑡) 𝑔
∗

(𝑧 (𝑡 − 𝜏 (𝑡))) 𝑅
2
𝑔 (𝑧 (𝑡 − 𝜏 (𝑡)))

− 𝜇
2

(𝑡) 𝑧
∗

(𝑡 − 𝜏 (𝑡)) 𝑅
2
Γ𝑧 (𝑡 − 𝜏 (𝑡)) ≤ 0.

(22)

From (7), we have that

0 = 𝜇
2

(𝑡) [𝑧̇ (𝑡) + 𝐶𝑧 (𝑡) − 𝐷𝑔 (𝑧 (𝑡)) − 𝐸𝑔 (𝑧 (𝑡 − 𝜏 (𝑡)))]
∗

× [𝑄
1
𝑧 (𝑡) + 𝑄

2
𝑧̇ (𝑡)] + 𝜇

2

(𝑡) [𝑄
1
𝑧 (𝑡) + 𝑄

2
𝑧̇ (𝑡)]
∗

× [𝑧̇ (𝑡) + 𝐶𝑧 (𝑡) − 𝐷𝑔 (𝑧 (𝑡)) − 𝐸𝑔 (𝑧 (𝑡 − 𝜏 (𝑡)))] .

(23)

It follows from (17), (21), (22), and (23) that

𝑉̇ (𝑡) ≤ 𝜇
2

(𝑡) 𝑤
∗

(𝑡) Ω𝑤 (𝑡) , 𝑡 ≥ 𝑇, (24)
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where 𝑤(𝑡) = (𝑧(𝑡), 𝑧̇(𝑡), 𝑧(𝑡 − 𝜏(𝑡)), 𝑔(𝑧(𝑡)), 𝑔(𝑧(𝑡 − 𝜏(𝑡))))
∗

and

Ω =
(
(

(

Ω
11

Ω
12

0 −𝑄
∗

1
𝐷 −𝑄

∗

1
𝐸

Ω
21

𝑄
∗

2
+ 𝑄
2

0 −𝑄
∗

2
𝐷 −𝑄

∗

2
𝐸

0 0 Ω
33

0 0

−𝐷
∗

𝑄
1

−𝐷
∗

𝑄
2

0 −𝑅
1

0

−𝐸
∗

𝑄
1

−𝐸
∗

𝑄
2

0 0 −𝑅
2

)
)

)

(25)

withΩ
11
= 2𝛼𝑃

1
+𝑃
2
+𝐶𝑄
1
+𝑄
∗

1
𝐶+𝑅
1
Γ, Ω
12
= 𝑃
∗

1
+𝑄
∗

1
+𝐶𝑄
2
,

Ω
21
= 𝑃
1
+ 𝑄
1
+ 𝑄
∗

2
𝐶, Ω
33
= −𝛽
2

(1 − 𝜌)𝑃
2
+ 𝑅
2
Γ. From (14),

we have thatΩ = Ω
𝑅

+ 𝑖Ω
𝐼. It follows from (13) and Lemma 5

thatΩ < 0. Thus, we get from (24) that

𝑉̇ (𝑡) ≤ 0, 𝑡 ≥ 𝑇, (26)

which means 𝑉(𝑡) is monotonically nonincreasing for 𝑡 ≥ 𝑇.
So we have

𝑉 (𝑡) ≤ 𝑉 (𝑇) , 𝑡 ≥ 𝑇. (27)

From the definition of 𝑉(𝑡) in (16), we obtain that

𝜇
2

(𝑡) 𝜆min (𝑃1) ‖𝑧(𝑡)‖
2

≤ 𝑉 (𝑡) ≤ 𝑉
0
≤ ∞, 𝑡 ≥ 𝑇, (28)

where 𝑉
0
= max

0≤𝑠≤𝑇
𝑉(𝑠). It implies that

‖𝑧 (𝑡)‖ ≤
𝑀

𝜇 (𝑡)
, 𝑡 ≥ 𝑇, (29)

where𝑀 = √𝑉
0
/𝜆min(𝑃1). The proof is completed.

