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A novel filled functionmethod is suggested for solving box-constrained systems of nonlinear equations. Firstly, the original problem
is converted into an equivalent global optimization problem. Subsequently, a novel filled function with one parameter is proposed
for solving the converted global optimization problem. Some properties of the filled function are studied and discussed. Finally,
an algorithm based on the proposed novel filled function for solving systems of nonlinear equations is presented. The objective
function value can be reduced by quarter in each iteration of our algorithm. The implementation of the algorithm on several test
problems is reported with satisfactory numerical results.

1. Introduction

Systems of nonlinear equations arise in myriad applications,
for example, in engineering, physics, mechanics, applied
mathematics and sciences; see [1] for amore detailed descrip-
tion.

In this paper, we consider the following box-constrained
systems of nonlinear equations (for short, (SNE)):

𝐹 (𝑥) = 0, 𝑥 ∈ 𝑋, (SNE)

where the mapping 𝐹 : 𝑅
𝑛 → 𝑅𝑚 is continuous, 𝑥 ⊂ 𝑅𝑛 is a

box.
Generally, systems of nonlinear equations are very diffi-

cult to solve directly. The typical methods to solve (SNE) are
optimization-based methods in which (SNE) is reformulated
as an optimization problem.Themost popular optimization-
based methods involve solving the following optimization
problem (for short (OP)):

min 𝑓 (𝑥) =
1

2
𝐹(𝑥)
𝑇

𝐹 (𝑥)

s.t. 𝑥 ∈ 𝑋

(OP)

to find solutions of (SNE). Note that the problem above is a
box-constrained nonlinear least-squares problem. It is easy to

see that the objective function satisfies 𝑓(𝑥) ≥ 0 and global
optimal solutions of problem (OP) with the zero objective
function value corresponding to solutions of (SNE).

Generally speaking, the traditional optimization-based
methods for solving (SNE) are often stuck at a stationary
point or a local minimizer of the corresponding optimization
problem, which is not necessarily a solution of the original
system. Lately, great efforts have been made to overcome
the difficulty caused by nonglobal minimizers. In Particular,
some switching techniques [2–6] have been developed to
escape from a stationary point or a local minimizer which is
not a solution of (SNE).

Kanzow [3] incorporated two well-known global opti-
mization algorithms, namely, a tunneling [7] and a filled func-
tion method [8], into a standard nonsmooth Newton-type
method for solving a nonsmooth systemof equationswhich is
a reformulation of the mixed complementarity problem. Wu
et al. [9] and Lin et al. [10, 11] also gave some filled function
methods to solve a nonlinear system with box constraints.
Wang et al. [12] gave a filled function method to solve
an unconstrained nonlinear system. In this paper, we will
propose another kind of filled function method to solve box-
constrained systems of nonlinear equations. Unlike [3], we do
not use any Newton-type methods to solve (SNE), and, also
unlike [9, 10], a better initial point of the primal optimization
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problem sometimes can not be obtained by minimizing the
constructed filled function locally. Moreover, unlike [11, 12],
the exponential term was used in the construct of the filled
function, whichmay increase the computabilitywhen applied
to numerical optimization. Instead, in this paper, we use an
efficient filled function method to solve the corresponding
optimization problem, and the local minimizer of the filled
function is always obtained in the interior and is always good
point.The objective function value can be reduced by quarter
in each iteration of our algorithm.

The existence of local minimizers other than global ones
makes global optimization a great challenge. As one of
the main methods to solve general unconstrained or box-
constrained global optimization problems without special
structural property, the filled function method has attracted
extensive attention; see [8–15]. The main idea of the filled
function method is to construct an auxiliary function called
filled function via the current local minimizer of the original
optimization problem, with the property that the current
local minimizer is a local maximizer of the constructed filled
function and a better initial point of the primal optimization
problem can be obtained by minimizing the constructed
filled function locally. However, generally speaking, the local
minimizer of the filled function cannot ensure that it is a
better point of the primal optimization problem. In the paper,
we propose a new filled function method, which can ensure
that the proposed function is an efficient filled function and
the local minimizer of the new filled function on a given box
set is a better point and the primal problem’s objective value
at this better point can be reduced by quarter in each iteration
of our filled function algorithm.

The numerical results obtained show that our method
is applicable and efficient. The paper is organized as fol-
lows. Following this introduction, a novel filled function
is proposed for the optimization problem in Section 2.
The corresponding algorithm is presented in Section 3. In
Section 4, several numerical examples are reported. Finally,
some conclusions are drawn in Section 5.

