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Taking into account that interval-valued fuzzy numbers can provide more flexibility to represent the imprecise information and
interval-valued trapezoidal fuzzy numbers are widely used in practice, this paper devotes to seek an approximation operator that
produces an interval-valued trapezoidal fuzzy number which is the nearest one to the given interval-valued fuzzy number, and the
approximation operator preserves the core of the original interval-valued fuzzy number with respect to the weighted distance. As
an application, we use the interval-valued trapezoidal approximation to handle fuzzy risk analysis problems, which overcome the

drawback of existing fuzzy risk analysis methods.

1. Introduction

The theory of fuzzy set, proposed by Zadeh [1], has received
a great deal of attention due to its capability of handling
uncertainty. Uncertainty exists almost everywhere, except in
the most idealized situations; it is not only an inevitable and
ubiquitous phenomenon, but also a fundamental scientific
principle. As a generalization of an ordinary Zadeh’s fuzzy
set, the notion of interval-valued fuzzy sets was suggested
for the first time by Gorzalczany [2] and Turksen [3]. It was
introduced to alleviate some drawbacks of fuzzy set theory
and has been applied to the fields of approximate inference,
signal transmission and control, and so forth.

In 1998, Wang and Li [4] defined interval-valued fuzzy
numbers and gave their extended operations. In practice,
interval-valued trapezoidal fuzzy numbers are widely used
in decision making, risk analysis, sensitivity analysis, and
other fields [5-7]. In this paper, we are interested in approxi-
mating interval-valued fuzzy numbers by means of interval-
valued trapezoidal fuzzy numbers to simplify calculations.
The interval-valued trapezoidal approximation must preserve
some parameters of the given interval-valued fuzzy number,
such as «-level set invariance, translation invariance, scale

invariance, identity, nearness criterion, ranking invariance,
and continuity. Considering that the core (a-level set, where
« = 1) of an interval-valued fuzzy number is an important
parameter in practical problems, we use the Karush-Kuhn-
Tucher Theorem to investigate the interval-valued trapezoidal
approximation of an interval-valued fuzzy number, which
preserves its core.

The plan of this paper goes as follows. Section 2 contains
some basic notations of interval-valued fuzzy numbers and
the «a-level set of interval-valued fuzzy numbers is presented,
which differs from [8]. Some results related to interval-
valued fuzzy numbers are investigated, these results will be
frequently referred to in the subsequent sections. Section 3
is devoted to seek an approximation operator T' : IF(R) —
IFT(R) that produces an interval-valued trapezoidal tuzzy
number which is the nearest one to the given interval-valued
fuzzy number among all interval-valued trapezoidal fuzzy
numbers, and it preserves the core of the original interval-
valued fuzzy number with respect to the weighted distance
D;. In Section 4, some properties of the approximation
operator such as translation invariance, scale invariance,
identity, nearness criterion, ranking invariance, and distance
property are discussed. As an application we also use the
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approximation operator to handle fuzzy risk analysis prob-
lems, which provides us with a useful way to deal with fuzzy
risk analysis problems in Section 5.

2. Preliminaries

2.1. Fuzzy Numbers. In 1972, Chang and Zadeh [9] intro-
duced the conception of fuzzy numbers with the considera-
tion of the properties of probability functions. Since then, the
theory of fuzzy numbers and its applications have expansively
been developed in data analysis, artificial intelligence, and
decision making. This section will remind us of the basic
notations of fuzzy numbers and give readers a better under-
standing of the paper.

Definition 1 (see [11-13]). A fuzzy number A is a subset of the
real line R, with the membership function g4 : R — [0,1]
such that the following holds.

(i) A isnormal; that s, there is an x, € R with p(x,) = 1.
(i) A is fuzzy convex; that is, y(Ax + (1 — A)y) =
min{u(x), u(y)}, for any x, y € Rand A € [0, 1].
(iii) u is upper semicontinuous; that is, H_l([oc, 1]) is
closed for any « € [0, 1].
(iv) The support of u is bounded; that is, the closure of
{x € R: pu(x) > 0} is bounded.

We denote by F(R) the set of all fuzzy numbers on R.
Let A € F(R), whose membership function pu(x) can
generally be defined as [14]

ly(x), a<x<b,
, b<x<c,
= 1
ux) ra(x), c<x<d, M
0, otherwise,

where a,b,¢c,d € R, 1, : [a,b) — [0,1] is a nondecreas-
ing upper semicontinuous function such that I,(a) = 0,
I,b) = 1.7y : (c,d] — [0,1] is a nonincreasing upper
semicontinuous function satisfying r,(c) = 1, r,(d) = 0.1,
and r, are called the left and the right side of A, respectively.

For any « € (0, 1], the «-level set of a fuzzy number A is
a crisp set defined as [15]

Ay={xeR:pu(x)>al. (2)
The support or 0-level set A, of a fuzzy number is defined as
Ay ={x € R:pu(x) =0} (3)

It is well known that every a-level set of a fuzzy number A is
a closed interval, denoted as

A, =[A_(2),A, (@], (4)
where
A_(a)=inf{x € R:u(x)>a},

A, (x)=sup{x € R:p(x)>a}. ©)

It is obvious that A_(«) and A, («) are the inverse functions
of I, and r, respectively.
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An often used fuzzy number is the trapezoidal fuzzy
number, which is completely characterized by four real
numbers t; < t, < t; < t,, denoted by T' = {t,,1,,15,1,}
and with the membership function

X —t
Lt <x<ty,
t =t
1, t, <x <t
p(x) =9+ —x ? } (6)
4
. ty <X <ty
t, =13
0, otherwise.

We write F7 (R) as the family of all trapezoidal fuzzy numbers
onR.

2.2. Interval-Valued Fuzzy Numbers. This section is devoted
to review basic concept of interval-valued fuzzy numbers,
which will be used extensively throughout this paper.

Let I be a closed unit interval; that is, I = [0, 1] and [I] =
{a=[a,a'l:a <a*,a,a" eI}.

Definition 2 (see [16]). Let X be an ordinary nonempty set.
Then the mapping A : X — [I] is called an interval-valued
fuzzy set on X. Allinterval-valued fuzzy sets on X are denoted
by IF(X).

An interval-valued fuzzy set A defined on X is given by

A={(x[A"(x),A" (0)]) : x e X}, ()

where 0 < AL(x) < AY(x) < 1. The interval-valued fuzzy set
A can be represented by an interval A(x) = [AY(x), AY (x)],
and the ordinary fuzzy sets A* : X — ITand AY : X — I
are called a lower and an upper fuzzy set of A, respectively.

Definition 3 (see [17]). If an interval-valued fuzzy set A(x) =
[AL(x), AY(x)] satisfies the following conditions:

(i) A is normal, that is, there is an x, € R with A(x,)
[1) 1]3

(i) A is convex, that is, A"(Ax + (1 — L))
min(A"(x), A*(y)) and AYOx + (1 - A)y)
min(AU(x),AU(y)) forany x, y € Rand A € [0, 1],

\YA\Y

(iii) AX(x) and AY(x) are upper semicontinuous,

(iv) the support of AL(x) and AY(x) are bounded, that is,
the closure of {x € R : AX(x) > 0} and {x € R :
AY(x) > 0} are bounded,

then A is called an interval-valued fuzzy number on R. All
interval-valued fuzzy numbers on R are denoted by IF(R).
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For any A = [AL, AY] € IF(R), the lower fuzzy number
A" and the upper fuzzy number AY can be represented as
(1 (x), a"<x<bh
1 br<x<c
Alx)=4" -y 8
(x) erL(x), k< x<dh ®)
L0, otherwise,
(Lo (x), a’<x<bY,
1 Wexs<d?
AU X) = < > - - > 9
) rau (X)), Y <x<d’, ©)
L0, otherwise,

respectively, where ab vt cbdlkav, v, Y, dY e R AL
[a",bY) — [0,1], and Lo : [aY,bY) — [0,1] are
nondecreasing upper semicontinuous functions, such that
Le(@™) = 0, Le() = 1, Lw@”) = 0, and Lo@Y) =
Lre : (hd] — [0,1],and rpw : (Y,dY] — [0,1]
are nonincreasing upper semicontinuous functions fulﬁlling
rAL(c )=1, rﬁ(d )=0, rAu(c )=1, andrAu(d ) =

Ifa" = a’,b —b,C:C,dL_dU,lAL():
Lo(x), and 7,4.(x) = ru(x), that is, AX(x) = AY(x), then
the interval-valued fuzzy number A = [AL, AY] is a fuzzy
number.

For any o € [0, 1], the «-level set of an interval-valued
fuzzy number A is defined as

Ay ={(xy) e R : A" (x) 2 2, A" (y) > a}
= {(x, y)eR :x¢ [AL_ (a), A" (oc)] , (10)
ye[a (@), Al @]},

where A% (a), Aﬁ((x), AY(a) and Ag(oc) are the inverse
functions of Iz, 741, L, and 7 ,u, respectively. If A* = AY,
then this definition coincides with (4). The core of A is
presented as

coreA = {(x,y) €eR:x¢ [AE (1), A" (1)] ,
(11)
yel[aZ),al ]}

Theorem 4. Let A", AV € F(R). A = [A", AY] € IF(R) if and
only zfAL_](oc) < Ak (a), A[i(oc) > AI;(oc)for any « € [0,1].