Theorem 7. Assume that assumptions (H2) and (H3) hold.
Neural network (1) is globally𝜇-stable, if there exist two positive
definite Hermitian matrices 𝑃

1
= 𝑃
𝑅

1
+ 𝑖𝑃
𝐼

1
and 𝑃

2
= 𝑃
𝑅

2
+ 𝑖𝑃
𝐼

2
,

two real positive diagonal matrices 𝑅
1
> 0 and 𝑅

2
> 0, two

complex matrices 𝑄
1
= 𝑄
𝑅

1
+ 𝑖𝑄
𝐼

1
, 𝑄
2
= 𝑄
𝑅

2
+ 𝑖𝑄
𝐼

2
, a positive

differential function𝜇(𝑡) defined on [0,∞), and three constants
𝛼 ≥ 0,𝛽 > 0, and𝑇 > 0 such that conditions (12), (13), and (14)
in Theorem 6 are satisfied, where Ω𝑅

11
= 2𝛼𝑃

𝑅

1
+ 𝑃
𝑅

2
+ 𝐶𝑄
𝑅

1
+

(𝑄
𝑅

1
)
𝑇

𝐶 + 𝑅
1
Π and Ω𝑅

33
= −𝛽
2

(1 − 𝜌)𝑃
𝑅

2
+ 𝑅
2
Π.

Proof. From assumption (H2), we get
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑧
𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨
≤ 𝜂
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨
(30)

for 𝑗 = 1, 2, . . . , 𝑛. Let 𝑅
1
= diag(𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
) > 0. It follows

from (30) that

𝑟
𝑗
𝜇
2

(𝑡) 𝑔
∗

𝑗
(𝑧
𝑗
(𝑡)) 𝑔
𝑗
(𝑧
𝑗
(𝑡)) − 𝑟

𝑗
𝜇
2

(𝑡) 𝜂
2

𝑗
𝑧
∗

𝑗
(𝑡) 𝑧
𝑗
(𝑡) ≤ 0

(31)

for 𝑗 = 1, 2, . . . , 𝑛. Hence

𝜇
2

(𝑡) 𝑔
∗

(𝑧 (𝑡)) 𝑅
1
𝑔 (𝑧 (𝑡)) − 𝜇

2

(𝑡) 𝑧
∗

(𝑡) 𝑅
1
Π𝑧 (𝑡) ≤ 0. (32)

Also, we can get that

𝜇
2

(𝑡) 𝑔
∗

(𝑧 (𝑡 − 𝜏 (𝑡))) 𝑅
2
𝑔 (𝑧 (𝑡 − 𝜏 (𝑡)))

− 𝜇
2

(𝑡) 𝑧
∗

(𝑡 − 𝜏 (𝑡)) 𝑅
2
Π𝑧 (𝑡 − 𝜏 (𝑡)) ≤ 0.

(33)

Consider the Lyapunov-Krasovskii functional (16). From
(17), (23), (32), and (33), we can get that

𝑉̇ (𝑡) ≤ 𝜇
2

(𝑡) 𝑤
∗

(𝑡) Ω𝑤 (𝑡) , 𝑡 ≥ 𝑇, (34)

where 𝑤(𝑡) = (𝑧(𝑡), 𝑧̇(𝑡), 𝑧(𝑡 − 𝜏(𝑡)), 𝑔(𝑧(𝑡)), 𝑔(𝑧(𝑡 − 𝜏(𝑡))))
∗

and

Ω =
(
(

(

Ω
11

Ω
12

0 −𝑄
∗

1
𝐷 −𝑄

∗

1
𝐸

Ω
21

𝑄
∗

2
+ 𝑄
2

0 −𝑄
∗

2
𝐷 −𝑄

∗

2
𝐸

0 0 Ω
33

0 0

−𝐷
∗

𝑄
1

−𝐷
∗

𝑄
2

0 −𝑅
1

0

−𝐸
∗

𝑄
1

−𝐸
∗

𝑄
2

0 0 −𝑅
2

)
)

)

(35)

withΩ
11
= 2𝛼𝑃

1
+𝑃
2
+𝐶𝑄
1
+𝑄
∗

1
𝐶+𝑅
1
Π, Ω
12
= 𝑃
∗

1
+𝑄
∗

1
+𝐶𝑄
2
,

Ω
21

= 𝑃
1
+ 𝑄
1
+ 𝑄
∗

2
𝐶, Ω
33

= −𝛽
2

(1 − 𝜌)𝑃
2
+ 𝑅
2
Π. From the

proof of Theorem 6, we know that neural network (1) is 𝜇-
stable. The proof is completed.