2. Filled Function for the
Optimization Problem

Throughout this paper we make the following assumption.

Assumption 1. (SNE) has at least one solution in 𝑋 and the
number of solutions of (SNE) is finite.

Suppose that 𝑥∗ is a local miminizer of problem (OP), the
definition of the filled function is as follows.

Definition 2. A continuously differentiable function 𝑝(𝑥, 𝑥∗)

is called a filled function of problem (OP) at 𝑥∗, if it satisfies
the following conditions:

(1) 𝑥∗ is a strict local maximizer of 𝑝(𝑥, 𝑥∗) on𝑋;

(2) 𝑝(𝑥, 𝑥∗) has no stationary point in the region 𝑆
1
=

{𝑥 : 𝑓(𝑥) > 𝑓(𝑥∗)/4, 𝑥 ∈ 𝑋 \ {𝑥∗}};

(3) If 𝑥∗ is not a global minimizer of problem (OP), then
𝑝(𝑥, 𝑥∗) does have aminimizer in the region 𝑆

2
= {𝑥 :

𝑓(𝑥) ≤ 𝑓(𝑥∗)/4, 𝑥 ∈ 𝑋}.

These conditions of the new filled function ensure that
when a descent method, for example, the steepest descent
method, is employed to minimize the constructed filled
function, the sequence of iteration points will not terminate
at any point at which the objective function value is large than
𝑓(𝑥
∗

)/4; if𝑥∗ is not a globalminimizer of problem (OP), then
there must exist a minimizer of the filled function at which
the objective function value is less than or equal to 𝑓(𝑥

∗)/4,
namely, any local minimizer of 𝑝(𝑥, 𝑥∗) must belong to the
set 𝑆
2
= {𝑥 : 𝑓(𝑥) ≤ 𝑓(𝑥∗)/4, 𝑥 ∈ 𝑋}. Therefore, the present

local minimizer of the objective function escapes and a better
minimizer can be found by a local search algorithm starting
from the minimizer of the filled function.

Let 𝐿(𝑃) denote the set of local minimizers of problem
(OP) and let 𝐺(𝑃) denote the set of global minimizers of
problem (OP).

In the following, a novel filled function with one param-
eter satisfying Definition 2 is introduced. To begin with, we
design a continuously differentiable function ℎ(𝑡) with the
following properties: it is equal to 0 when 𝑡 > 0.

More specifically, we construct ℎ(𝑡) as follows:

ℎ (𝑡) = {
0, 𝑡 > 0,

𝑡
2, 𝑡 ≤ 0.

(1)

It is not difficult to check that ℎ(𝑡) is continuously
differentiable and decreasing on 𝑅. Obviously, we have

ℎ
󸀠

(𝑡) = {
0, 𝑡 > 0,

2𝑡, 𝑡 ≤ 0.
(2)

Given 𝑥
∗ ∈ 𝐿(𝑃), the following filled function with one

parameter is constructed:

𝐹 (𝑥, 𝑥
∗

, 𝑞) =
1

1 + ‖𝑥 − 𝑥∗‖
+ 𝑞ℎ(𝑓 (𝑥) −

𝑓 (𝑥∗)

4
) , (3)

where the only parameter 𝑞 > 0. Clearly, 𝐹(𝑥, 𝑥∗, 𝑞) is
continuously differentiable on 𝑅𝑛.

The following theorems show that 𝐹(𝑥, 𝑥∗, 𝑞) satisfy
Definition 2 when the positive parameter 𝑞 is sufficiently
large.

Theorem 3. Let 𝑥∗ ∈ 𝐿(𝑃), 𝑞 > 0. Then, 𝑥∗ is a strict local
maximizer of 𝐹(𝑥, 𝑥∗, 𝑞) on 𝑋.

Proof. Since 𝑥∗ ∈ 𝐿(𝑃), there exists a neighborhood𝑁(𝑥
∗

, 𝜎)

of 𝑥∗ with 𝜎 > 0 such that𝑓(𝑥) ≥ 𝑓(𝑥∗), for all 𝑥 ∈ 𝑁(𝑥∗, 𝜎),
where 𝑁(𝑥∗, 𝜎) = {𝑥 | ‖𝑥 − 𝑥∗‖ < 𝜎}. Then, for any 𝑥 ∈

𝑁(𝑥∗, 𝜎), 𝑥 ̸= 𝑥∗, 𝑞 > 0, and ℎ(𝑡) ≥ 0. We have

𝐹 (𝑥, 𝑥
∗

, 𝑞) =
1

1 + ‖𝑥 − 𝑥∗‖
< 1 = 𝐹 (𝑥

∗

, 𝑥
∗

, 𝑞) . (4)

Thus, 𝑥∗ is a strict local maximizer of 𝐹(𝑥, 𝑥∗, 𝑞) on𝑋.
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Theorem 3 reveals that the proposed new filled function
satisfies condition (1) of Definition 2.