Proof. 1f: If x € [a¥,bY), then there exist a;, «, €
that

[0, 1], such

oy =1l (x), o, =lu(x). (12)
Since AY(a) < AL («) for any « € [0, 1], this implies that
x =AY (a,) < A" () 2 X, (13)

where x' € [aY, b*]. By the monotonicity of [ ., we have

L () < Ly (x') =y = Ly (x). (14)

Similarly, we can prove that ruv(x) > r,(x) for any x €
(cV,dY]. if x € [BY, Y], then AY(x) = 1 > A"(x). Therefore,
Al(x) < AY(x) for any x € [aY,dY]; thatis, A = [AL, AY] €
IF(R).

Only if: If « € [0, 1], then there exist x, € [av, Y], x, €
[a%, b'], such that

=A%), x,=A"(a). (15)

Since [ yv(x) > I4:(x) for any x € [aY, Y], this implies that
a=1lw(x)=Le(x)2d, (16)
where o € [0, 1]. By the monotonicity of AL, we have
AL_ () = AL_ ((x’) =x; = A[f (). (17)

Similarly, we can prove that A[f(oc) > Aljr («) forany e € [0, 1].
This concludes the proof. O

It is well known, interval-valued fuzzy numbers with sim-
ple membership functions are preferred in practice. However,
as a particular of interval-valued fuzzy numbers, interval-
valued trapezoidal fuzzy numbers could be wide applied
in real mathematical modeling. Thus, the properties of the
interval-valued trapezoidal fuzzy number are discussed as
follows.

Definition 5 (see [6, 18-20]). Let A = [A", AY] € IF(R). If
AL, AY € FT(R), then A is called an interval-valued trape-
zoidal fuzzy number. The lower trapezoidal fuzzy number A"
is expressed as

( L
x—t
1 L L
ﬁ, tl <x< t2’
L L
AL (x) = - lt,L fsxsts (18)
-x
4, ty<x<tp
th— ¢l
0, otherwise,

and the upper trapezoidal fuzzy number A is expressed as

fU

X - U U
t;]—tU’ ) <x<t,,
1, t <x<t s
Ax) =1 (19)
fy —x ty <x <ty
—_ X
U U) b
t4 _ts
0, otherwise.

An interval-valued trapezoidal fuzzy number A can be
represented as A = [(t7, t5, 5, ¢5), (¢, £, £, t])]. The family
of all interval-valued trapezoidal fuzzy numbers on R is
denoted as IFY (R).

Theorem 6. Let A", AV ¢ F'(R). A = [A", AY] € IF'(R) if
and only if t! < t1, ¢ <15, ¢ > th and t] > tL.



2.3. The Weighted Distance of Interval-Valued Fuzzy Numbers.
In 2007, Zeng and Li [21] introduced the weighted distance of
fuzzy numbers A and B as follows:

1
& AB) = [ @4 @B () da
’ (20)

1
+ j (@) (A, (@) - B, (@) da,

where the function f(«) is nonnegative and increasing on
[0,1] with f(0) = 0 and _[01 f(a)da = 1/2. The function
f(«) is also called the weighting function. The property of
monotone increasing of function f(«) means that the higher
the cut level, the more important its weight in determining
the distance of fuzzy numbers A and B. Both conditions

f(0) = 0 and Iol f(a)da = 1/2 ensure that the distance
defined by (20) is the extension of the ordinary distance in
R defined by its absolute value. That means, this distance
becomes an absolute value in R when a fuzzy number reduces
to a real number. In applications, the function f(«) can be
chosen according to the actual situation.

We will define the weighted distance of interval-valued
fuzzy numbers as follows. It can be considered as a natural
extension of the weighted distance d;(A, B) of fuzzy num-
bers.

Definition 7. Let A, B € IF(R). The weighted distance of A
and B is defined as

Jl £ (@) (A" (@) - B (&) da

1
D, (AB) = -
2 0

1 1/2
+ L F@)(AL (@) - B (oc))zdoc>
+ (Ll £ (@) (A% (@) - B («)) e
1 5 1/2
N L Fe(AY @ - BY (@) doc) ]

- L[ 5) e (%)
(21)

If A" = A and B" = BY, then D;(A, B) = d (A, B).

Property 1. Let A, B € IF(R). Then D;(A, B) = 0 if and only if
D(AL, BY) = 0 and D(AY, BY) = 0.

Theorem 8. (IF(R), D;) is a metric space.
By the completeness of metric space (F(R),d f), we can
obtain the following conclusion.

Theorem 9. The metric space (IF(R), Dy) is complete.

2.4. The Ranking of Interval-Valued Fuzzy Numbers. The
ranking of fuzzy numbers was studied by many researchers
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and it was extended to interval-valued fuzzy numbers because
of its attraction and applicability. We will propose a ranking of
interval-valued fuzzy numbers, which embodies the impor-
tance of the core of interval-valued fuzzy numbers.

Definition 10. Let A, B € IF(R). The ranking of A, B can be
defined by the following formula:

AxBe A" (1)+ AL (1) = BE (1) + BL (1),

(22)
A1) +AY (1) =B (1) +BY (1).
Example 11. Let
1-(x-3)?% «xe€[24],
Al (x) = B (x) =
(x) (x) {0, otherwise,
(1-(x-3) «x€[2,3),
AU(_x): <1, x€[3,5],
-X+ 6, X € (5, 6] s (23)
L0, otherwise,
[1-(x-3)%  x€[2,3),
1
BY (x) = <1—§(x—3)2, x €[3,6],
0, otherwise.

We obtain coreA = {(x,y) € R*:x = 3,y € [3,5]} and
coreB = {(x, y) € R*:x= 3,y = 3}. By a direct calculation,
we have A > B.

3. Weighted Interval-Valued
Trapezoidal Approximation

3.1 Criteria for Interval-Valued Trapezoidal Approximation.
If we want to approximate an interval-valued fuzzy number
by an interval-valued trapezoidal fuzzy number, we must
use an approximate operator T : IF(R) — IFT(R) which
transforms a family of all interval-valued fuzzy numbers A
into a family of interval-valued trapezoidal fuzzy numbers
T(A); that is, T A — T(A). Since interval-valued
trapezoidal approximation could also be performed in many
ways, we propose a number of criteria which the approxi-
mation operator should possess at least one. Reference [22]
has given some criteria for the fuzzy number approximation,
similarly we give some criteria for interval-valued trapezoidal
approximation as follows.

3.1.1. a-Level Set Invariance. An approximation operator T is
a-level set invariant if
(T'(A))y = A (24)

Remark 12. For any two different levels «; and «, («; # «,),
we obtain one and only one approximation operator which is
invariant both in «; - and «,-level set.

Proof. Let A = [AL, AY] € TR(R), A, = {(x,y) € R* : x €
[A" (), AL ()], y € [AY(a), AY(a)]}, € [0,1]. Then we
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can obtain one and only one interval-valued trapezoidal fuzzy
number T(A) = [(T(A))", (T(A))"], where

Al A (o) al e,

@M%=[

a, —a,
L L
A=) o)t ()],
U .U
(T (A)Y = [A_ (OZ) _i_ (@) (=) + A7 (o),
2 1

LR ) ) )|
(25)
It is obvious that
(T (A)y, = {(x. ) € R : x € [AL (a)), A ()],
y € [AZ (), AT ()]}
(26)
(T (A))a, = {(x.7) e R : x e [AL (@), A ()],
)’E[ (ay), A (“2)]}
Hence (T(A))m1 = ADC1 and (T(A))(X2 = A“Z. ]

3.1.2. Translation Invariance. For A € IF(R) and z € R, we
define

A+z=[A+2)"(A+2)"], (27)
where (A +2), = {(x, y) € R*: x € [AY(a) + 2, Aﬁ(oc) +
z], y € [AY(@) + 2, AY() + 2]}, & € [0, 1]; that s,
(A+2)" (@)= A (@) + 2,
(28)
(A+2)" (@) = A" (a) + 2,
A+2)Y () =AY (a) +z,
(29)
(A+2)Y () = AY (@) + 2.

An approximation operator T is invariant to translation if

T(A+z)=T(A)+z, z€R. (30)
Translation invariance means that the relative position of the
interval-valued trapezoidal approximation remains constant
when the membership function is moved to the left or to the

right.

3.1.3. Scale Invariance. For A € IF(R) and A € R\ {0}, we
define

AA = (245,247 (31)

5
When A > 0, (A4), = {(x,y) € R* : x € AAY(w),
AAN ()], y € [MAY(a), AAY ()]}, & € [0, 1]; that is,
A (@) = 14" (@),
AL (@) = AAT (),
(32)
(A4)Y (@) = 147 (a),
AA)Y (@) = 24Y ().
When A < 0, AA), = {(x,y) € R* : x € [AAL(a),

AA" ()], y € [AAY (), AAY ()]}, & € [0, 1]; that s,

AA" (@) = LA (a),

(33)
AA)Y (@) = AA" (a),
AA)Y (@) = A4 (),

(34)
AA)Y (@) = 24Y ().