Corollary 8. Assume that assumptions (H1) and (H3) hold
and 𝜏(𝑡) ≤ 𝜏. Neural network (1) is globally exponentially
stable, if there exist two positive definite Hermitian matrices
𝑃
1
= 𝑃
𝑅

1
+ 𝑖𝑃
𝐼

1
and 𝑃

2
= 𝑃
𝑅

2
+ 𝑖𝑃
𝐼

2
, two real positive diagonal

matrices 𝑅
1
> 0 and 𝑅

2
> 0, two complex matrices 𝑄

1
=

𝑄
𝑅

1
+ 𝑖𝑄
𝐼

1
, 𝑄
2
= 𝑄
𝑅

2
+ 𝑖𝑄
𝐼

2
, and a constant 𝜀 > 0 such that

conditions (13) and (14) inTheorem 6 are satisfied, whereΩ𝑅
11
=

2𝜀𝑃
𝑅

1
+ 𝑃
𝑅

2
+ 𝐶𝑄
𝑅

1
+ (𝑄
𝑅

1
)
𝑇

𝐶 + 𝑅
1
Γ, Ω𝐼
11
= 2𝜀𝑃

𝐼

1
+ 𝑃
𝐼

2
+ 𝐶𝑄
𝐼

1
−

(𝑄
𝐼

1
)
𝑇

𝐶, Ω𝑅
33
= −𝑒
−2𝜀𝜏

(1−𝜌)𝑃
𝑅

2
+𝑅
2
Γ, Ω𝐼
33
= −𝑒
−2𝜀𝜏

(1−𝜌)𝑃
𝐼

2
.

Proof. Let 𝜇(𝑡) = 𝑒
𝜀𝑡 (𝑡 ≥ 0); then 𝜇̇(𝑡)/𝜇(𝑡) = 𝜀, 𝜇(𝑡 −

𝜏(𝑡))/𝜇(𝑡) = 𝑒
−𝜀𝜏(𝑡)

≥ 𝑒
−𝜀𝜏. Take 𝛼 = 𝜀, 𝛽 = 𝑒

−𝜀𝜏, and 𝑇 = 0.
It is obvious that condition (12) inTheorem 6 is satisfied.The
proof is completed.

Corollary 9. Assume that assumptions (H1) and (H3) hold
and (𝑡) ≤ 𝛿𝑡(0 < 𝛿 < 1). Neural network (1) is globally power
stable, if there exist two positive definite Hermitian matrices
𝑃
1
= 𝑃
𝑅

1
+ 𝑖𝑃
𝐼

1
and 𝑃

2
= 𝑃
𝑅

2
+ 𝑖𝑃
𝐼

2
, two real positive diagonal

matrices 𝑅
1
> 0 and 𝑅

2
> 0, two complex matrices 𝑄

1
=

𝑄
𝑅

1
+ 𝑖𝑄
𝐼

1
, 𝑄
2
= 𝑄
𝑅

2
+ 𝑖𝑄
𝐼

2
, and two constants 𝜀 > 0 and 𝑇 > 0

such that conditions (13) and (14) in Theorem 6 are satisfied,
where Ω𝑅

11
= (2𝜀/𝑇)𝑃

𝑅

1
+ 𝑃
𝑅

2
+ 𝐶𝑄
𝑅

1
+ (𝑄
𝑅

1
)
𝑇

𝐶 + 𝑅
1
Γ, Ω𝐼
11

=

(2𝜀/𝑇)𝑃
𝐼

1
+𝑃
𝐼

2
+𝐶𝑄
𝐼

1
−(𝑄
𝐼

1
)
𝑇

𝐶,Ω𝑅
33
= −(1−𝛿)

2𝜀

(1−𝜌)𝑃
𝑅

2
+𝑅
2
Γ,

Ω
𝐼

33
= −(1 − 𝛿)

2𝜀

(1 − 𝜌)𝑃
𝐼

2
.