Theorem 4. Let 𝑥∗ ∈ 𝐿(𝑃), 𝑞 > 0. Then, 𝐹(𝑥, 𝑥∗, 𝑞) has no
stationary point in the region 𝑆

1
= {𝑥 : 𝑓(𝑥) > 𝑓(𝑥∗)/4, 𝑥 ∈

𝑋 \ {𝑥∗}}.

Proof. Assume that 𝑥 ∈ 𝑆
1
, namely, 𝑓(𝑥) > 𝑓(𝑥∗)/4 and

𝑥 ̸= 𝑥∗.
Then, we have

∇𝐹 (𝑥, 𝑥
∗

, 𝑞) =
− (𝑥 − 𝑥∗)

(1 + ‖𝑥 − 𝑥∗‖)
2

‖𝑥 − 𝑥∗‖
,

∇𝐹 (𝑥, 𝑥
∗

, 𝑞)
(𝑥 − 𝑥∗)

‖𝑥 − 𝑥∗‖
=

−1

(1 + ‖𝑥 − 𝑥∗‖)
2
< 0.

(5)

It implies that the function𝐹(𝑥, 𝑥∗, 𝑞) has no stationary point
in the region 𝑆

1
= {𝑥 : 𝑓(𝑥) > 𝑓(𝑥∗)/4, 𝑥 ∈ 𝑋 \ {𝑥∗}}.

Theorem 4 reveals that the proposed new filled function
satisfies condition (2) of Definition 2.

Theorem 5. Let 𝑥∗ ∈ 𝐿(𝑃), but 𝑥∗ ∉ 𝐺(𝑃). And (SNE)
satisfies Assumption 1.Then, 𝐹(𝑥, 𝑥∗, 𝑞) does have aminimizer
in the region 𝑆

2
= {𝑥 : 𝑓(𝑥) ≤ 𝑓(𝑥∗)/4, 𝑥 ∈ 𝑋} when 𝑞 > 0 is

sufficiently large.

Proof. Since 𝑥∗ ∈ 𝐿(𝑃), but 𝑥∗ ∉ 𝐺(𝑃), and the global
minimum of 𝑓(𝑥) is zero, there exists an 𝑥

∗

∈ 𝐿(OP)
such that 𝑓(𝑥∗) ≤ 𝑓(𝑥∗)/4. By the continuity of 𝑓(𝑥) and
Assumption 1, there exists 𝜎 > 0 that is small enough and
𝑥 ∈ 𝑁(𝑥

∗

, 𝜎), and it holds 𝑓(𝑥∗) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥∗)/4 = 𝑓(𝑥),
for all𝑥 ∈ 𝑁(𝑥

∗

, 𝜎), where𝑁(𝑥
∗

, 𝜎) = {𝑥 ∈ 𝑋 : ‖𝑥−𝑥
∗

‖ < 𝜎}.
Here, we just give the proof to the case when ‖𝑥 − 𝑥

∗

‖ ≤

‖𝑥
∗

− 𝑥∗‖. For the other case when ‖𝑥 − 𝑥∗‖ > ‖𝑥
∗

− 𝑥∗‖, the
proof is similar.

Therefore, for each 𝑥 ∈ 𝑁(𝑥, 𝜎) = {𝑥 ∈ 𝑋 : ‖𝑥 − 𝑥‖ < 𝜎},
there are two cases:

(1) 𝑓(𝑥) > 𝑓(𝑥) = 𝑓(𝑥∗)/4;
(2) 𝑓(𝑥) ≤ 𝑓(𝑥) = 𝑓(𝑥∗)/4.

For case (1), by 𝑓(𝑥) − 𝑓(𝑥∗)/4 > 𝑓(𝑥) − 𝑓(𝑥∗)/4 = 0 and
‖𝑥 − 𝑥∗‖ < ‖𝑥 − 𝑥∗‖,

𝐹 (𝑥, 𝑥
∗

, 𝑞) =
1

1 + ‖𝑥 − 𝑥∗‖
>

1

1 + ‖𝑥 − 𝑥∗‖
= 𝐹 (𝑥, 𝑥

∗

, 𝑞) .

