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A new approach to the fuzzification of convex structures is introduced. It is also called an M-fuzzifying convex structure. In
the definition of M-fuzzifying convex structure, each subset can be regarded as a convex set to some degree. An M-fuzzifying
convex structure can be characterized by means of its M-fuzzifying closure operator. An M-fuzzifying convex structure and
its M-fuzzifying closure operator are one-to-one corresponding. The concepts of M-fuzzifying convexity preserving functions,
substructures, disjoint sums, bases, subbases, joins, product, and quotient structures are presented and their fundamental properties

are obtained in M-fuzzifying convex structure.

1. Introduction and Preliminaries

Convexity theory has been accepted to be of increasing
importance in recent years in the study of extremum prob-
lems in many areas of applied mathematics. The concept of
convexity which was mainly defined and studied in R” in
the pioneering works of Newton, Minkowski, and others as
described in [1] now finds a place in several other mathemat-
ical structures such as vector spaces, posets, lattices, metric
spaces, graphs, and median algebras. This development is
motivated not only by the need for an abstract theory of
convexity generalizing the classical theorems in R" due to
Helly, Caratheodory, and so forth but also by the necessity to
unify geometric aspects of all these mathematical structures.
Some more details can be found in [2].

In 1994, Rosa presented the notion of fuzzy convex
structures in [3, 4]. In 2009, Maruyama generalized it to M-
fuzzy setting in [5]. A fuzzy convex structure is a pair of
(X,¥) in which ¥ is a crisp subset of the set of M-fuzzy
subsets of a nonempty set X satisfying certain set of axioms.

In this paper, from a completely different point of view,
we introduce the notion of M-fuzzifying convexity on a
nonempty set X by means of a mapping € : 2* — M
satisfying three axioms, where M is a complete lattice and 2
is the set of all subsets of X. Thus, each subset of X can be
regarded as a convex set to some degree.

Throughout this paper, (M,\/, /\,’) denotes a complete
lattice with an order-reversing involution’. The smallest
element (or zero element) and the largest element (or unit
element) in M are denoted by 1L and T, respectively. 2%, resp,
25, denotes the collection of all subsets, respectively, all finite
subsets of a nonempty set X.

The binary relation < in M is defined as follows: for a, b €
M, a < bif and only if for every subset D € M, the relation
b < sup D always implies the existence of d € D witha < d
[6].{a € M : a < b} is called the greatest minimal family of b
in the sense of [7], denoted by 3(b). Moreover, for b € M, we
define a(b) = {a € M : b<Pa}.

In a completely distributive lattice M with an order-

reversing involution’, there exist a(b) and B(b) for each b ¢
M,b=\/Bb) = \ab),anda < b o b'<®a’ (see [7]).

Theorem 1 (see [7]). If M is completely distributive, then for a
subfamily {a; : i € Q} of M, one has
(D) a(Nieqd:) = Ujcq (@) that is, o is an |\ —|J map-
ping.

(2) BN ica®) = Uicq B(@); that is, B is a union-preserv-
ing mapping.
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For a complete lattice M, A € M*,and a € M, we use the
following notation:

Ay ={xeX:A(x)>a}. (1)
Suppose that M is completely distributive and we define
AY={xeX:a¢a(AX)}. ©)

Some properties of these cut sets can be found in [8-13].

Theorem 2 (see [8, 10, 13]). If M is completely distributive,
then for each M-fuzzy set A in M, one has

(1) A= \/ueM(a /\A[u]) = /\aeM(a VA[a])'
(2Q)VaeM, A, = ﬂbe;s(a) Ay

(3) Va e M, A = 0y A

Lemma 3. Let M be a completely distributive lattice and let
P>q € M. Then the following conditions are equivalent:

Mp=<q

(2) Va e M;ifa < pthena <q.

(3) Va e B(T); ifa< pthena <q.

(4) Va e a(L);ifa ¢ a(p) then a ¢ a(q).

Proof. 1t is easy to know that (1) & (2), (2) = (3),and (2) =
(4) hold. Next we prove (3) = (2) and (4) = (2).

(3) = (2)Va € M;ifa < p, then Vf3(a) = a < p. Hence,
Vb € B(a) < B(T),b< p.By(3),b <q.Thena = Vp(a) < q.

(4) = (2)Va € M;ifa < pthen a(p) € ala) € a(L).
Vb € a(L);ifb ¢ afa) thenb ¢ «(p). By 4), b ¢ a(qg).
Hence, a(a) N a(L) 2 a(q) N aw(L) and thus a(a) 2 a(g). So
a = Na(a) < Aa(q) = q. ]

Definition 4 (see [2]). A subset € of 2% is called a convexity
if it satisfies the following three conditions:

(C1) 0, X € 6;
(C2) if{A; : i € Q} € € is nonempty, then [);cq A; € E;

(C3)if{A; : i € Q} € ¥ is nonempty and totally ordered
by inclusion, then ;. A; € 6.

The fuzzy sets in G are called convex sets, and the pair (X, €)
is called a convex structure.

If € satisfies (Cl1) and (C2), then (X, €) is called a closure
structure.

Theorem 5 (see [2,14]). Let (X, €) be a convex structure and
D+Y C X ForAe®, colANY)NY = ANY, where co is
the hull operator of (X, 6).

Definition 6 (see [2]). A closure operator cl on X is domain
finite (or algebraic) provided for each A < X and for each
p € cl(A) there is a finite set F € A with p € cl(F).
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Theorem 7 (see [2]). Let (X, €) be a closure structure. Then
the following conditions are equivalent:
(1) € is a convexity on X;
(2) the closure operator of € is domain finite;
(3) € is stable for updirected union; that is, if {A; : i €
Q} € 2% is an updirected set then | J,. A; € €.

In 1994, Rosa presented the notion of fuzzy convex
structures in [3, 4]. In 2009, Maruyama generalized it to M-
fuzzy setting in [5] as follows.

Definition 8 (see [5]). For a nonempty set X and a subset €
of M%, (X, ®) is called a fuzzy convex structure if and only if
(X, ) satisfies the following conditions:

(MCI) xy> Xx € 65

(MC2) if {A; : i € Q} € € is nonempty, then
NicaAi €
(MC3) if {A; : i € Q} € ¥ is nonempty and totally

ordered by inclusion, then \/,cqA; € G.