Proof. Let 𝜇(𝑡) = 𝑡
𝜀 (𝑡 ≥ 𝑇); then 𝜇̇(𝑡)/𝜇(𝑡) = 𝜀/𝑡 ≤ 𝜀/𝑇,

𝜇(𝑡 − 𝜏(𝑡))/𝜇(𝑡) = (1 − 𝜏(𝑡)/𝑡)
𝜀

≥ (1 − 𝛿)
𝜀. Take 𝛼 = 𝜀/𝑇,

𝛽 = (1 − 𝛿)
𝜀. It is obvious that condition (12) inTheorem 6 is

satisfied. The proof is completed.

It is similar to the proof of Corollaries 8 and 9, and we
have the following results.

Corollary 10. Assume that assumptions (H2) and (H3) hold
and 𝜏(𝑡) ≤ 𝜏. Neural network (1) is globally exponentially
stable, if there exist two positive definite Hermitian matrices
𝑃
1
= 𝑃
𝑅

1
+ 𝑖𝑃
𝐼

1
and 𝑃

2
= 𝑃
𝑅

2
+ 𝑖𝑃
𝐼

2
, two real positive diagonal
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matrices 𝑅
1
> 0 and 𝑅

2
> 0, two complex matrices 𝑄

1
= 𝑄
𝑅

1
+

𝑖𝑄
𝐼

1
, 𝑄
2
= 𝑄
𝑅

2
+ 𝑖𝑄
𝐼

2
, and a constant 𝜀 > 0 such that conditions

(13) and (14) in Theorem 7 are satisfied, where Ω𝑅
11

= 2𝜀𝑃
𝑅

1
+

𝑃
𝑅

2
+𝐶𝑄
𝑅

1
+ (𝑄
𝑅

1
)
𝑇

𝐶+𝑅
1
Π,Ω𝐼
11
= 2𝜀𝑃

𝐼

1
+𝑃
𝐼

2
+𝐶𝑄
𝐼

1
− (𝑄
𝐼

1
)
𝑇

𝐶,
Ω
𝑅

33
= −𝑒
−2𝜀𝜏

(1 − 𝜌)𝑃
𝑅

2
+ 𝑅
2
Π, Ω𝐼
33
= −𝑒
−2𝜀𝜏

(1 − 𝜌)𝑃
𝐼

2
.

Corollary 11. Assume that assumptions (H2) and (H3) hold
and 𝜏(𝑡) ≤ 𝛿𝑡 (0 < 𝛿 < 1). Neural network (1) is globally power
stable, if there exist two positive definite Hermitian matrices
𝑃
1
= 𝑃
𝑅

1
+ 𝑖𝑃
𝐼

1
and 𝑃

2
= 𝑃
𝑅

2
+ 𝑖𝑃
𝐼

2
, two real positive diagonal

matrices 𝑅
1
> 0 and 𝑅

2
> 0, two complex matrices 𝑄

1
= 𝑄
𝑅

1
+

𝑖𝑄
𝐼

1
, 𝑄
2
= 𝑄
𝑅

2
+ 𝑖𝑄
𝐼

2
, and two constants 𝜀 > 0 and 𝑇 > 0

such that conditions (13) and (14) in Theorem 7 are satisfied,
where Ω𝑅

11
= (2𝜀/𝑇)𝑃

𝑅

1
+ 𝑃
𝑅

2
+ 𝐶𝑄
𝑅

1
+ (𝑄
𝑅

1
)
𝑇

𝐶 + 𝑅
1
Π, Ω𝐼
11

=

(2𝜀/𝑇)𝑃
𝐼

1
+𝑃
𝐼

2
+𝐶𝑄
𝐼

1
−(𝑄
𝐼

1
)
𝑇

𝐶, Ω𝑅
33
= −(1−𝛿)

2𝜀

(1−𝜌)𝑃
𝑅

2
+𝑅
2
Π,

Ω
𝐼

33
= −(1 − 𝛿)

2𝜀

(1 − 𝜌)𝑃
𝐼

2
.

Remark 12. In [18, 23], the authors studied the global stability
of complex-valued neural networks with time-varying delays,
and the activation function was supposed to be

𝑓
𝑗
(𝑧) = 𝑓

𝑅

(𝑥, 𝑦) + 𝑖𝑓
𝐼

(𝑥, 𝑦) , (36)

where 𝑧 = 𝑥+ 𝑖𝑦 and 𝑓𝑅
𝑗
(⋅, ⋅), 𝑓𝐼

𝑗
(⋅, ⋅) are real-valued for all 𝑗 =

1, 2, . . . , 𝑛, and the partial derivatives of 𝑓𝑅
𝑗
(⋅, ⋅), 𝑓𝐼

𝑗
(⋅, ⋅) with

respect to𝑥 and𝑦were required to exist and be continuous. In
this paper, both the real parts and the imaginary parts of the
activation functions are no longer assumed to be derivable.