(6)

For case (2), by 𝑓(𝑥) − 𝑓(𝑥∗)/4 ≤ 𝑓(𝑥) − 𝑓(𝑥∗)/4 = 0 and
‖𝑥 − 𝑥∗‖ < ‖𝑥 − 𝑥∗‖, we have 𝐹(𝑥, 𝑥∗, 𝑞) < 𝐹(𝑥, 𝑥∗, 𝑞) if and
only if

1

1 + ‖𝑥 − 𝑥∗‖
<

1

1 + ‖𝑥 − 𝑥∗‖
+ 𝑞(𝑓 (𝑥) −

𝑓 (𝑥∗)

4
)

2

, (7)

which is equivalent to

𝑞 >

󵄩󵄩󵄩󵄩𝑥 − 𝑥∗
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑥 − 𝑥∗
󵄩󵄩󵄩󵄩

(𝑓 (𝑥) − 𝑓 (𝑥∗) /4)
2

(1 + ‖𝑥 − 𝑥∗‖) (1 + ‖𝑥 − 𝑥∗‖)
> 0.

(8)

Let

𝑞
0
=

󵄩󵄩󵄩󵄩𝑥 − 𝑥∗
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑥 − 𝑥∗
󵄩󵄩󵄩󵄩

(𝑓 (𝑥) − 𝑓 (𝑥∗) /4)
2

(1 + ‖𝑥 − 𝑥∗‖) (1 + ‖𝑥 − 𝑥∗‖)
.

(9)

Thus, there exists sufficiently large 𝑞
0

> 0 as function
𝑓(𝑥) approaches 𝑓(𝑥∗)/4. Consequently, it must has that
𝐹(𝑥, 𝑥∗, 𝑞) < 𝐹(𝑥, 𝑥∗, 𝑞) for all 𝑥 ∈ 𝑁(𝑥, 𝜎) when 𝑞 > 𝑞

0
.

Thus, 𝑥 ∈ 𝑆
2
is a minimizer of 𝐹(𝑥, 𝑥∗, 𝑞) when 𝑞 > 0 is

sufficiently large.

Theorems 5 show that, for all 𝑞 ≥ 𝑞
0
, 𝐹(𝑥, 𝑥∗, 𝑞) satisfies

Condition (3) of Definition 2. The following theorems show
that function 𝐹(𝑥, 𝑥

∗, 𝑞) has some interesting properties.

Theorem 6. Let 𝑥
1
, 𝑥
2
∈ 𝑋 and the following conditions hold:

(i) min{𝑓(𝑥
1
), 𝑓(𝑥

2
)} ≥ (1/4)𝑓(𝑥∗);

(ii) ‖𝑥
2
− 𝑥∗‖ > ‖𝑥

1
− 𝑥∗‖.

Then, the inequality 𝐹(𝑥
1
, 𝑥∗, 𝑞) > 𝐹(𝑥

2
, 𝑥∗, 𝑞) holds for all

𝑞 > 0.

Proof. Since min{𝑓(𝑥
1
), 𝑓(𝑥

2
)} ≥ (1/4)𝑓(𝑥∗), then

𝐹 (𝑥
1
, 𝑥
∗

, 𝑞) =
1

1 +
󵄩󵄩󵄩󵄩𝑥1 − 𝑥∗

󵄩󵄩󵄩󵄩
,

𝐹 (𝑥
2
, 𝑥
∗

, 𝑞) =
1

1 +
󵄩󵄩󵄩󵄩𝑥2 − 𝑥∗

󵄩󵄩󵄩󵄩
.

(10)

Therefore, for all 𝑞 > 0, 𝐹(𝑥
1
, 𝑥∗, 𝑞) > 𝐹(𝑥

2
, 𝑥∗, 𝑞) holds.

Theorem 7. 𝐹(𝑥, 𝑥∗, 𝑞) > 0 for all 𝑥 ∈ 𝑋.

Proof. By the formof the filled function (3) and sinceℎ(𝑡) ≥ 0,
we have 𝐹(𝑥, 𝑥∗, 𝑞) > 0 for all 𝑥 ∈ 𝑋.

Remark 8. In the phase of minimizing the filled function,
Theorems 3–5 guarantee that the present local minimizer
𝑥∗ of the objective function is escaped and the minimum
of the filled function will be always achieved at a point
where the objective function value is not greater than the
quarter of the current minimum of the objective function.
Moreover, the proposed filled function does not include
exponential terms. A continuously differentiable function is
used in the constructed filled function, which possessesmany
good properties and is efficient in numerical implementation.