We say that an approximation operator T is scale invariant if

T(AA) = AT (A), AeR\{0}. (35)
3.1.4. Identity. 'This criterion states that the interval-valued
trapezoidal approximation of an interval-valued trapezoidal
fuzzy number is equivalent to that number; that is, if A €
IF"(R), then

T (A) = A. (36)

3.1.5. Nearness Criterion. An approximation operator T ful-
fills the nearness criterion if for any interval-valued fuzzy
number A its output value T'(A) is the nearest interval-valued
trapezoidal fuzzy number to A with respect to the weighted
distance D; defined by (21). In other words, for any B €
IFT(R), we have

D, (AT (A)) < D, (A, B). (37)

Remark 13. We can verify that IF(R) is closed and convex, so
T(A) exists and is unique.

3.1.6. Ranking Invariance. A reasonable approximation oper-
ator should preserve the accepted ranking. We say that an
approximation operator T is ranking invariant if for any
A, B € TF(R),

A>»Be=T(A)=T(B). (38)
3.1.7. Continuity. Let A,B € IF(R). An approximation

operator T is continuous if for any € > 0, there is § > 0; when
D;(A, B) < 6, we have

D, (T (A),T (B)) < e. (39)

The continuity constraint means that if two interval-valued
fuzzy numbers are close, then their interval-valued trape-
zoidal approximations also should be close.



3.2. Interval-Valued Trapezoidal Approximation Based on the
Weighted Distance. In this section, we are looking for an
approximation operator T IF(R) — IFY(R) which
produces an interval-valued trapezoidal fuzzy number, that
is, the nearest one to the given interval-valued fuzzy number
and preserves its core with respect to the weighted distance
D; defined by (21).

Lemma 14. Let A € F(R), A, = [A_(®), A ()], « € [0,1].
If function f(e) is nonnegative and increasing on [0, 1] with

f(0) = 0and Jol f(x)da = 1/2, then we have
(i)
- .[01 fl@(l-a)|a-A_(1)-A_(a)] da
[} (@=1f (@) da

<A_(1), (40)

(i)
_.[olf(oc)(l —a)[a A, (1)- A, (a)] da
[} (@ 1)f (@) da

> A, (1). (41)

Proof. (i) See [23] the proof of Theorem 3.1.

(ii) Since A, () is a nonincreasing function, we have
A, () > A (1) for any & € [0,1]. By f(x) > 0, we can prove
that

1-a)A, (@) f(@)2(1-a)A, (1) f ()
=[@-1-a(@-D]A, (1) f(@).

(42)
According to the monotonicity of integration, we have
1
J (I1-a)A, (a) f (@) da
o (43)
> J [(@-17-a(@-1D]A, Q) f (@) da.
0
That is
1
L (I-a)A, (a) f () da
1
—A+(1)J' a(l—a) f(a)da (44)
0

1
> A, (1) J (o = 12 f () dov.
0
Because [ (a — 1)* f(a)dex > 0, it follows that

_jol fl@@-a)[a-A,(1)-A, ()] da
[ (@~ 1*f (@) dat

> A, (1). (45)

O
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Theorem 15 (see [24]). Let f, gy, 95 ---»9m : R — R be
convex and differentiable functions. Then X solves the convex
programming problem:
min  f(x),
st. g;(x)<b

(46)
ie{l,2,...,m},

if and only if there exist y;,i € {1,2,...,mj}, such that

(i) VF(x) + Z iV gi(x) =

(ii) g;(x) - b < 0;

(iii) ;> O;
(iv) g (b - g;(x)) = 0

Suppose that A = [AL AY] € IF(R), Ay, =1{(x,9) € R*:
x € [AY@),AL@)],y € [A%a), AY(@)]}, a € [0,1]. We
will try to find an interval-valued trapezoidal fuzzy number
T(A) = [(th Lt eh), (tY, 45,45, 65)], which is the nearest
interval-valued trapezoidal fuzzy number of A and preserves
its core with respect to the wezghted dzstance DI 771us we have
to find such real numbers t-, t%, t5, t5, tV,t5, ¢ and t{ that
minimize

Dy (A, T (A))

([ 560 (4 @ i+ (- ) )t

1
2

[ e @-( (tg_tg)a))zda)l/z
(j @) (A% @)~ (¥ + (& - V) a)) de
o[ e - _(tg_t;f)a))zda)l/z]

(47)
with respect to condition coreA = coreT (A); that is,
y=AN(), =A%),
(48)
t) =AY (1), t7 =A% (1).
It follows that
<ty t) <ty (49)
Making use of Theorem 4, we have
t)<th,  h<d. (50)
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Using (47) and (50), together with Theorem 6, we only need to
minimize the function

F(tnt6.t)
i f f @At @~ (i + (AL () - 1) o) da
f) re k@ (- (- At )l
@@= (1 (a0 - ) o) o

1
¥ L F)[aY @) - (& - (& - A7 (1) )] da,
(51)

subject to

tV-tr<o, -t <o (52)

After simple calculations we obtain
F(ttt7,t])
- Ll @) (1 - ada- ()
+ Ll @) (1 - ada- (i)
+ Ll @) (1 - afda- ()
+ Ll @) (1 - afda- ()

+2Llf(06)(1—“)[OC'AL_(I)—AL_(oc)]doc-tf

—

N

+2J fl)(1—a) o AL (1) - A" ()] da - t (53)

o

+2j1f<oc><1—oc)[oc-A‘f(l)—A?(a)]da.tgf

o

+2rf(oc)(1—oc)[oc-A‘j(l)—AE(a)]da-tf
1 L L 5

+J f (@) (A" (@) —a- A" (1)) da
! 2

+J f (@) (A% (@) —a- A% (1) da
! 2

+J f @) (A% (@) - a- A7 (1)) da

! 2
+ J f @ (AL (@ -a-AY (1)) da,

subject to
-t <o,
(54)
ty—t] <o.

We present the main result of the paper as follows.

Theorem 16. Let A = [A", AY] € IF(R), A, = {(x,y) €
R x e [Al@),AL@)]y € [A%),A@)]} a €
[0,1]. T(A) = [(th 5 ek th), ¢V, 65, ¢5,¢9)] is the nearest
interval-valued trapezoidal fuzzy number to A and preserves
its core with respect to the weighted distance D;. Consider the
following.

(i) If
[ F@0-a[aa%m 4% @] do
b (55)
—J fl@)(1-a)[a-AL (1) - AL (@)] da <0,
0
jlf(oc)(l —a) [a- A7 (1) - AT ()] dax
’ (56)

- jlf(oc)(l —a) [a- AL (1) - AL (@)] da <0,
0
then we have

tfztgjz—((Llf(oc)(l—oc) [a- AL (1) - AT (@)] dax

+ Ll f@-a)|a-AY(1)-AY (@)] d(x>

< <z Ll Fl@)(- oc)zdoc>_1> ,

o S @0-a)fa Al - AL @)]da
' 0 @1 - 0da ’

tU__Jolf(a)(l —a) [a- AV (1) - A (0)] dox

' [} £ (@ (1 - 0)da
(57)
(ii) If
jlf(oc)(l—a) [a- A7 (1) - AY (@)] dax
B (58)
—J f@)(1-a)fa- A" (1) - A" (@)] da <0,
0
Jlf(a)(l —a) [ AV (1) - AT ()] dax
’ (59)

1

—J f@)(1-a)[a- AL (1) - A (@)] da >0,
0



t

it =t‘{=—<<Llf(a)(1-a)[a-

L
4

then we have
AL (1) - A" ()] da

+ jolf (@) (1 -a) [a- A7 (1) = A7 (o)] doc)

x (2 Ll Fle) (- oc)zdoc)_1> :

1
=t§’=—<<L fl@)(1-a)fa-Al (1) - A (@)] da
! U U
+J0f(oc)(1 —a) [oc-A+(l)—A+(oc)]doc>
1 -1
X (2 L f(a)(1- (x)zdoc> ) .
(60)
(ifi) If
[ F@0 - [ A% - 4% @] do
o (61)
—J f)(1-a)fa- AL (1) - AL ()] da 2 0,
0
Jlf(oc)(l —a) [a- AV (1) - AT ()] dax
’ (62)

—Jlf(a)(l—a) [ac- A% (1) = A% ()] da > 0,
0

then we have

i If(oc)(l—oc)[oc AL (1) - A" ()] dax
' [} f () (1 - da

) [a-AY (1) - AU((x)]d(x
Jf(oc)(l—cx) do

o b f@a-

1
ti=t] = ((Lf(oc)(l—oc) a- A% (1) - AL (o)) da

+Jl F@ - [a-a7 1) - 4% @] doa

0

X (z Ll f (@) (1-a) 2da>l> .