Based on papers [15, 16], we can obtain the following
definitions and theorems.

Definition 9 (see [15,16]). A mapping & : 2* — M is called
an M-fuzzifying closure system if it satisfies the following
conditions:

MYC)E(X) =T;
MYC2) if {A; : i € Q} ¢ 2% s nonempty, then
E(Niea A 2 Niea G (A).
A pair (X, 6) is called an M-fuzzitying closure system space
provided that € is an M-fuzzifying closure system on X.

Definition 10 (see [15,16]). An M-fuzzitying closure operator
on X is a mapping cl : 2¥ — M satisfying the following
conditions:

(CL1) cl(A)(x) = T for every x € A;
(CL2) A< B= cl(A) < d(B);
(CL3) cl(A)(x) = NsgpoaV ygn lB)(Y).

Theorem 11 (see [15, 16]). Let cl be an M-fuzzifying closure
operator on X. Define a mapping €4 : 25 — M by

VACX, €4(A) = \(d(4) )" 3)
xX¢A

Then By is an M-fuzzifying closure system.

Theorem 12 (see [15, 16]). Let (X, ) be an M-fuzzifying
closure system space. Define clg : 25 — M* by

VxeX, VAcCX,

dy (A) (x) =\ (& (B).

x¢B2A

(4)

Then clg is an M-fuzzifying closure operator on X.
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Theorem 13 (see [15, 16]). Let (X,6) be an M-fuzzifying
closure system space and let cl be an M-fuzzifying closure
operator on X. Then clg = cland €, = 6.

Definition 14 (see [17]). A fuzzy vector space is a pair (V, p),
where V is a vector space on a totally ordered field KK and ¢ :
V' — [0, 1] is a mapping satisfying p(kx + ly) > p(x) A u(y)
foranyx, y € V, k, I € K. If (V, ) is a fuzzy vector space, then
for each a € (0, 1], p, is a subspace of V..

2. M-Fuzzifying Convex Structures

In this section, from a completely different point of view,
we introduce the notion of M-fuzzifying convexity on a
nonempty set X by means of a mapping € : 2*¥ — M.
Thus, each subset of X can be regarded as a convex set to some
degree.

Definition 15. A mapping € : 25 — M is called an
M-tfuzzifying convexity on X if it satisfies the following
conditions:

(MYC1) €(0) = 6(X) =T;

(MYC2) if {A; : i € Q} ¢ 2% is nonempty, then

C(Niea A 2 NieaB (A7)

(MYC3)if{A; :ie Q} € 2% s nonempty and totally

ordered by inclusion, then (| ;. A;) = Nicq€(A)).

If € is an M-fuzzifying convexity on X, then the pair

(X, ) is called an M-fuzzifying convex structure. For A €
2%, %(A) can be regarded as the degree to which A is a convex
set. When M = I = [0, 1], an M-fuzzifying convex structure
is called a fuzzifying convex structure for short.

If € satisfies (MYC1) and (MYC2), then (X, €) is called
an M-fuzzifying closure structure.

Remark 16. (1) We can see that an M-fuzzifying closure
structure (X, ®) is exactly an M-fuzzifying closure system
space (X, €) with €(0) = T.

(2) By Theorems 11 and 12, we can verify that there is
a one-to-one correspondence between M-fuzzifying closure
structures and M-fuzzitying closure operators with (CLO0),
where
(CLO) cl(@)(x) = L for every x € X.

Therefore, we can obtain the M-fuzzifying closure operator
induced by an M-fuzzifying closure structure that satisfies
(CL0)-(CL3).

Example 17 (see [16, 18]). Let X be a universe of discourse. A
mapping 7 : 2X — [is called a fuzzifying topology on X if
it satisfies the following conditions:

(FOAD) 9 (0) = T(X) = 1;

(FOA2) A, A, €25, T (A NA,) = T(A)AT(A,);

(FOA3) V{A j}¢; < 2%, TUjer A) 2 \jg T (A)).
And (X, ) is called a fuzzifying topological space. Further-
more, if a fuzzifying topology J satisfies

(SOA2) V(A }ie; €25, T (N  A) 2 \je, T(A)),

then  is called a saturated fuzzifying topology and (X, ) is
called an Alexandroftf fuzzifying topological space.

We can see that an Alexandroff fuzzifying topological
space (X, ) is a fuzzifying convex structure.

Example 18. Let (V,u) be a fuzzy vector space. Define a
mapping €, : 2" — [0,1] by

G, (A)=\/{ac(0,1]:A€%,}, (5)

where €, < 2% is the standard convexity of y, for each
a € (0,1]; thatis, A € &, if and only if for all x, y € A and
foreacht € Kwith0 <t < 1,t-x+ (1 -t)y € A. Then
(V,€,) is a fuzzifying convex structure. It is easy to see that
%, satisfies (MYCI). Now we prove that €, satisfies (MYC2)
and (MYC3).

(MYC2) Suppose that {A; : i € Q} € 2% is nonempty and
take any b < /\;cq@,(A;). Then for each i € Q, € ,(A;) > b.
By the definition of €, we know that, for each i € Q, there
exists ¢; > b such that A; € €, < €. Since G, is the
standard convexity of p,), [icq A; € . This shows that
% ,([iecq Ai) = b. By the arbitrariness of b, we obtain that
C(MNiea A1) 2 NieaCu(A)).

(MYC3) Suppose that {A; : i € O} € 2% is nonempty and
totally ordered by inclusion, and take any b < /\;&,(A)).
Then for each i € Q, €,(A;) > b. By the definition of €,
we know that, for each i € (), there exists a; > b such that
A; € €, < . Since €, is the standard convexity of p),
Uieca A;i € . This shows that €,(;cq A;) > b. By the
arbitrariness of b, we obtain that €, (Uieq A1) 2 \ieq € u(A)).

Example 19. Let (X, %) be a crisp convex structure. Define
Yz : 25 — [0,1] by

A € G,

1)
A) = 6
Xz (A) ‘[0, AeT (6)

Then it is easy to prove that (X, y¢) is a fuzzifying convex
structure.