3. Filled Function Algorithm

The theoretical properties of the proposed filled function
𝐹(𝑥, 𝑥∗, 𝑞) were discussed in the last section. In this section,
a global optimization method for solving problem (OP) is
presented based on the constructed filled function (3), which
leads to a solution or an approximate solution to (SNE).

Suppose that (SNE) has at least one solution and the
number of solutions is finite. The general idea of the global
optimization method is as follows.
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Let 𝑥
0
∈ 𝑋 be a given initial point. Starting from this ini-

tial point, a local minimizer 𝑥∗
0
of problem (OP) is obtained

with a local minimization method (Newton method, Quasi-
Newton Method, or Conjugate Gradient method). If 𝑥∗

0
is

not a global minimizer, the main task is to find a better local
minimizer of problem (OP).

Consider the following filled function problem (for short
(FFP)):

min
𝑥∈𝑋

𝐹 (𝑥, 𝑥
∗

𝑘
, 𝑞) , (FFP)

where 𝐹(𝑥, 𝑥∗
𝑘
, 𝑞) is given by (3).

Let 𝑥∗
0
be a obtained local minimizer of problem (FFP) on

𝑋, and then byTheorem 5,we have𝑓(𝑥∗
0
) ≤ 𝑓(𝑥∗

0
)/4. Starting

from this initial point 𝑥∗
0
, we can obtain a local minimizer 𝑥∗

1

of problem (OP). If 𝑥∗
1
is a globalminimizer (namely,𝑓(𝑥∗

1
) =

0), 𝑥∗
1
is the solution of the system (SNE); otherwise, locally

solve problem (FFP). Let 𝑥∗
1
be the obtained local minimizer,

and then we have that 𝑓(𝑥∗
1
) ≤ 𝑓(𝑥∗

0
)/42. Repeating this

process, we can finally obtain a solution of the system (SNE)
or a sequence {𝑥∗

𝑘
} with 𝑓(𝑥

∗

𝑘
) < 𝑓(𝑥∗

0
)/4𝑘, 𝑘 = 1, 2, . . .. For

such a sequence {𝑥∗
𝑘
}, 𝑘 = 1, 2, . . ., when 𝑘 is sufficiently large,

𝑥
∗

𝑘
can be regarded as an approximate solution of the system

(SNE).
Let 𝑥∗ ∈ 𝑋 and 𝜖 > 0, and 𝑥∗ is called a 𝜖-approximate

solution of the system (SNE) if 𝑥∗ ∈ 𝑋 and 𝑓(𝑥∗) ≤ 𝜖.
The corresponding filled function algorithm for the

global optimization problem (OP) is described as follows.The
algorithm is referred as FFSNE (the filled function method
for (SNE)).

Algorithm FFSNE

Step 0. Choose small positive numbers 𝜖, 𝜆, a large positive
number 𝑞𝑈, and an initial value 𝑞

0
for the parameters 𝑞. (e.g.,

𝜖 = 10−8, 𝜆 = 10−5, 𝑞𝑈 = 1020, and 𝑞
0
= 1010). Choose a

positive integer number 𝐾 (e.g., 𝐾 = 2𝑛) and directions 𝑒
𝑖
,

𝑖 = 1, . . . , 𝐾, are the coordinate directions. Choose an initial
point 𝑥

0
∈ 𝑋. Set 𝑘 := 0.

If𝑓(𝑥
0
) ≤ 𝜖, then let𝑥∗

𝑘
:= 𝑥
0
and go to Step 6.Otherwise,

let 𝑞 := 𝑞
0
and go to Step 1.

Step 1. Find a localminimizer𝑥∗
𝑘
of the problem (OP) by local

search methods starting from 𝑥
𝑘
. If 𝑓(𝑥∗

𝑘
) ≤ 𝜖, go to Step 6.

Step 2. Let

𝐹 (𝑥, 𝑥
∗

𝑘
, 𝑞) =

1

1 +
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

𝑘

󵄩󵄩󵄩󵄩
+ 𝑞ℎ(𝑓 (𝑥) −

𝑓 (𝑥∗
𝑘
)

4
) , (11)

where ℎ(𝑡) is defined by (1). Set 𝑙 = 1 and 𝑢 = 0.1.