(63)
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(i) I
[ r@a-afea?0)- 4 w] do
_ Ll f@1-a)fa-A" (1) - A" (@)]da >0,
(64

Jl fl@)(1-a)|a-AT (1) - A (@)] da
0

- Jlf((x)(l—(x) [a- A% (1) - A (@)] da <0,
0

then we have

o @@= [a- 4t (1) - A" (@)] da
1 fo @ (1 - @)da
U p f@ - a-a%1) - A% (@) da
1 [0 f (@) (1 - a)da

(65)

L _Iolf(oc)(l —a) [a- AL (1) - AL ()] da
) [} f @ (1-a da

U _.[01 fa)(1-a) [‘X : Alf(l) - AE{ ((x)] da
' [ f (@) (1 - a)des

Proof. Because the function F in (53) and conditions (54)
satisfy the hypothesis of convexity and differentiability in
Theorem 15, after some simple calculations, conditions (i)-
(iv) in Theorem 15 with respect to the minimization problem
(53) in conditions (54) can be shown as follows:

1
21t L F(@ (1 - a)da

+2rf(oc)(l —a) [a- A (1) - A" (@)] doc -y =0,
’ (66)

1
21 L F(@) (1 - 0)da

+2J1f(06)(1—06) [a- AL (1) - AL ()] do+ , = 0,
0
(67)

1
v L F (@1 - a)da

+2rf(oc)(1 —a) [ AY (1) - AY (@) | dox + py = 0,
0
(68)
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oY Ll F(@) (1 a)da

+2J1f(a)(1—a) [a- AT (1) - AY (@)] d -, = 0,
0

(69)

w () -t7) =0, (70)
w(ty—t])=0 (71)
t =0, (72)

Uy, 20, (73)
-t <o, (74)
ty—t] <o. (75)

(i) In the case y; > 0 and p, = 0, the solution of the system
(66)-(75) is

th =1 = —( (Llf(oc)(l—oc) [a- A" (1) - A" (@)] dax

+ Ll f)(1-a)fa- A7 (1) - AY ()] doc)

X <2 Ll fa)(1- oc)zdoc>l> ,

L _Iolf(oc)(l ~a)[a- AL (1) - AL (@)] da
[} £ (@ (1 - )de

>

~
N

U _folf(oc)(l —a) [a- AV (1) - A ()] dox
' Jol f@)(1-a)da '

(76)

Firstly, we have from (55) that i, > 0, and it follows from
(56) that

o hf@0-@)a At - A @) da
o fo £ (@ (1 - @)da

_ Iolf(oc)(l —a) [a- AY (1) - AY ()] dax
[} f (@ - da

= (Jl fl@)(1-a)fa- AL (1) - A (@)] da
0

- Jl f@@-a)[a-A (1) - AT (@)] doc)
0

!

x <Ll Fla)(- oc)zd(x>

> 0.
(77)

Then conditions (72), (73), (74), and (75) are verified.

Secondly, combing with (48), (55), and Lemma 14 (i), we
can prove that

tz _tl

=AY (1) + ( <jlf(oc)(1 —a) [a- AL (1) - A" ()] da
0

N Llf(a) (1-@a- A7 (1) - 4% (@)] doc)

X (z Ll Flo)(1- oc)zdoc>_l>

b [ f@@ - a4 1) -AY )] da

> Alf( : .
Jo f(@) (1 -a)yda
> 0.
(78)
And on the basis of (50), we have
ty -t >t) — 7 > 0. (79)
By making use of (48) and Lemma 14 (ii), we get
o [} f@@ - a7 1) -AY ()] da
e [ £ (@) (1 - @ da
-AY (1) =0,
(80)

L _folf(oc)(l —a) [a- AL (1) - A% (0)] da
b [} f (@ - da

~AY () =0

It follows from (49) that (tf, té, t§, t4L) and (tllj, t;], tgj, ti]) are
two trapezoidal fuzzy numbers.

Therefore by Theorem 6 and (50), T(A) = [(t}, t5, ¢4, t}),
(t?, tg, t[3], tf{)] € IFT(R) is the nearest interval-valued trape-
zoidal approximation of A in this case.

(ii) In the case y; > 0 and p, > 0, the solution of the
system (66)-(75) is

L
tl

:tﬁ’:—(([olf(a)u—a) [a- AL (1) - A" (@)] dax

+ Ll f@@-a)|a-aY 1) - A% (@)] doc>

< (2 Ll Flo)(1- oc)zdoc>_l> :

ty =1,

:—(<Jlf(oc)(1—oc) [ac- A% (1) - A (@)] dax
0
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+ Ll f@-a) oA (1) - AT (@)] doc>

! =
><<2 L f(oc)(l—cx)zdoc> )
p = Ll f@ - fa-A (1) - AL ()] da
- Ll f@)(1-a)fa-AY (1) - AY ()] dav,
o =—Llf(oc>(1—oc) o~ AL (1) - A% ()] dax

+ Jl f@) (1 -a)[a- A7 (1) - AY ()] da.
0
(81)

We have from (58) and (59) that y; > 0 and g, > 0. Then
conditions (72), (73), (74), and (75) are verified.

Furthermore, by making use of (48), (50), and (58)
similar to (i), we can prove that

ty—ti>t) —t7 > 0. (82)
According to (48), (59), and Lemma 14 (ii), we obtain
ty —t3

1
=-A7(1) - ( (L fl@)(1-a)[a- AL (1) - A (@)] da

" Llf (@1 - [a- A7 1) -4 @] doc>

X (z Ll fa)(1 - oc)zdoc>1>

[ f@-a)fa-aY ) -AY(@)]da

>-AY (1) - :
2
|, £ @ (1 -a)’da
> 0.
(83)
This implies that
th—th>t) ) > 0. (84)

It follows from (49) that (tII“, tIZ“, tIS“, ti‘) and (t?, tg, tg, tf{) are
two trapezoidal fuzzy numbers.

Therefore by Theorem 6 and (50), T(A) = [(tf, t%, tg, ti),
(t}’, t;j, tgj, ti])] € IF'(R) is the nearest interval-valued
trapezoidal approximation of A in this case.

(iii) In the case y; = 0 and p, > 0, the solution of the
system (66)-(75) is

o @00 fa- At )~ A" @) da
1 [} f @ (1-a da ’

o _jol f@)(1-a)[a-AY (1) - AY (a)] dex
1 [ f (@0 -ada

>
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L_4U : L L
s =1 :_<<L flo)(1-a) [“'A+(l)—A+(oc)]doc

+ Ll f@@-a)|a-A (1) - AT (@)] doc)

><<2 Ll f () (1 - (x)zdtx>1) ,

th =0,

1
po==| f@0-) fa-aL 1) - 4% )] da

1

+ J f@1-a)fa-AY (1) - AY (@)] da.
0
(85)

First, we have from (62) that 1, > 0. Also, it follows from
(61), we can prove that

LU Iol @)1 -a)|a-AY (1) - AY ()] da
[ f (@) (1- 0 da

1 1

_ Iolf(oc)(l —a) [a- A" (1) - A" ()] da
IOI f (o) (1 - a)’da

= <J1f(oc)(1 -~ [a- A7 (1) - A (o)] dox
0

1

- L f@ - fa-AL (1) - AL (@] doc)

1 -1
x <j F@- oc)zdoc>
0
> 0.
(86)

Then conditions (72), (73), (74), and (75) are verified.
Secondly, combing with (48) and Lemma 14 (i), we have

-ty
AL ()4 Jolf(oc)(l—a) [oc-AI;(l)—AI;(oc)]d(x o
7 [} £ (@ (1 - 0)da
Y Y
2 1
_ AU+ Jolf(a)(l—cx) [oc-A‘f(1)—A‘_f(a)]da .

[} f @@ -a)da

(87)

According to (48), (50), (62), and the second result of

Lemma 14 (ii), similar to (ii), we can prove that ti - t§ >

tf{ - tgj > 0. It follows from (49) that (tf, t%, té, tf;) and
(t?, tg, tg, tf{) are two trapezoidal fuzzy numbers.
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Therefore by Theorem 6 and (50), T(A) = [(tf, t%, tg, ti),
(t?, tg, tgj, tf{)] € IFT(R) is the nearest interval-valued trape-
zoidal approximation of A in this case.

(iv) In the case y; = 0 and y, = 0, the solution of the
system (66)-(75) is

o hf@a-@fa At () - A" @] da
1 [ f (@) (1 - a)da

>

_ _fol fe)(1-a)[a-AY (1) - AY ()] dax
[} f (@ (1 - da

t

>

. Jolf(oc)(l—a)[a.Aﬁ(l)—Aﬁ(a)]da (88)
. [y f (@) (1 - a)da

>

o _[01 f@)(1-a)[a-AY (1) - AY ()] dex
' [} f @ - ’da '

th =0, = 0.

By (64), similar to (i) and (iii) we have tf —tllj > 0and tf{—tﬁ >
0; then conditions (72), (73), (74), and (75) are verified.

Furthermore, similar to (i) and (iii), we can prove that
(th,th,t5,t5) and (t7,4,4),1]) are two trapezoidal fuzzy
numbers.

Therefore by Theorem 6 and (50), T(A) = [(tIf, té‘, tg‘, tﬁ),
(tllj, tg], tgj, tff)] € IFY(R) is the nearest interval-valued trape-
zoidal approximation of A in this case.