Remark 13. In [21], the authors investigated boundedness and
stability for discrete-time complex-valued neural networks
with constant delay, and the activation functionwas supposed
to be

𝑓
𝑗
(𝑧) = max {0,Re (𝑧)} + 𝑖max {0, Im (𝑧)} . (37)

Also, the authors gave a complex-valued LMI criterion for
checking stability of the considered neural networks. But a
feasible way to solve the given complex-valued LMI is not
provided. In this paper, the criteria for checking stability
of the complex-valued neural networks are established in
the real LMI, which can be checked numerically using the
effective LMI toolbox in MATLAB.

4. Examples

Example 1. Consider a two-neuron complex-valued neural
network with constant delay

𝑢̇ (𝑡) = −𝐶𝑢 (𝑡) + 𝐷𝑓 (𝑢 (𝑡)) + 𝐸𝑓 (𝑢 (𝑡 − 𝜏)) + 𝐻, (38)

where

𝐶 = (
1 0

0 1
) , 𝐷 = (

1 + 𝑖 −2 + 𝑖

1 − 𝑖 −1
) ,

𝐸 = (
1 + 𝑖 𝑖

−1 + 𝑖 2
) , 𝐻 = (

2 − 𝑖

−2 + 𝑖
) , 𝜏 = 2,

𝑓
𝑅

𝑗
(𝑢
𝑗
) =

1

32
(
󵄨󵄨󵄨󵄨󵄨
Re (𝑢
𝑗
) + 1

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Re (𝑢
𝑗
) − 1

󵄨󵄨󵄨󵄨󵄨
) , 𝑗 = 1, 2,

𝑓
𝐼

𝑗
(𝑢
𝑗
) =

1

32
(
󵄨󵄨󵄨󵄨󵄨
Im (𝑢

𝑗
) + 1

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Im (𝑢

𝑗
) − 1

󵄨󵄨󵄨󵄨󵄨
) , 𝑗 = 1, 2.

(39)

It can be verified that the activation functions 𝑓
𝑗
sat-

isfy assumption (H1), the time-varying delay 𝜏(𝑡) satisfies
assumption (H3), and 𝐷

𝑅

= ( 1 −2
1 −1

), 𝐷𝐼 = ( 1 1
−1 0

), 𝐸𝑅 =

( 1 0
−1 2

), 𝐸𝐼 = ( 1 1
1 0

), Γ = (
1/64 0

0 1/64
), 𝜌 = 0. There exists a

constant 𝜀 = 0.2, and by employing MATLAB LMI toolbox,
we can find the solutions to the LMI under conditions (13)
and (14) in Corollary 8 as follows:

𝑃
1
= (

41.2118 −6.8812 − 4.2410𝑖

−6.8812 + 4.2410𝑖 40.6762
) ,

𝑃
2
= (

26.0370 −4.1385 − 0.7600𝑖

−4.1385 + 0.7600𝑖 25.9447
) ,

𝑅
1
= (

785.9319 0

0 857.0773
) ,

𝑅
2
= (

560.5160 0

0 617.1000
) ,

𝑄
1
= (

−61.6337 + 1.1580𝑖 9.2494 + 0.6392𝑖

9.1464 + 0.1434𝑖 −61.4512 − 1.3717𝑖
) ,

𝑄
2
= (

−63.1096 − 0.5628𝑖 10.2662 + 2.7895𝑖

10.1047 − 3.3169𝑖 −62.0592 + 0.6291𝑖
) .

(40)

Then all conditions in Corollary 8 are satisfied. Therefore the
neural network (38) is globally exponentially stable. Figures
1 and 2 depict the real and imaginary parts of states of the
considered neural network (38), where initial condition is
𝑧
1
(𝑡) = 0.5, 𝑧

2
(𝑡) = −1 − 0.5𝑖.