Example 20. Let X beanonemptysetandlet@ : 2* — [0,1]
be a mapping defined by

{1, A € {0,X};

€ (A) = (7)
0.5, A¢{0,X}.

Then it is easy to prove that (X, ®) is a fuzzifying convex
structure. If A € 2% with A ¢ {0, X}, then 0.5 is the degree to
which A is a convex set.

Theorem 21. Let € : 2 — M be a mapping. Then (X, )
is an M-fuzzifying convex structure if and only if, for each a €
M\ {1}, (X, € |,)) is a convex structure.

Proof. This is straightforward. O

Theorem 22. If M is completely distributive, then a mapping
% : 2% — M is an M-fuzzifying convexity if and only if, for
eacha € a(L), €% isa convexity.



Proof. Sufficiency. (MYC1) For each a € a(l), 0,X € gl
We have €(0) = €(X) = T.

(MYC2) Let {A; : i € Q} € 2% be nonempty and for
aeal),a¢al/\coC(A)). Thus,a ¢ J;cq a(B(A;)). We
know that a ¢ a(6(A;)) and then A; € &' for each i € Q.
Since for each a € a(L), € is a convexity, ();cq A; € €";
thatis, a ¢ a(@((;eq A;)). Therefore, by the arbitrariness of
aand Lemma 3, €([;cq 4;) = Nica@(4)).

(MYC3) Let {A; : i € Q} ¢ 2% be nonempty and
totally ordered by inclusion and let a ¢ «a(/\;.qF(4;)) for
a € a(l). Thus, a ¢ [Jjcq@(G(A;)). We know that a ¢
a(®B(A;)) and then A; € %' for each i € Q. Since for
each a € a(L), €' is a convexity, | J,cq A; € €'; that is,
a ¢ a(B(J;eq A;))- Therefore, by the arbitrariness of a and
Lemma 3, €(U;cq A;) = NicqB(A)).

Necessity. Suppose that € : 2¥ — M is an M-fuzzifying
convexity and a € «a(L). Now we prove that &l is a
convexity.

(C1) By €(0) = €(X) = T and (T) = 0, we know that
a ¢ a(€(0)) and a ¢ a(€(X)). This implies that @, X € .

(C2)If{A; : i € Q) ¢ @, then foralli € Q,
a ¢ a(B(A;)). Hence, a ¢ J;cq a(B(A))). By E(icq A:) =
Nica®(4A;), we know that

« <%<ﬂAi>> Ca (/\%(A,)) =Jx(B(4). ®
i€eQ) i€eQ) i€eQ
This shows a ¢ &(B((,cq A;)). Hence, ;e A; € €.

(C3) If{A; : i € Q} ¢ B is nonempty and totally
ordered by inclusion, then for eachi € Q,a ¢ a(B(A))).
Hence, a ¢ [;cq ®(€(A))). By €(U;cq A1) = NicaG(A;) we
know that

a(%(UA,)) c a(/\ig(A,.)> =Ja(®(4)).

i€Q i€Q i€Q)

This shows a ¢ a(&((J;cq A;))- Therefore, | J,cq A; € €.
The proof is completed. O

Now we consider the conditions that a family of convex-
ities forms an M-fuzzifying convexity. By Theorem 2, we can
obtain the following result.

Corollary 23. Let M be completely distributive and let € be
an M-fuzzifying convexity. Then

(1) €y S G|y foranya,b € M\ {L} witha € B(b);
2) g c g forany a,b € a(L) with b € a(a).

Theorem 24. Let M be completely distributive and let {€” :
a € a(L1)} be a family of convexities. If 6* = @’ :a € ab)},
foralla € a(L), then there exists an M-fuzzifying convexity €
such that €' = &°.
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Proof. Suppose that € = ﬂ{‘gb ca € ab)} foralla € a(L).
Define € : 2X — M by

A= /\ (ave' (W)= \{aca):A¢s}.
aco(L)

(10)

Next we show that €% = € for all a € a(L). On one hand,
if A ¢ €', thena € a(B(A)). There exists b € a(L) such
thata € a(b) and A ¢ G°. By ¢* = ﬂ{%b ca € ab)}, we
know that A ¢ €° 2 €. Hence, €1 2 €°. On the other
hand, if A ¢ €, then there exists b € a(L) such thata € a(b)
and A ¢ 6°.Soa € a(b) ¢ Useatpy €(b) = a(A{b € L) :
A ¢ 6%)) = a(B(A)); thatis, A ¢ €. Then €* 2 €%
Therefore, €' = €* foralla € a(L). By Theorem 22, we can

obtain that % is an M-fuzzifying convexity and €'* = * for
alla € a(L). O

Theorem 25. Let M be completely distributive and let {6, :
a € M\ {L}} be a family of convexities. If €, = ([{€}, : b €
B(a)}, for alla € M \ {1}, then there exists an M-fuzzifying
convexity € such that €, = €.

Proof. This is straightforward. O

Definition 26. Let €, D be M-fuzzifying convexities on X. If
B(A) < D(A), for all A € 2%, which is denoted by € < I,
then ¥ is said to be coarser than & and 9 is said to be finer
than 6.

Theorem 27. Let {6, : t € T} be a family of M-fuzzifying
convexities on X. Then \,.;€, is an M-fuzzifying convexity
on X, where \,.;€, : 2° — M is defined by

( /\‘@) 4) = \%: (4) (1)

teT teT

for each A € 2%. Obviously, \,.;, is coarser than G, for all
teT.

Proof. This is straightforward. O

3. Characterizations of M-Fuzzifying
Convex Structures by M-Fuzzifying
Closure Operators

In this section, we always suppose that M is a completely
distributive lattice with an order-reversing involution'.

Definition 28. An M-fuzzitying closure operator cl on X is
called domain finite (or algebraic) if it satisfies the following
condition: for each § € 2% and x € X,

(MDF) cl(8)(x) = \/{cl(F)(x) : F € 2] }.

Theorem 29. Let (X, €) be an M-fuzzifying closure structure.
Then the following conditions are equivalent:

(1) € is an M-fuzzifying convexity on X;
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(2) the closure operator of € is domain finite.