For any interval-valued fuzzy number, we can apply one
and only one of the above situations (i)-(iv) to calculate the
interval-valued trapezoidal approximation of it. We denote

Llf(a)(l ~a)[a-AY (1) - AY (@) da

_Llf(“)“—“) [ac- Y (1) - A ()] da < 0,

Llf(“)(l o) [a- AT (1) - AT (@)] da

_Llf(oc)(l—oc) [a.Aﬁ(l)—Aﬁ(a)]daso},
0, = {A = [AhAY] e F®) :

Jolf(“)(l -0 [a- A7 (1) - A7 (@] da

—Jlf(a)(l—a) [a- AL (1) - AY ()] da < 0,
0

Jl f@)1-a)fa-AT (1) - A (@)] da
0

1
_Llf(a)(l_a) [a-Aﬁ(l)—Aﬁ(oc)]dooo},
Q, = {A =[AhAY] e IFR) :
Ll f@@-a[a-A(1)-AY ()] da
- Jol f@1-a)fa-AL (1) - A" (@)] da >0,
jol f@) @ -a)[a- AT (1) - AT (@] da
—Llf(oc)(l—oc) [a-Aﬁ(l)—Aﬁ(w]dwO}’
Q, = {A =[AhAY] e IFR) -
Ll )1 -a)fa-AY(1)-AY (@] da
- JOI @ -a)fa-AL (1) - A" (@)] da >0,
Ll f@) (1= [a-AY (1) - AT (a)] da
—Llf(oc)(l—oc) [oc-Aﬁ(l)—Aﬁ(oc)]docﬂ}-
(89)

It is obvious that the cases (i)-(iv) cover the set of all interval-
valued fuzzy numbers and Q,, Q,, Q;, and Q, are disjoint
sets. So the approximation operator always gives an interval-
valued trapezoidal fuzzy number. O

By the discussion of Theorem 16, we could find the
nearest interval-valued trapezoidal fuzzy number for a given
interval-valued fuzzy number. Furthermore, it preserves the
core of the given interval-valued fuzzy number with respect
to the weighted distance D;.

Remark 17. If A = [AF, AY] € F(R), that is, ALY = AY, then
our conclusion is consisten with [23].

Corollary 18. Let A = [ALAY] =
U U U U

(a;,a,,a5,a,),] € IF(R), wherer > 0 and

L L L L
((ar,ay,a5,a,),,

L L
a; < x<a,,

1 at <x<ak
At (x) =17 2 3

L L
a, <x<ay,

0, otherwise,
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U U
a; <x<ay,

AU(X):< ,aU—x r angga;J,
() & exsd
0, otherwise.
(90)
(i) If f(x) = e and
( 6r’ +51’+1)(a2 —az) 2(51’+1)( _af)<0’
()
( —6r’ +5r+1)(a3 —a3) 2(5r+1)( af)so,
then
LU _(—6r2+5r+ 1)(a5 +a5) - 2Gr+1)(a) +af)
1~ 1 — )

2(1+2r)(1+3r)

( 6r? +5r+l)a3 2(5r+ 1) ay

th = ,
(1+2r)(1+3r)
U _(—6r2+5r+1)a§]—2(5r+1)af
¢ (1+2r)(1+3r)
(92)
(ii) If f(a) = aw and
—6r* +5r + 1 a —at -2(Br+1)(a —aL <0,
( 2 1 (©3)
—6r* +5r+1)(a¥ —at -2(Br+1)(a Y_ak) o,
( ) (e - a; A
then
=17
(et wsra)(a) v ay) -2(5r+ 1) (o) + ay)
B 2(1+2r)(1+3r) ’
th=1t7

(-6 +5r+1)(a +ay)—2(r+1)(a] +ay).
2(1+2r)(1+3r)

(94)
(iii) If f (&) = o and
(650 1) () 257 D (a0 el 20,
(95)
(-6r® +5r+1) (a5 —a5) =257 + 1) (a] —ay) >0,
then
i (—6r2+5r+1)a2L—2(57+1)“1L
1=~ (L+2r)(1+3r) )
U ( —6r2 +5r+1)a2 2(57""1)“1

i (1+2r)(1+3r) ’
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U
4
(-6 +5r+1)(af +a3) -2 (57 + 1) (af +ay)
2(1+2r)(1+3r) '

(96)
(iv) If f(a) = x and
(—6r2+5r+1)(a —az) 2(5r+1)( —alL) >0,
5 U (97)
(—6r* +5r+1)(a —ay)—2(5r+ 1) (a] —ay) <0,
then
tL——( 612 +5r+1)a2 2(51’+1)a1
b (1+2r)(1+3r) ’
U _(—61’2 + 51 + 1)a§]—2(5r+ l)af
b (1+2r)(1+3r) ’
2 L L 08
tL__(—6r +5r+1)a3 -2(Gr+1)ay
o (1+2r) (1 +3r) ’
U _(—6r2 + 51 + 1)a§—2(5r+ 1)a)
4 (1+2r)(1+3r)
Proof. Let A = [AL, AY] = [(af,ag‘,ag,af)

(aY,ag, a, ,a4) ] € IF(R). We have A () = al + (a2L alL)

", AY(a) = a, +(a2 —al Yy.allr, AL 1) = a4 (a4 —a3) allr,
and AY(@) = a) (a4 —aY) - a'". 1t is obvious that
At =ab, AY(1) =aY, AL (1) = a3L, and AY(1) = af. Then
by f(«) = &, we can prove that

jl f@Q-a)fa- AL (1) - AL («)] da
0

(—6r2 + 57 + l)aZL —-2(5r + l)alL

12(1+2r)(1+3r)
J.lf(oc)(l —a) [a- A7 (1) - A (0)] dax
0

(-6r* +5r+1)ay —2(5r + 1) a}

12 (1 + 2r) (1 + 3r)

1
L f@)(1-a) [a- AL (1) - A (@)] dax (99)
(—6r% +5r +1)ay —2(5r + 1) ay

- >

12(1 +2r) (1 + 3r)

Jl f@-a)fa-AY (1) - AY (@)] da
0

( 6r’ +5r+1)a3 2(51’+1)a4

12(1 +2r) (1 + 3r)

1 ) _1
Jof(oc)(l—oc) dcx—ﬁ.

According to Theorem 16 the results can be easily obtained.
O
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Example 19. Let A = [ALAY] =
(2,3,6,8);),] € IF(R) and f(«) = a. Since

[(2) 4: 5) 7)1/2)

(-6r* +5r+1)(ay —ay) —2(5r+ 1) (a) —ay) = -2 <0,

(-6 +5r+1)(ay —ay) —2(5r + 1) (a —ay) = -5 <0,
(100)

thatis, A = [AL, AY] satisfies condition (i) of Corollary 18, we
have

(-6 +5r+1)(a) +a3) -2 (57 + 1) (af +ay)
2(1+2r)(1+3r)

_?
=%
. (-6 +5r+1)ay—2(5r+ Day 39
ty=— ==,
4 (1+27r) (1 +3r) 5
v (-6 +5r+1)a) —2(5r+ Day 44
t4 = — = —

(1+2r)(1+3r) 5°

(101)
Therefore, T(A) = [(7/5,4,5,39/5),(7/5,3,6,44/5)] €
IFT(R) is the nearest interval-valued trapezoidal fuzzy num-
ber to A, which preserves the core of A.

Remark 20. Let A = [AF, AY] € IF(R). T(4) = [T(AD),
T(AY)] be not true in general.

Example 21 Let A" = (2,4,5, 7, € FR), AY =
(2,3,6, 8)1/2 € F(R), and f(«) = «. Then, according to
condition (iv) of Corollary 18, we have

(—6r2+5r+1)a§—2(5r+1)a{“ 6

= -2
! (1+2r)(1+3r) 5
v (-6 +5r+1)a) -2(5r+ a g
t = — = -,
! (1+27r) (1 + 37) 5
(102)
. (-6 +5r+1)ay—2(5r+ )ay 39
th=— ==,
4 (1+2r) (1 +3r) 5
v (-6 +5r+1)a) —2(5r+ )af 44
t4 = — = —

(1+2r)(1+3r) 5°

Therefore, T(AY) = (6/5,4,5,39/5) and T(AY) =
(8/5,3,6,44/5). Based on Example 19, we known that T(A) #
[T(AY), T(AY)]. Further, we have from Theorem 6 that
[T(AL), T(AY)] is not a trapezoidal interval-valued fuzzy
number.

4. Properties of the Interval-Valued
Trapezoidal Approximation Operator

In this section we consider some properties of the approx-
imation operator suggested in Section 3.2. With respect to

13

the criteria, translation invariance, scale invariance, identity,
nearness criterion, and ranking invariance, we present the
following results.

Theorem 22. The approximation operator T : IF(R) —
IFT(R) which preserves the core of the initial interval-valued
fuzzy number has the following properties.

(i) The operator T is invariant to translations; that is,
forany A € IF(R) and z € R,

T(A+z)=T(A)+z. (103)

(ii) The operator T is scale invariance; that is, for any
A € IF(R)and A € R\ {0},

T (AA) = AT (A). (104)

(iii) The operator T fulfills the identity criterion; that is,
for any A € IFT(R),

T(A) = A. (105)

(iv) The operator T fulfills the nearness criterion with
respect to the weighted distance Dy; that is,

D; (A, T(A)) <D; (A, B), (106)

for every A € IF(R) and B € IFT(R) such that coreB =
coreT(A).

(v) The operator T is core invariance; that is, for any
A € IE(R),

coreT (A) = coreA. (107)

(vi) The operator T is ranking invariance; that is,
A>BeT(A)>T(B), (108)
for every A, B € IF(R).