Example 2. Consider a two-neuron complex-valued neural
network with unbounded time-varying delays

𝑢̇ (𝑡) = −𝐶𝑢 (𝑡) + 𝐷𝑓 (𝑢 (𝑡)) + 𝐸𝑓 (𝑢 (𝑡 − 𝜏 (𝑡))) + 𝐻, (41)

where

𝐶 = (
1 0

0 1
) , 𝐷 = (

1.5 + 3𝑖 −1 + 2𝑖

−2 − 2𝑖 2.5 + 0.5𝑖
) ,

𝐸 = (
0.5 + 𝑖 𝑖

−2 + 0.5𝑖 1 + 0.5𝑖
) , 𝐻 = (

2 + 𝑖

−2 + 𝑖
) ,

𝜏 (𝑡) = 0.2𝑡,

𝑓
1
(𝑢
1
) =

1

20
(
󵄨󵄨󵄨󵄨𝑢1 + 1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑢1 − 1

󵄨󵄨󵄨󵄨) ,

𝑓
2
(𝑢
2
) =

1

20
(
󵄨󵄨󵄨󵄨𝑢2 + 1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑢2 − 1

󵄨󵄨󵄨󵄨) .

(42)

It can be verified that the activation functions 𝑓
𝑗
satisfy

Condition (H2), the time-varying delay 𝜏(𝑡) satisfies assump-
tion (H3), and 𝐷

𝑅

= ( 1.5 −1
−2 2.5

), 𝐷𝐼 = ( 3 2
−2 0.5

), 𝐸𝑅 = ( 0.5 0
−2 1

),
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Figure 1: State trajectories of neural network (38).
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Figure 2: State trajectories of neural network (38).

𝐸
𝐼

= ( 1 1
0.5 0.5

), Π = ( 0.01 0
0 0.01

), 𝜌 = 0.2. There exist two
constants 𝜀 = 1 and 𝑇 = 10, and by employing MATLAB
LMI toolbox, we can find the solutions to the LMI under
conditions (13) and (14) in Corollary 11 as follows:

𝑃
1
= (

39.8524 14.7299 − 3.2336𝑖

14.7299 + 3.2336𝑖 31.5075
) ,

𝑃
2
= (

23.9471 9.7114 − 1.3426𝑖

9.7114 + 1.3426𝑖 18.8527
) ,

𝑅
1
= 10
3

× (
1.3534 0

0 1.0135
) ,

𝑅
2
= (

584.6278 0

0 429.3048
) ,
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Figure 3: State trajectories of neural network (41).
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Figure 4: State trajectories of neural network (41).

𝑄
1
= (

−51.8770 − 1.5115𝑖 −16.7003 + 0.6185𝑖

−16.8517 − 0.9537𝑖 −40.7204 + 1.0687𝑖
) ,

𝑄
2
= (

−60.4708 + 0.2332𝑖 −21.2500 + 3.6232𝑖

−21.6247 − 3.5095𝑖 −48.2459 − 0.1731𝑖
) .

(43)

Then all conditions in Corollary 11 are satisfied. Thus the
neural network (41) is globally power stable. Figures 3 and 4
depict the real and imaginary parts of states of the considered
network (41), where initial condition is 𝑥

1
(𝑡) = 0.5 sin(0.5𝑡)𝑖,

𝑥
2
(𝑡) = −0.5 + 1.5 cos(0.3𝑡)𝑖.



8 Abstract and Applied Analysis

5. Conclusion

In this paper, the global 𝜇-stability of complex-valued neural
networks with unbounded time delays has been investi-
gated by employing a combination of Lyapunov-Krasovskii
functionals and the free weighting matrix method. Several
sufficient conditions for checking the global 𝜇-stability of
the considered complex-valued neural networks have been
given in linearmatrix inequality (LMI), which can be checked
numerically using the effective LMI toolbox in MATLAB.
As direct applications, we can get the exponential stability
and power stability, with respect to different time-varying
delays. Two examples have been provided to demonstrate the
effectiveness and less conservatism of the proposed criteria.

Remark 14. Note that the activation functions in this paper
are continuous. Recently, neural networks with discontinu-
ous activations have received more and more attention [31–
34]. Based on the results of this paper, we will consider 𝜇-
stability of complex-valued neural networks with discontin-
uous activations in future.
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