(3) € is stable for updirected union; that is, if {A; : i €
Q} ¢ 2% is an updirected set, then €(J;cq A;) =
Nica®(A)).

Proof. (1) = (2) Let cl be the M-fuzzifying closure operator
of (X, ¥). By Remark 16, we know that cl satisfies (CL0)-
(CL3). Next we need to prove that cl satisfies (MDF). Since
(X, @) is an M-fuzzitying convex structure, by Theorem 22,

for each a € B(T),(X, ‘Zg[“’]) is a convex structure. Let cl,

be the closure operator of (X, %[“’]) for each a € B(T). It is
obvious that cl(S)(x) > \/{cl(F)(x) : F € me}. Conversely, let
a be any element in 3(T) with the property of cI(S)(x) > a.
Then by Theorem 12, we have

d®@= N\ E®) >a

x¢B2S
= VBDS, if x ¢ B, then a < (€ (B))
— VB2S, if x ¢ B, then € (B)<¥d
= VBDS, if x ¢ B, thena' € a (€ (B))
— VB2S, if x¢B, then B¢ ¢
=xed, (S =|J{d,(F):Fe2g}
—3IFe2, st, xed,(F)
— 3JF €2}, st, VD2F, if x ¢ D,
then D ¢ A
— 3JFe2, st, VD2 F, if x¢D,
then a' € a (€ (D))
= 3Fe2;, st, VD2F, if x¢D,
then & (D) <®da’
= 3Fe2;, st, VD2F ifx ¢ D,
then a < (€ (D))’

N
= dFe2;,

st, d(F)(x)= N\ (B((D) 2a

x¢D2F

= \/{dF) (x):Fe2g}>a
(12)

By the arbitrariness of a and Lemma 3, we have cl(S)(x) <
VAcl(F)(x) : F € 28 }. Therefore, cl(S)(x) = \/{cl(F)(x) : F €
28 ).

(2) = (3) For any nonempty {A; : i € Q} ¢ 2%
which is an updirected set, we need to prove G (| J;cq A;) =
Niea®(A)).

Let a be any element in M with the property of
G (U;cq A;) # a. Then by Theorem 11, we have

s(Un)

- A

<C1<UA1‘> (x)) ta
x¢Uicq Ai i€Q)

= 3dx, x ¢ UA,»,

(cl(UAl) (x)) ta
ieQ) i€Q)

= Jx, x ¢ UA,-, d (UA,-> (x) ¢ a

i€Q) ieQ)

= E'.X, X ¢ UA,', \/ {Cl (F) (_x) :Fe ZE:ILI;'KQA;')} $ al
i€Q)

= 3x, x ¢ UAi’ JF ¢ zfigieﬂAi)’
ieQ)

st, l(F)(x) ¢td

= 3x x¢|JA, FFe2l,

ieQ)
st, dd(F)(x) ¢d

— 3, x¢ A, FFe2,
i€Q

s.t, (cl(F) (x) #a.

(13)
Hence,
A% (A) =\ N\ (@A) @)
ieQ i€Q x¢A,
“AANVfa®@:Fe}) g
i€ x¢A,
=A N\ N{d® @) :Fezi}za
i€Q x¢A,
Therefore, €(U;cq Ai) = Nica€(A)).
(3) = (1) By Theorems 7 and 22, it is trivial. ]

By Remark 16 and Theorems 13 and 29, we can obtain the
following theorem, which shows that an M-fuzzifying convex
structure can be characterized by means of an M-fuzzifying
closure operator, which satisfies (CL0)-(CL3) and (MDE).

Theorem 30. There is a one-to-one correspondence between
M-fuzzifying convex structures and M-fuzzifying closure oper-
ators in Definition 10 satisfying (CL0O) and (MDF).



4. M-Fuzzifying Convexity
Preserving Functions

In this section, M still denotes a completely distributive
lattice. We will generalize the notion of convexity preserving
functions to M-fuzzy setting.

Theorem 31. Let (Y, D) be an M-fuzzifying convex structure
and f : X — Y a surjective function. Define a mapping
D) :2* - Mby

vAe2, @ @=\/{2®):f" B =A4}.

(15)
Then (X, £~ (D)) is an M-fuzzifying convex structure.
Proof. (MYCI) holds from the following equalities:
f@o=\/{2®):®=0-=T,
f@x=\/{2®): B =X}=T "
For (MYC2), for any nonempty set {A; : i € Q} ¢

2%, let a be any element in M \ {1} with the property of
Nicaf N(D)(A;) > a. Then Vi € Q,

Vig®: ®=a)=@@)>a @)
For each i € Q, there exists B; € 2" such that f™'(B;) = A;

and D(B;) > a. Note that f (Vo B) = Nica f ' (B) =
MNica Ai and D(Nicq Bi) = NicqD(B;) = a. Finally, we have

@ <ﬂA,-> =\/ {9(3) L FNB) = ﬂAi}

i€Q) i€eQ)
(18)
>D (ﬂB,) > a.
ieQ)
This implies that £ (D)(Nicq A1) = Nicaf " (D)(A)).
For (MYC3), for any nonempty set {A; : i € Q} ¢ 2%,

which is totally ordered by inclusion, let a be any element in
M \ {1} with the property of \,c, f " (D)(A;) > a. Then Vi €
QO\N{DB): f'(B) = A} = f(D)A,) > a. Foreachi €
Q, there exists B; € 2" such that f'(B,) = A; and Z(B;) > a.
Since f is surjective and {A; : i € Q} is totally ordered by
inclusion, we have {B; : i € Q} which is totally ordered by
inclusion and then D({J;cq B;) = N\icq2(B;) > a. Note that

F N Uica B) = Uicq £ (B;) = Ujeq A;- Finally, we have
@ <UA,-> =\/ {9 (B): f(B) = UAi}
i€Q) i€Q)

> (UBi> >a.

i€Q)

(19)

This implies that f71(£JZ)(LJiEQ Aj) > /\iEfol(g)(Ai). ]
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Definition 32. Let (X, €) and (Y, D) be M-fuzzifying convex
structures. A function f: X — Y is called an M-fuzzitying
convexity preserving function if ‘€(f “1(B)) > @(B) for all
Be?2.