Proof. If A € IF(R), according to (28) and (48), we have

tA+2)=(A+2)" (1) = A" (1) +z=t5 (A) +2. (109)
Similarly, we can prove that

t; (A+2) =t5 (A) +2,
t)(A+z) =t (A) +z,

(110)

tJ(A+z) =t (A) +z
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Furthermore, we have from (28) and (29) that

Jl fl@@-a)|a-(A+2)5 1) - (A+2)! ()] da
0
= Jlf(oc)(l —a) [a- AT (1) - AL ()] da
0

1
. J F(@) (1 - ) da,
0

1
J fl@-a)fa-(A+2)7 1) - (A+2)" (@)]da

0

= Jlf(oc)(l —a) [+ AY (1) - AY ()] dax
0

1
. j £ (@) (1 - a)’da,
0

Jl f@-a)|a-(A+2); (1) - (A+2)] (@) da
0
- J.lf((x)(l — o) [a- AL (1) - AL (@)] da
0

1
-z J f(a) (1 - a)’da,
0

1
J fl@-a)fa-(A+2)7 (1) - (A+2)] (@)]da

0

= Jlf((x)(l —a) [a- A (1) - AT ()] dax
0

1
2 j £(0) (1 - ).
0
an)

Then, one can easily prove that the interval-valued fuzzy
number A satisfies one of conditions (i)-(iv) of Theorem 16
if and only if the interval-valued fuzzy number A + z satisfies
the same condition. In any case of Theorem 16, by making use
of (111), we obtain

tr (A+2) =t (A) +2,
(112)
ty (A+2) =ty (A) +2,

forevery k € {1, 4}. Therefore, combine the above results with
(109) and (110) and we have T(A + z) = T'(A) + z.

(ii) Let A € IF(R). If A > 0, combing with (32), similar to
(i), we can prove that T(AA) = AT(A).

If A < 0, we have from (33) and (48) that

th (A4) = (AA)" (1) = A" (1) = Ah(A). (13)
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Similarly, we can prove that

th(AA) = ML (A), £ (AA) =AY (A),

(114)
t7 (AA) = AtY (A).

Furthermore, it follows from (33) and (34) that
1
| f@a-we0at0 -0 @] da
1
= AJ fl@)(1-a)[a- AL (1) - A} (@)] da,
0

1
|, f@a-wle-0arn-04Y @]da

= )lef(a)(l —a) [a- AT (1) - AT (@)] dax,
0

(115)
1

| f@-w e 00 - 04 @] da
= Ajlf(a)(l ~a)[a- AL (D) - AL (@)] da,
0
1
L Fl@(-a) e 1a? 1) - 14 @] da

- Ajlf(a)(l - o) [a- A% (1) - A7 @] da.
0

Thus, AA is in the case (i) of Theorem 16 if and only if A is
in the case (iii) of Theorem 16. Then making use of (115) and
Theorem 16, we get

th(AA) = ML (A),  th(AA) = Mth(A),

(116)

7 (AA) = MY (A), ] (AA) = MY (A).

Therefore, combine the above results with (113) and (114) and
according to (33) and (34) we have

T (AA) = [(t; AA), 15 (AA), t5 (AA), £ (A4)) ,
(7 (A4), 15 (AA), 15 (AA), ] (14))]
= [(Aeg At Ay Aey ), (A A5, A A (117)
=A[(t1 1 15, 15)» (15551557 )]
= AT (A).

Analogously, AA is in the case (ii) of Theorem 16 if and only
if A is in the case (ii) of Theorem 16. AA is in the case (iii) of
Theorem 16 if and only if A is in the case (i) of Theorem 16. A A
is in the case (iv) of Theorem 16 if and only if A is in the case
(iv) of Theorem 16. In each case tﬁ (AA) = Atjs‘_k(A), tkU(/\A) =
/\tlsj_k(A), for every k € {1,2, 3,4}; therefore, T(AA) = AT(A).

(iii) If A € IFT(R), then A is in the case (iv) of Theorem 16
and T(A) = A.
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(iv) and (v) are the direct consequences of Theorem 16.
(vi) By (22) and Theorem 16, we can obtain the conclu-
sion. [

The continuity is considered the essential property for
an approximation operator. However, the approximation
operator given by Theorem 16 is not continuous, as the
following example proves.

Example 23 (see [25]). Let us consider A € F(R) ¢ IF(R),
A, = [A_(x), A, ()], @ € [0,1], such that A_(1) < A,(1)
and the sequence of fuzzy numbers (A,),cy is given by

(A,) (@) =A_(a) +a" (A, (1) - A_(1)),
(An)+ (x) = A+ ((X) > (118)
«€[0,1].

It is easy to check that the function (A,,)_(«) is nondecreasing
and (A,)_(1) = A, (1) = (A,),(1); therefore, A, is a fuzzy
number, for any n € N. Then, according to the weighted
distance d f defined by (20), we have

47 (A, A) = (A, () -A_(1) Jl f («) a¥"da

0

1
0

sf(l)(A+(1)—A,(1))2J oPde (119)

_fW(A ) -A- )

2n+1

It is immediate that lim A_ = A. Now, denote

n— o0 n

T (A) = (t,tyt55ty),

T(An) = (tl (n),t, (n),t;(n),t, (”)),
ne N.

(120)

Because operator T preserves the core of fuzzy number A, by
(48) we have

Jim 6, (n) = lim (4,)_(1) = A, (1) > A_(1) =£,. (121)

By seeing Lemma 3 [25], we cannot have lim, _, (T(4,) =
T(A) with respect to the weighted distance d ;. It follows from
Heiné’s criterion that T is discontinuous.

To overcome the handicap of discontinuity of the approxi-
mation operator T we present the following distance property.

Lemma 24. Let T, = [(t:(n),tk(n), tE(n), t£(n)), (Y (n),
tlzj(n),tg(n),tf{(n))] be a sequence of interval-valued trape-
zoidal fuzzy numbers. Iflim,,_, tr(n) = t7, lim,_, o t7 (n) =
tf.], i e {1,2,3,4}, then lim, , T, = T with respect
to the weighted distance D;, where T = [(tIf, té‘, tg‘, tﬁ),

@V, ¢, ¢7,6)] € IFT(R).

Proof. It is similar to the proof of Lemma 2 in the paper [25].
O
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Theorem 25. Let A = [A, AY] € IF(R), A, = {(x,y) €
R : x e [A"@),A"@)]y € [A%@), AV @)}, a €
[0,1], and A, = [A];l,AZ](n € N) be a sequence of
interval-valued fuzzy numbers, where (A,), = {(x,y) €
R :x € [(AH)_(), (AL, (@], y € [(AY) (), (AY), ()]},
a € [0,1]. If (AL)_(), (AL), (), (AY)_(a) and (AY), ()
are uniform convergent sequences to Al (a), Aﬁ(oc), AY(a) and
AY(«), respectively, then

Jim T (A,) =T (A, (122)
with respect to the weighted distance Dj.
Proof. We denote
T(A) = [(t1. 15, t5: 1) » (1515517 )]
T(A,) = [(t; (). 15 (), £5 (), £ (m)),

(t] ()15 (), £5 (), 1] ()], meN.
(123)

Because (AY)_(a), (A"), (@), (AY)_(«) and (AY), () are
uniform convergent sequences to Al (w), Aﬁ(oc), AY(a) and
AY(a), respectively, we have

1
lim_ j Fl@)-afa-(4) (1)- (L) @]da
= jl f@-a)[a- AL (1) - A% (@)] dav,

1
lim J f@@-a)fa-(A}), (1) -(47), @]da

= Jl f@)1-a)[a- AL (1) - AL (@)] da,

1 (124)
lim_ j F@-a[a-(aY) (1)-(AY) @]da
= jl f@ - fa-a” (1) - a7 (@) da,
0
1
Jim [ f@a-wa(47), - (4), @] da
- Jl F@ - [a-aY (1) - A% )] das,
0
and by (48) we obtain
nangoté (n) = nlingo(AL =A"1) =1,
nangotg (n) = lim_ AV =4 =1,
(125)

(1) =A%) =4,

n—00 +

")
(4%)
lim 5 (n) = lim (A})
(A7) =471 =1.

.U T
nleréo t; (n) = lim .

n— 00



16

Considering the following cases.

(i) A = [AL, AY] satisfies condition (i) of Theorem 16; the
following situations are possible.

(i,) If

Jl fl@)1-a)fa-AY (1) - A7 ()] da
0

- jlf(oc)(l —a) [a- AT (1) - AL (@) dax < 0,
° (126)

Jlf(a)(l —a) [ AT (1) - AT ()] dax
0
- Jlf(cx)(l —a) [a- AL (1) - AL (@) da < 0,
0

then there exists N, when n > N, A, satisfies condition (i) of
Theorem 16. We have from (124) that

lim tf (n)
n—00

1
= —nango< <L f () (1-a)
x[ac- (A7) (1) = (AL)_(e)] de
1
N jo F@-w

o (49)_(0 - (4Y)_(@)] da)

x(z Ll f () (1 - oc)zdoc>1>
_ _< (Ll F@ 1 -a)[a- AL (1) - A" (@)] dax

+ Ll fl@)(1-a)a-A” 1) - A7 ()] doc)

: e )“ o
X(ZJOf(oc)(l a) da =t],

,,h_,r%ot? (n) = nlLIréotIf (n) = t]f = t?,
Jim g ()
. Jo £@ (- [a- (L) (1) - (A%), (@)]da
=—lim
nmee fo @) (1 - a)’da

b @a-a)fa Al o) - AL @] da
[} £ (@1 - a)da

L
= t4’

Journal of Applied Mathematics

. U
A s ()

Jo f@@-a)[a-(a7), (1)~ (4)), (@)]da

= - lim

e [} f @ - da
jo @) [a- A (1) - AT (0)] dox
Jo f () (1-a)’da
=t

127)

According to (125), and Lemma 24, we havelim,, , ,T(4,) =
T(A) with respect to the weighted distance D;.

(iy) If
[ f@0-w0a-a%(0) - 4% @) da
0
—Jlf(a)(l—oc)[oc-Af(l)—A%(oc)]doc<0,
7 (128)
Jf((x)(l—a) [ac- AT (1) - AY ()] dax
0

—Jlf(a)(l—a) [a- A% (1) - AL (@)] da = 0,
0

then there exists N, whenn > N, A, satisfies condition (i) or
condition (ii) of Theorem 16 and

1
Jim [ F@a-wla(ah), 1) (41), @] da

= dim J f@-ofa- (A7), (1) - (A7), @] do
(129)

In both two cases, we can prove
lim 7 (1)
n— oo

_ _H1Ln30< (Ll Fle)(1-a)

o (45). 0~ (A1) (@)
1
+j0 F@)(1-a)

[ (%)) - (49)_] )

x (2 Ll Flo) (1 oc)zdoc>_1 )
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——<<J1f(rx)(1—a) [o- AL (1) - AL (@)] dac
0

+ Ll fl@)(1-a)fa-A” 1) - A7 ()] doc)

-1
><<2 Jl Fl@)(- oc)zdoc> ) -
0

.U L L_ .U
nlgrolotl (n)=nli>ngot1 (n) =t =t],

. L
nh_)néo ty (n)

x [a-(AL), (1) = (AL), (@)] da
1
+ L f@(1-a)fa- (A7), (1)

- (47), @) da)

< <2 Ll Fle)(1 - oc)zdoc>l>

. [y f@@-afa-(AL), (1)~ (AL), (@)] da
= — lim
noeo [} f () (1 - @ da

f@-ofa-al@-al@]de
[} f @ (1~ da

.U L L_ U
nlg%ot4 (n):nlLrIgot4(n):t4:t4.

(130)

Then according to (125),
lim, , T(A,) =
distance Dj.

(ii) A = [AL, AY] satisfies condition (ii) of Theorem 16.
The proof is analogous with the proof of case (i,).

(iii) A = [AL, AY] satisfies condition (iii) of Theorem 16.
The proof is analogous with the proof of case (i).

(iv) A = [AL, AY] satisfies condition (iv) of Theorem 16;
the following situations are possible.

(iv,) If

and Lemma24, we have
T(A) with respect to the weighted

Jl f@)1-a)fa-AY 1) - AY ()] da
0

—Jlf(a)(l—(x) [a- AL (1) - AY ()] da > 0,
° (131)

Jl fl@)(1-a)|a-AT (1) - A (@)] da
0

—Jlf(a)(l—(x) [ac- A% (1) - AL ()] da < 0,
0

the proof is analogous with the proof of (i,).
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(ivy) If
1
| F@a-afa a0~ 4% @)]da
0
—jlfw)(l—oc) [a- AT (1) - AL (@)] dax =
’ (132)

Jl f@1-a)fa-AY (1) - A (@)] da
0

—Jlf(oc)(l—oc) [a- A% (1) - A (@)] do =
0

then there exists N, when n > N, A, satisfies condition (i),
(ii), (iii), or (iv) of Theorem 16, and

1
JLI%OI fl@)1-afa- (A7) (1)-(A}) (@)]da
= lim J fl@)@-afa- (A7) 1)- (A7) (@)]da
lim L fl@)(1-a)fa- (Afl)+ 1) - (Af,)+ ()] dax

1
= lim L f(a)(1-a) [(x-(A‘,{)+(1) - (A‘,{)+ ()] de.
(133)

In either cases among (i), (ii), (iii), and (iv), it follows from
(133) that

= - lim_ < (j fl@)1-afa(AL) 1)-(AL) (@]da
+ J: f)(1-a)
o (4%)_ 0 - (4Y)_(@)] da)

x (z Ll f(a)(1 - oc)zdoc>1>

ff(oc)(l—«x) [a- (AL) (1)—(AL) (@)] dat
Gt X Vda

L@ -a)fa At () - AL @] da
o f (@) (1~ a)de




18
lim_ t7 (n) = lim t(n) =ty =t
Jim t ()
1
=—n1§130< (L fe)(1-a)fa- (Aﬁ)+ (1) - (A’;,)+ ()] dax
1
] r@a-w
0

far (45), () (aY), (@) d)

><<2 Ll f () (1 - oc)zdoc>1>

L f @ fa(4)), - (A7), @] da
= - lim
e o f (@) (1~ a)da

) _J-Olf(tx)(l -a) [a.Aﬁ(l)—Aﬁ((x)]d(x w
[} f@(1-0da '

.U oL L_ U
dim ¢, () = lim £/ (n) =t =t,.
(134)

Then according to (125) and Lemma24, we have
lim, , T(A,) = T(A) with respect to the weighted
distance D;.

(iv.) If

jl f) (1 -a)fa-AY (1) - AY ()] da
0

[ F @0 fa Al 1) - AL @] da =0,
’ (135)

Jlf((x)(l —a) [a- A7 (1) - AT (0)] dax
0
- Jlf(oc)(l—oc) [a- A% (1) - A% (@)] da < 0,
0

the proof is analogous with the proof of (i).
(ivg) If

Jl f@-a)fa-AY (1) - AY (@)] da
0

—Jlf(oc)(l—oc) [a- A" (1) - A" (@)] da > 0,
° (136)

Jl f@-a)fa-AY (1) - AY (@)] da

0
—Jlf(oc)(l—oc) [a- A% (1) - A (@)] da =0,
0

the proof is analogous with the proof of (i). O
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After we analyze all the cases, the theorem is proven.
Next we will give an example to illustrate Theorem 25.

Example 26. Let us consider interval-valued fuzzy number
A= [ANAY], A, = {(x,y) e R* : x ¢ [e"‘z,4 —al,y €
[(1/2)6“2, 5—«l}, a € [0, 1]. We will determine T'(A) with an
error less than 107* with respect to the weighted distance D;.

Let A, = [Aﬁ,ALr{] (n € N) be a sequence of interval-
valued fuzzy numbers and

4 2n
L 2, &
(An)_(oc):lﬂx +§+---+

>

n!

1 4 2n
(AZ)_((X):5(1+a2+a—+---+“—>,

2! n! (137)
L 4 U o
(An)+ () =4 -« (An)+ () =5-a,
ae[0,1].
From the Taylor formula we have
N 4 2n
A G
2! n!
(138)
@ (“2 B t)n ¢
+J edt, ael0,1].
0 n!
Therefore, for any « € [0, 1], we can prove that
0< A" (@) - (A}) (@)
2 (2 n 2 (2 n
o (a” -t o (a” -t
0 n! 0 n!
~ (in+2 e
T m+ )T (m+ 1)
0< A% (@) - (A)) (@
1 (“2 B t)n t
=5, e (140)
e J"‘z (o2 _t)ndt e o e
“2 ) n! 2 (m+ D! T 2m+ )

That is, A and A, satisfy the hypothesis in Theorem 25.
If f(«) = &, then

Jl f)1-a)fa-AY 1) - AY ()] da

0

- Jlf«x)(l ~a) [a- AL (1) - AL (0)] dox

0

1
=j F@1-a)
0

x [a(AY (1) - A" (1) - (AY (@) - A" ()] dax
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[ rwa-ofa(5-o)- (1)

= g L f()(1-a) (eaz_l - oc) da

>0,
(141)
J-lf(oc)(l —a) [a- A7 (1) - AT ()] dax
0
- J-lf(oc)(l—oc) [a- A% (1) - AT (@)] dax
0
1
- L F@ - [a(a? 1) - A% (1)) 142)

—(AY (@) - AL ()] da

- Jlf((x)(l—oc)(oc—l)d(x
0
<0,

such that A satisfies condition (iv) of Theorem 16. Further-
more, let

1
G(n) = L fl@@-afa-(AY) 1)-(AY) (@)]da
1
- L F@-afa-(AL) 1)-(AL) (@)]da

[ r@a-ala((a) - (4) w)
~((40). @ - (47)_@)] da
:%L fla)(1-a) [(l—oc)+(a2—oc)+zl!(oc4—oc)

1/ o
+---+E((x2 —(x)]doc.
(143)

It is obvious that G(n) is decreasing, and by (141) we have
lim G(n) = lim Jl fla)(1-a)
n—00 n—00 0
x[a((ay) 0 -(47) M)
- ((4%). @ - (43)_@)] da
1
- | rwa-a

x[a(AY (1)- AT (1)~ (A7 (@) - A” (@) jHex

> 0.
(144)
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Therefore, we can conclude that
1
L fl@-afa- (A7) 1)- (A7) (@)]da

1
- [ F@a-a [ (ah)_ - (41)_@]da>o
neN.
(145)