Definition 33. Let (X, €) and (Y, D) be M-fuzzifying convex
structures. A function f: X — Y is called an M-fuzzifying
convex-to-convex function if D(f(A)) > G(A) for all A €
2%,

Definition 34. Let (X, €) and (Y, D) be M-fuzzitying convex
structures. A function f : X — Y is an M-fuzzifying
isomorphism if f is a bijection, an M-fuzzifying convexity
preserving function, and an M-fuzzifying convex-to-convex
function.

The following theorem gives a characterization of M-
fuzzifying convexity preserving functions.

Theorem 35. Let (X, 6) and (Y,D) be two M-fuzzifying
convex structures. A surjective function f : X — Y is
an M-fuzzifying convexity preserving function if and only if
FHD)(A) < B(A) forall A € 2%

Proof. Necessity. If f: X — Y is an M-fuzzifying convexity
preserving function, then ‘g(f_l(B)) > P(B) for all B € 2".
Hence, for all A € 2%, we have

@w=\/{2®: " ® =4}
<\/{e(r'®):fm=a} @0
=6 (A).
Sufficiency. If f™{(D)(A) < B(A) for all A € 2%, then

2@ <\/{2©G):G=1"®)}

=@ (' ®) 1)
<% (7 (®)
for all B € 2", This shows that f: X — Y is an M-fuzzifying
convexity preserving function. O

The next three theorems are trivial.

Theorem 36. If f : (X,6) — (Y, D)andg : (Y,D) —
(Z, %) are M-fuzzifying convexity preserving functions, then
ge f: (X,6) — (Z,%) is an M-fuzzifying convexity
preserving function.

Theorem 37. Let (X, ¥) and (Y, D) be M-fuzzifying convex
structures. Then a function f : (X,€) — (Y,9) is an
M-fuzzifying convexity preserving function if and only if f :
(X, €1) — (Y,D,) is a convexity preserving function for
anya € M\ {1}.

Theorem 38. Let (X, €) and (Y, D) be M-fuzzifying convex
structures. Then a function f : (X,6) — Y,9D) is an
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M-fuzzifying convexity preserving function if and only if f :
(X, 8" — (Y,2'") is a convexity preserving function for
anya € a(L).

5. Quotient M-Fuzzifying Convex Structures

In this section, the notions of quotient structures and quo-
tient functions are generalized to M-fuzzy setting.

Theorem 39. Let (X, €) be an M-fuzzifying convex structure
and f: X — Y a surjective function. Define a mapping D ; :

2¥ — Muby
vBe2', 2,(B)=%(f"(B). (22)

Then (Y, D ) is an M-fuzzifying convex structure and we call
D¢ a quotient M —f.uz.zzfying convexity of X with respect to f
and €. Moreover, it is easy to see that f is an M-fuzzifying
convexity preserving function from (X, €) to (Y, 2 f).

Proof. (MYCI) holds from the following equalities:

2,0)=%(f"®)=%0)=T,

(23)
2, =F(f()=¢X)=T.

(MYC2) can be shown from the following fact: for any
nonempty set {B; : i € Q} ¢ 2,

o (00)-o(r () ol

2 /yg (F7 ()= />29f (By)-
1€ 1€ (24)

For (MYC3), if {B; : i € Q} € 2" is nonempty and totally
ordered by inclusion, then

()= () ()

2 /\g‘g (f_1 (Bi)) = /\9f (B;).
1€ 1€ (25)

O

Theorem 40. Let (X, €) be an M-fuzzifying convex structure
and f : X — Y a surjective function. Then D is the
finest convexity on'Y such that f is an M-fuzzifying convexity
preserving function.

Proof. Let @ be an M-fuzzitying convexity on Y such that f
is an M -fuzzifying convexity preserving function from (X, &)
to (Y, D); then VB € 27, %(f_l(B)) > P(B). We have VB ¢
2Y, S/Zf(B) = ‘g(f_l(B)) > D(B). Therefore, Dy 2D O

Definition 41. Let (X, ¥) and (Y, D) be M-fuzzifying convex
structures. A function f: X — Y is called an M-fuzzifying

quotient function if f is surjective and 9 is a quotient M-
fuzzitying convexity with respect to f and 6.

Theorem 42. If f : (X,6) — (Y,9D) is an M-fuzzifying
quotient function, then g : (Y,2) — (Z,%) is an M-
fuzzifying convexity preserving function if and only if g o f :
(X,6) — (Z,%) is an M-fuzzifying convexity preserving
function.

Proof. Since f : (X,€) — (Y,9) is an M-fuzzifying quo-
tient function, we know that f is surjective and VB € 27,
2(B) = G(f7'(B)).

Necessity. Since g : (Y,2) — (Z,%) is an M-fuzzifying
convexity preserving function, VA € 22, 9(g71(A)) > (A).
Thus, VA € 2%,

(9o )=%(f" (g7 W))
=2(g7"' (W) (26)

> (A).
Sufficiency. Since go f : (X, €) — (Z, X)) is an M-fuzzifying

convexity preserving function, VA € 27 s

2(g7 ) =%(f"(5"W))
=% ((g° )" (W) (27)

> (A).
O

Theorem 43. If f: (X, 6) — (Y, D) is a surjective M-fuzzi-
fying convexity preserving function and an M-fuzzifying
convex-to-convex function, then D is a quotient M-fuzzifying
convexity. Moreover, f is an M-fuzzifying quotient function.

Proof. Since f : (X,6) — (Y,9) is a surjective M-fuzzi-
fying convexity preserving function and an M-fuzzifying
convex-to-convex function, we have VB € 2, &( f “1(B)) >
P (B) and VA € 2%, 9( f(A)) = €(A). Since f is surjective,
for all B € 2, f(f~'(B)) = B. Hence,

2B =2(f(f®)=% (" (B)22B). 28

So %(f_l(B)) = P(B) for each B € 2" and then @ is a
quotient M-fuzzifying convexity. O

Based on Theorem 39, we can obtain the following result.