It follows that A, satisfies condition (iv) of Theorem 16. We
denote

T(A) _ [(tL tL tL fL) (tU tU tU tU)]
T(A,) = [(t; (). 15 ()15 (), 5 (m)),

(£ (), &5 (), t5 (), £ ()]
(ne N).
Using Theorem 16 (iv) together with (139), we have

|7 =t ()]

1
L a(1-a) [a((AL) (1) - A" (D)

(146)

=12

- (A7) (@) - AL (@))] dax

() -t )

(147)
1
- 1zj a(l-a)((A}) (@) - A (@) da
0
<|(45)_ () - At )
1
+1zj a(l-a)|(A}) (@) - A (a)|des
0
- e N 2e e
T+ D) m+ D! (m+ D)
Similarly, we can prove that
2e
&7 -1 (”)| n+1)' YY) 2meny 4
Combing (48), (139), and (140) we obtain
[z - £ o] = JAZ (0 - (47)_ W] = o )
. (149)
U U U U
|y -5 (| = |a” () - (47)_(0| < TOFST

Therefore, by making use of (147), (148), and (149), we get
D; (T (A),T(A,))

1
2

1/2
—(ty () + (t5 () = £ () oc)]zdoc>
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1
([ al@+@-))
) 1/2
_ (ttlj(n)+(tg(n)—t?(n))oc)] doc) ]
1 ! 2
-3 JLa«ﬁ—ﬁm»u—m+o§—%m»@da
" \/ Ll (Y = 1 () (1= &) + (Y — ¥ () @) dex
:%[(llz(t )+ () (- k)

1 1/2
+2(t-dm))
1
+(12( —V () ( — 8 () (& - ()
1/2
-y w)) ]

< 2\ Ee -tk - o

L ) - (n))z]

2e
< .
(n+1)!

(150)

It is obvious that for n > 5, we have D;(T(A),T(A,)) < 1072
Forn = 5, case (iv) in Theorem 16 is applicable to compute the
nearest interval-valued trapezoidal fuzzy number of interval-
valued fuzzy number A5, and we obtain

21317 163 21317 163
T(As)=[( ,—,3,4>,< ,—,4,5)].
360360° 60 720720° 120
(151)

Then we obtain an interval-valued trapezoidal approximation
T(A;) with an error less than 1072

5. Fuzzy Risk Analysis Based on Interval-
Valued Fuzzy Numbers

Recently, a lot of methods have been presented for handling
fuzzy risk analysis problems. However, these researches did
not consider the risk analysis problems based on interval-
valued fuzzy numbers. Following, we will use the approxima-
tion operator presented in Section 3.2 to deal with fuzzy risk
analysis problems.

Assume that there is a component A consisting of n
subcomponents A, A,,..., A, and each subcomponent is
evaluated by two evaluating items “probability of failure”
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TABLE 1: A 9-member linguistic term set (Schmucker, 1984) [10].

Linguistic terms Trapezoidal fuzzy numbers

Absolutely low (0,0,0,0)

Very low (0,0, 0.02,0.07)
Low (0.04, 0.1, 0.18, 0.23)
Fairly low (0.17,0.22, 0.36, 0.42)
Medium (0.32, 0.41, 0.58, 0.65)
Fairly high (0.58, 0.63, 0.80, 0.86)
High (0.72, 0.78, 0.92, 0.97)
Very high (0.93,0.98, 1.0, 1.0)
Absolutely high (1.0, 1.0, 1.0, 1.0)

and “severity of loss” We want to evaluate the probability of
failure and severity of loss of component A. Assume that R;
denotes the probability of failure and w; denotes the severity
of loss of the subcomponent A;, respectively, where R; and
w; are interval-valued fuzzy numbers and 1 < i < n.
The algorithm for dealing with fuzzy risk analysis is now
presented as follows.

Step 1. Use the fuzzy weighted mean method to integrate the
evaluating values R; and w; of each subcomponent A;, where
1<i<n

Step 2. Transform interval-valued fuzzy numbers R; and w;
into interval-valued trapezoidal fuzzy numbers T'(R;) and
T(w;) by means of the approximation operator T

Step 3. Use the interval-valued fuzzy number arithmetic
operations defined as [8] to calculate the probability of failure
R of component A:

n

YT (R)oT ()

i=1

®ZT (w,)

i=1 (152)
_ L L L L U U U U)
= 7’1,1’2,1’3,7’4 N 7’1,1’2,7‘3,7‘4 .

Without a doubt R is an interval-valued trapezoidal fuzzy
number.

Step 4. Transform the interval-valued trapezoidal fuzzy
number R into a standardized interval-valued trapezoidal
fuzzy number R*:

R' = iiéi iiii (153)
K>k k' k )Nk’ k™ Kk k ’
where k = max{[lrfl], HrJUH, 1}, || denotes the absolute value
and [ denotes the upper bound and 1 < j < 4.

Step 5. Use the similarity measure of interval-valued fuzzy
numbers introduced in [26] to calculate the similarity mea-
sure of R* and each linguistic term shown in Table 1. The
larger the similarity measure, the higher the probability of
failure of component A.
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TABLE 2: Evaluating values of the subcomponents A, A,, and A;.

Subcomponents A;

Probability of failure R,

Severity of loss w;

A, [(0.3,0.5, 0.8,1.0),, (0.1, 0.4, 0.9, 1.0),] [(0.3,0.5, 0.6, 1.0),, (0.1, 0.4, 0.9, 1.0),]
A, [(0.4,0.8,0.8,1.0),, (0.4, 0.4, 1.0, 1.1),] ((0.4, 0.5, 0.8, 1.0),, (0.4, 0.4, 1.0, 1.1),]
A, [(0.3, 0.7, 0.8,1.0),, (0.1, 0.4, 0.8, 1.0),] [(0.3,0.7, 0.7, 1.0),, (0.1, 0.4, 0.8, 1.0),]

TABLE 3: Interval-valued trapezoidal approximation of R; and w;.

Subcomponents A; T(R;) T(w;)
13.1 324 33.7 13.1 29.8 7.4 33.7
A, [(— 0.5, 08,—) (— 0.4,0.9, —)] [(— 0.5, 06,—) (—,0.4,0.9,—)]
35 35 35 35 35
19.2 32.4 37.2 15.3 32.4 14 37.2
A, [(7 0.8, 08,7) ( 4,1.0, 7)] [(7 0.5, 08,7) (*,0.4,1.0,*)]
35 35 35 35 35
15.7 324 324 15.7 31.1 7.4 324
A, [(7 0.7, 08,7) (— 0.4,0.8, 7>] [(7 0.7, 07,7) (—,0.4,0.8,7)]
35 35 35 35 35

Example 27. Assume that the component A consists of three
subcomponents A, A,, and A;; we evaluate the probability
of failure of the component A. There are some evaluating
values represented by interval-valued fuzzy numbers shown
in Table 2, where R; denotes the probability of failure and w;
denotes the severity of loss of subcomponent A;,and 1 <i <
3.

Step 1. Let f(x) = a. According to Corollary 18, we obtain
interval-valued trapezoidal fuzzy numbers T'(R;) and T'(w;)
as shown in Table 3.

Step 2. Calculate the probability of failure R of component A.
By the interval-valued fuzzy number arithmetic operations
defined as [8], we have

3

2 (T(R)®T ()

i=1

=[T(R) ST (w)@T(R) & T (w,) &T (Ry) & T (w3)]

0y (w)

o [T (w)®T (w)®T (w5)]

~ [(0.218,0.54,0.99, 1.959) , (0.085, 0.18, 2.04, 3.541)] .
(154)

Step 3. Transform the interval-valued trapezoidal fuzzy num-
ber R into a standardized interval-valued trapezoidal fuzzy
number R;

R* = [(0.0545,0.1350, 0.2475, 0.4898) ,
(155)
(0.0213,0.045, 0.5100, 0.8853)] .

Step 4. Calculate the similarity measure between the interval-
valued trapezoidal fuzzy number R* and the linguistic terms
shown in Table 1, we have

Sg (R, absolutely — low) = 0.2797,

Sg (R*,very — low) = 0.3131,

Sr (R",low) = 0.4174,

Sg (R”, fairly — low) =~ 0.4747,
Sr (R*, medium) = 0.4748,
Sg (R”, fairly — high) =~ 0.3445,

Sk (R*, high) =~ 0.2545,

Sk (R", very — high) =~ 0.1364,

Sg (R, absolutely — high) =~ 0.1166.

(156)

It is obvious that Sp(R*, medium) =~ 0.4748 is the largest
value; therefore, the interval-valued trapezoidal fuzzy num-
ber R* is translated into the linguistic term “medium.” That
is, the probability of failure of the component A is medium.

6. Conclusion

In this paper, we use the a-level set of interval-valued
fuzzy numbers to investigate interval-valued trapezoidal
approximation of interval-valued fuzzy numbers and discuss
some properties of the approximation operator including
translation invariance, scale invariance, identity, nearness cri-
terion, and ranking invariance. However, Example 23 proves
that the approximation operator suggested in Section 3.2
is not continuous. Nevertheless, Theorem 25 shows that the
interval-valued trapezoidal approximation has a relative good
behavior. As an application, we use interval-valued trape-
zoidal approximation to handle fuzzy risk analysis problems,
which provides us with a useful way to deal with fuzzy risk
analysis problems.
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