Theorem 44. Let (X, €) be an M-fuzzifying convex structure
and let R be an equivalence relation defined on X. Let X /R be
the usual quotient set and let 7t be the projection mapping from

X to X/R. Define & : 2%/® — M by
vBe2™N, 9 (B)=%(n (B). (29)

Then D is an M-fuzzifying convexity on X/R and (X/R, D) is
a quotient M-fuzzifying convex structure of (X, €).



6. Substructures and Disjoint Sums of
M-Fuzzifying Convex Structures

In this section, M still denotes a completely distributive
lattice. We will give the substructures and disjoint sums of
M-fuzzifying convex structures and discuss some of their
fundamental properties.

Theorem 45. Let (X, €) be an M-fuzzifying convex structure,
0 +#Y < X. Then (Y, € | Y) is an M-fuzzifying convex
structure on Y, where VA € 2¥, (€ | Y)(A) = \V{€(B) :
B e 2% BnY = A}. Onecalls (Y,€ | Y) an M-fuzzifying
substructure of (X, 6).

Proof. (1) Clearly, (¢ | Y)(0) = (€ | Y)Y)=T.
(2) Forany {A; : i € Q} € 2", we have

AN@ I (4)=\\/{€®: B2 Bny =4}

i€Q) i€Q)

=V Ag(®)

fEHiEQI_Ii i€

< \/ %(ﬂ f(i)>,
felieoH; i€Q
(30)

where H, = {B : B € 25, BNY = A}}(i € Q). Since
(Mo D) NY = (Nieo(fG) NY) = [eqAj» we have
(€ 1 Y)(Niea A)) = Nica(€ | Y)(A)).

(3) Forany {A; : i € Q} ¢ 2" ¢ 2%, which is nonempty
and totally ordered by inclusion, let a be any element in
M \ {1} with the property of \;.o(€ | Y)(4;) > a; that is,
Nica VIB(B) : B € 2%, BNY = A;} > a. Then foreachi € Q,
there exists B; € 2% such that B;NY = A; and €(B;) > a; that
is, B; € €,;. By Theorem 21, foreacha € M\{L}, (X, €,))isa
convex structure. Let co, denote the hull operator of (X, € ,))
for eacha € M\ {L}. Then co,(A;) € €|, foralli € Q.
Since {A; : i € Q} ¢ 2" is nonempty and totally ordered
by inclusion, {co,(A;) : i € Q} is nonempty and totally
ordered by inclusion. Hence,  J;cq c0,(A;) € & |,; that is,
G (Uicq c04(A;)) > a. By Theorem 5, (|;cq c0,(4;) NY =
(Uieq €0a(BNY)NY = [Jieq co,(BNY)NY = [J;eq(B;NY) =
Uica A;- So we have (€ | Y)((U;eq 4;) = a. This implies that
(G 1 V)(Uieq A) 2 Nica(E 1 Y)(A)). O

Theorem 46. Let {(X,, €,)},cr be a family of pairwise disjoint
M-fuzzifying convex structures; that is, X, N X, =0 fort, #
t,. Consider the set X = | J,or X, andVt € T, j, : X, — Xis
the usual inclusion mapping (i.e., Vx € X,, j,(x) = x). Definea
mapping @ : 2° — MbyVA € 2%, 6(A) = \,cr%,(; ' (A)).
Then € is an M-fuzzifying convexity on X. € is called an M-
fuzzifying sum convexity of {6, },er and is denoted by Y, G,
The M-fuzzifying convex structure (X, Y,.r €,) is called the
M-fuzzifying sum convex structure of {(X,, €,)},cr> written as
Yier(Xp, €)-

Proof. (1) Clearly, €(0) = €(X) = T.
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(2) For any nonempty set {A; : i € Q} € 2%, we have
y pty i

/\% (Ai) = /\ /\%t (jt_l (Ai)>

i€Q) ieQteT

- AN& G (49)

teT ieQ)

< /\Cgt < jt_l (Ai)>

teT

A ()

=%<QAi>.

(3) Forany {4, : i € Q} ¢ 2%, which is nonempty and
totally ordered by inclusion, we have

/\{g (Ai) = /\ /\%t (jt_l (Ai))

(31)

i€Q) i€eQteT
=A% (i (4)
teT ieQ)
< /\G, (A
t/€>" (iEQ] ( )> (32)
()
teT i€Q)
:%<UAi>.
i€Q
O

Remark 47 Let {(X,,6,)};er be a family of M-fuzzitying
convex structures. Consider V¢ € T,Y, = X, x {t}. Then
Y,nNY, = 0fort # s Foreacht € T, the usual
mapping p, : Y, — X,, (x,t) — x is one-to-one and
onto and it naturally induces the mapping from 2" to 2%,
still denoted by p,. Define @, : 2% — M such that
2,(A) = E,(p(A)) for each A € 2", Then one can
easily verify that it is an M-fuzzifying convexity on Y, and
P (Y, 9,) - (X,,6,) is an M-fuzzifying isomorphism.
Thus, we may identify Y, (X, €,) with Y, (Y;, D). In the
sequel, we will assume that any family of M-fuzzifying convex
structures has an M-fuzzifying sum convex structure (up
to an M-fuzzifying isomorphism), but in the proof we still
tacitly assume that the discussed family consists of pairwise
disjoint M-fuzzifying convex structures. This is because there
is no difference between two families of M-fuzzifying convex
structures from a point of isomorphism.

Theorem 48. Let (X, 6) = Y,1(X;, G,). Then € is the finest
M-fuzzifying convexity on X such that {j, : t € T} are M-
fuzzifying convexity preserving functions.

Proof. If there is an M-fuzzifying convexity & on X such
that Vt € T, j, : X, — X is an M-fuzzifying convexity
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preserving function, then for eacht € T'and A € 2%, D(A) <
%,((G) ' (A)) and thus D(A) < \,rG,((j,) ' (A) = G(A).
Therefore, 9 < 6. ]

Theorem 49. Let (X, ) = Y,r(X,,G,) and let (Y, D) be
an M-fuzzifying convex structure. Then f is an M-fuzzifying
convexity preserving function from (X, €) to (Y, D) if and only
ifthe composition f o j, is an M-fuzzifying convexity preserving
function for eacht € T.

Proof. Necessity. It is easy to obtain the necessity by Theo-
rem 42.

Sufficiency. Since the composition f o j, is an M-fuzzifying
convexity preserving function for each t € T, we have for each
A €2, D(A) < G(f - j) ' (A) = B (S (A)).
And thus Z(A) < A\,r %, (G (fT1(A) = B (A)).
It implies that f is an M-fuzzifying convexity preserving
function from (X, &) to (Y, D). ]

Theorem 50. Let (X, 6) = Y, (X, G,) and Y, < X, for each
teT. ThenC|Y =,4(6, | Y,), whereY =1 Ys

Proof. Let j, : X, — X (Vt € T) be the usual inclusion
mapping and j, | Y, : Y, — Y (Vt € T) be the restriction of
j, to Y,. Then by Theorems 45 and 46, we obtain, VB € 2",

> (6 1Y) (B)

teT

= /\ ((gt | Yt) (B n Yt) (33)

teT

=A\{V% (D):De2™, Dny,=BnY,}.
teT

We also have VB € 27,
(@ 1Y)(B)=\/{€®D):De2*, DnY = B}

=V{A<€t(jtl(D)):D62X, DnYzB]»

teT

=\/{/\‘€t(DﬂXt):D62X, DnY:B}.
€T
t (34)

Note that for any D € 2% with DNY = B, we know (DN X,)N
Y, =DnY,=BnY, Hence,Vt €T,
%, (DnXx,)<\/{6,(D): De2™, DnY,=BnY}.
(35)

Therefore,

(‘glY)(B)=\/<|/\<€t(DnXt):D62X, DnY:B}
teT

<A\ {6 D) :De2" DnY,=BnY}
teT

= Z (€, 1Y,)(B)
teT
(36)

for every B € 2”. Conversely, suppose that a < ¥,.(%, |
Y,)(B) = Nier VIG(D) : D € 2%, DNY, = BnY,} for
B € 2. For any t € T, there exists D, € 2%t such that D, n
Y, = BnY,and €,(D,) > a.Let D = J,p D, € 2%. Then
DNY = DN UerY; = Uer(DNY,) = Uper BNY, = B
(where B € 2¥),and Vt € T, €,(D N X,) = €,(D,) > a.
Hence, a < \,.;%,(D N X,), where DNY = B. We obtain
(@ | Y)B) = Vi\er€(DNX,):De2X, DNY =B} > a.
S0 (% | Y)(B) = Y,.r(%, | Y,)(B) for all B € 2", Finally, we
have shown that € | Y = }, (G, | Y}). O

7. Products and Joins of M-Fuzzifying
Convex Structures

In this section, we give subbases and bases of M-fuzzifying
convex structures and then products and joins of M-
fuzzifying convex structures can be defined. U?\: A By denotes
the union of an updirected set {B, : A € A} € 2% and M is a
completely distributive lattice in this section.

By Theorem 27, we can give the following definition.

Definition 51. Let ¢ : 2 — M be a mapping. The M-
fuzzifying convex structure (X, €) generated by ¢ is given by

vAe2", €A =N\{2@):9<Dep}, (37)

where $ denotes all the M-fuzzifying convexities on X.
Then ¢ is called a subbase of the M-fuzzifying convexity 6.
Alternatively, we say that ¢ generates the convexity 6.

Definition 52. Let (X, €) be an M-fuzzifying convex struc-
ture and & : 2X — M a mapping with B < €. B is called a
base of (X, @) if it satisfies the following condition:

\/ /\‘% (B/\) . (38)

Uty Ba=aAeA

VA e2%, ©(A) =

Theorem 53. Let (X, €) be an M-fuzzifying convex structure.
If % is a base of (X, B), then R is a subbase of (X, E).

Proof. Let (X, ) be an M-fuzzifying convex structure and
B < D. By the definition of bases, we have VA € 2%,

ca= \/ NA\%@B)

Ujey By=A A€

< \/ /\@(B/\)

Uiy By=A A€

(39)
< \/ 2 (UBA)
UieaBi=a  MeA
=9 (A).
Therefore, & is a subbase of (X, €). O
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Theorem 54. Let (X, B) be an M-fuzzifying closure structure.
Define a mapping € : 25 — M by

c= \/ N\%@B). (40)

Uity Bi=a A€

VA € 2%,

Then € is an M-fuzzifying convexity with R as its base.

Proof. Obviously, (MYCI) and (MYC3) hold. Next we prove
E(Nicq A1) = NicqG(A;) for any nonempty {A; : i € Q} €
2%, that is,

Voo AzBI=N\ VA% (G) ()

i ! i T
Ubéa Bi=NicaAs AeA e Ujler]i G j=A; jeli

for any nonempty {4, : i € Q} € 2%. Let a be any element in
M with the property of

a=< /\ \/ /\‘%j (Gi,j)' (42)

! di ‘T
i€Q) Uflfr/i G,-J:Ai j€J;

Then for each i € Q, there exists a updirected set {G; ; : j €
Jit € 2¥ suchthat (G, ; : j € J}} = A;and Vj € ], B(G; ) >
a. Thus,

Na=NU{G,jent=U {ﬂGi,fm fe HL}
i€ ieQ i€Q i€Q)
(43)

and B(G; 5(;) > a. We have \/U;uErA Bi=(q A, NieaB(By) = a.
This implies that €([);cq A;) = \ica@(4,;). By the definition
of &, we know that & is a base of (X, ). O

Theorem 55. Let (X, €) be an M-fuzzifying convex structure
with ¢ as its subbase, where (@) = @(X) = T. Define a
mapping B : 2* — M by

BB =\ N\oB). (4

Maea Br=B A€A

VB € 2X,

Then BB is a base of (X, 6).

Proof. First, we prove that & satisfies (MYC1) and (MYC2).
Obviously, (MYCI) holds.

For any nonempty {B; : i € Q} < 2%, let a be any element
in M with the property of

a<\ \V Ne@Gy)=A\z®B). s

i€Q e, G,;=B; jéJ; i€Q

Then for each i € Q, there exists a set {G;; : j € J;} € 2%
such that (1{G; ; : j € J;} = B;and Vj € J;, 9(G; ;) > a. Thus,
MNica Bi = MNieca NGy : j € J;}} and 9(G;;) > a. We have
B(Nica B) = V., Bi=Na B \1ea®(B)) = a. This implies
that B(Nica Bi) = Nica®B(B;) and then (MYC2) holds. So
(X, %) is an M-fuzzifying closure structure. By Theorem 54,
there exists an M-fuzzitying convex structure (X, 9) with %
as its base.
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Next we need to prove that € = 2. Obviously, € < 2.
On the other hand, VA € 2%,

2=\ A%®)

U;ltléA By=A AeA

= VAV NelS)

Ust By=AAEA Ngea, Gs=By Beb,

< VAV NE(G)

Ul By=AACA MNgea, Gp=B) BeA,

<V AV oe(ne)

Usr By=AACA Ngea, Gs=B) BeAy

= \/ /\%(BA)

UiierA By=A AeA

<\ A%(ﬁjm)

Utes Bi= AeA
=% (A).
Thus, 2 = €. Therefore, % is a base of (X, E). O

Theorem 56. Let (X, €) and (Y, D) be M-fuzzifying convex
structures, let f : (X, €) — (Y, D) be a function, and let ¢ be
a subbase of (Y, D), where ¢(0) = ¢(X) = T. Then f is an M-
fuzzifying convexity preserving function if and only if VB € 27,
(f(B)) = ¢(B).

Proof. Necessity. Since Z(B) > ¢(B) for each B € 27, we can
obtain that the necessity holds.

Sufficiency. Consider VB € 2*,

V' A% B

U‘){‘erA B,=B A€

= VAV Ae(G)

Usr By=BAEANgen, Gp=By BEA,

< VAV N\e(r(6)

Ul By=BAEA Ngea, Gp=By BeA,

< \/ /\ \/ %<f_l< ﬂGﬁ>> (47)
Ul By=BAEA Npea, Gs=Bx BeA,

=V A\e(r7 )

U;‘L‘;A B,=B AeA

dir
e (Gn)
U()l:er/\ B)=B A

=% (/7 (B).

P (B) =
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Based on Definition 51, we can define the product of M-
fuzzifying convex structures as follows.

Definition 57. Let {(X,, €,)};er be a family of M-fuzzifying
convex structures. Let X be the product of the sets of X, for
t € Tandletn, : X — X, denote the projection for
each t € T. Define a mapping ¢ : 2¥ — M by ¢(A) =
VierVin,)(5)-a€:(B) for each A € 2%, Then the product
convexity & of X is the one generated by the subbase ¢. The
resulting M-fuzzifying convex structure (X, &) is called the
product of {(X,, €,)};cr and is denoted by [ [, (X,, €,).

Theorem 58. Let (X, €) be the product of {(X,, €,)},er- Then
VteT,m: X — X, isan M-fuzzifying convexity preserving
function. Moreover, € is the coarsest M-fuzzifying convexity
such that {m, : t € T} are M-fuzzifying convexity preserving
functions.

Proof. Lett, € T.VB € 2%, by
% ((m,)" ®)z¢((m,)" ®)
-V

teT ()" (B)=(m,) " (B)

€. (B)  (a8)

> %, (B),

it implies that 7, : X — X, is an M-fuzzifying convexity
preserving function. By the arbitrariness of t;, we know V¢ €
T,m : X — X, isan M-fuzzifying convexity preserving
function. If there is an M-fuzzifying convex structure & on X
such thatVt € T, m, : X — X, is an M-fuzzifying convexity
preserving function, then we need to prove & > €. VB € 2*
and t € T and if (7,) "' (G) = B, then 2(B) = 2((n,)"'(G)) =
%,(G). Note that ¢(B) = \/;erV(n,)1(6)=pC+(G). We have
D(B) > ¢(B) for all B € 2*. Hence I > G. O

Theorem 59. Let (X, €) be the product of {(X,, €,)},cr- Then
E([rerAr) 2 NeerBi(Ay).

Proof. Since m, : X — X, is an M-fuzzifying convexity
preserving function for each t € T, we know that VA, € 2,
<i?((rrt)_l(At)) > 6,(A,). Hence,

€ <HAt> =% <ﬂ(r:t)_l (At)>

teT teT

2 /\%((”t)_l (At)) (49)

teT

> \%,(4,).

teT

O

Definition 60. Let {(X, €,)};cr be a family of M-fuzzifying
convex structures on X. Define a maping ¢ : 2¥ — M by
@(A) = \/,orE,(A) for each A € 2%, Then the join of {&,},cp»
denoted by | |,.;E,, is the one generated by the subbase ¢.

1

The resulting M-fuzzifying convex structure (X, | |,.;€,) is
called the join of {(X, €,)},cr and is denoted by | |, (X, G,).

Theorem 61. Let {(X,,6,)},cr be a family of M-fuzzifying
convex structures. Let X be the product of the sets of X, for
t € T. Then [T,er (X, G)) = | er (X, () (B))).

Proof. By Theorem 31, we have VA € 25 (r[t)_l(‘t?t)(A) =
\/{%,(B) : ()" (B) = A}. Then by the definition of the join,
¢ is a subbase of | |, (X, (1) (8,)), where

e =\/(m) @)=\ '\ €®B g,

teT teT (m,) ' (B)=A

for each A € 2%. By the definition of the product, it is easy to
see that ¢ is a subbase of (X, €). The proof is completed. [J

8. Conclusion

In this paper, we introduce a new approach to the fuzzifica-
tion of convex structures, which is called an M-fuzzifying
convex structure. This fuzzification is different from these
in [3-5]. An M-fuzzifying convex structure can be charac-
terized by means of its M-fuzzifying closure operator. An
M-tuzzifying convex structure and its M-fuzzifying closure
operator are one-to-one corresponding.

In the framework of M-fuzzifying convex structure, the
concepts of M-fuzzifying convexity preserving functions,
substructures, disjoint sums, bases, subbases, joins, product,
and quotient structures, are presented and their fundamental
properties are discussed in M-fuzzifying convex structure.

The above facts will be useful to help further investi-
gations and it is possible that the fuzzification of convex
structure would be applied to some problems related to the
theory of abstract convexity in the future.
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