Step 3. Consider
(a) If 𝑙 > 𝐾, set 𝑞 := 10𝑞, and go to Step 5; otherwise, go

to (b).
(b) If 𝑢 ≥ 𝜆, set 𝑦𝑙

𝑘
:= 𝑥∗
𝑘
+ 𝑢𝑒
𝑙
, and go to (c); otherwise,

set 𝑙 := 𝑙 + 1, 𝑢 = 0.1, go to (a).
(c) If 𝑦𝑙

𝑘
∈ 𝑋, go to (d); otherwise, set 𝑢 := 𝑢/10, go to

(b).

(d) If 𝑓(𝑦𝑙
𝑘
) ≤ 𝑓(𝑥∗

𝑘
)/4, then set 𝑥

𝑘+1
:= 𝑦𝑙
𝑘
, 𝑘 := 𝑘 + 1,

and go to Step 1; otherwise, go to Step 4.

Step 4. Search for a local minimizer of the following filled
function problem starting from 𝑦𝑙

𝑘
:

min
𝑥∈𝑅
𝑛

𝐹 (𝑥, 𝑥
∗

𝑘
, 𝑞) . (12)

Once a point 𝑦∗
𝑘
∈ 𝑋with𝑓(𝑦∗

𝑘
) ≤ 𝑓(𝑥∗

𝑘
)/4 is obtained in the

process of searching, set𝑥
𝑘+1

:= 𝑦∗
𝑘
, 𝑘 := 𝑘+1 and go to Step 1;

otherwise continue the process. Let 𝑥∗
𝑘
be an obtained local

minimizer of problem (12). If 𝑥∗
𝑘
satisfies 𝑓(𝑥∗

𝑘
) ≤ 𝑓(𝑥∗

𝑘
)/4,

then set 𝑥
𝑘+1

:= 𝑥
∗

𝑘
, 𝑘 := 𝑘 + 1 and go to Step 1; otherwise, set

𝑢 := 𝑢/10, and go to Step 3(b).

Step 5. If 𝑞 ≤ 𝑞𝑈, go to Step 2.

Step 6. Let 𝑥
𝑠
= 𝑥∗
𝑘
and stop.

In this algorithm, the termination criteria for minimiza-
tion of 𝐹(𝑥, 𝑥∗

𝑘
, 𝑞) in Step 4 can be interpreted as follows.The

purpose of minimizing 𝐹(𝑥, 𝑥∗
𝑘
, 𝑞) is to find a “better” point

𝑦∗
𝑘
in set 𝑆

2
= {𝑥 : 𝑓(𝑥) ≤ 𝑓(𝑥∗)/4, 𝑥 ∈ 𝑋}. If it is successful,

that is, the solution obtained satisfies 𝑦∗
𝑘
∈ 𝑆
2
, then we can

turn to Step 1 and restart to minimize the objective function
with 𝑦∗

𝑘
as a new starting point. If in the process of searching

such point is not found, we can obtain the local minimizer
𝑥
∗

𝑘
of 𝐹(𝑥, 𝑥∗

𝑘
, 𝑞). By Theorems 4 and 5, we know that there

must exist a local minimizer of 𝐹(𝑥, 𝑥∗
𝑘
, 𝑞) which belongs to

the set 𝑆
2
= {𝑥 : 𝑓(𝑥) ≤ 𝑓(𝑥∗)/4, 𝑥 ∈ 𝑋}. Then, we turn to

Step 1 and minimizer 𝑓(𝑥) starting from the local minimizer
𝑥
∗

𝑘
. Obviously, if 𝜆 is small enough, 𝑞𝑈 is large enough, and

the direction set {𝑒
1
, . . . , 𝑒

𝐾
} is large enough and 𝑥

𝑠
can be

obtained from algorithm FFOP within finite steps.

4. Numerical Experiment

In this section, several sets of numerical experiments are
presented to illustrate the efficiency of algorithm FFSNE. All
the numerical experiments are implemented in Matlab2010b.
In our programs, the local minimizers of problem (FFP) and
problem (OP) are obtained by the SQP method. Note that
‖∇𝑓(𝑥)‖ ≤ 10

−6 is used as the terminate condition.
The symbols used in Table 3 are given in Table 1.
Throughout our computational experiments, the param-

eters in algorithm FFSNE are set as

𝜀 = 10
−8

, 𝜆 = 10
−5

, 𝑞
𝑈

:= 10
20

, 𝑞
0
:= 10
10

. (13)

Problem 9 (test problem 14.1.1 in [16]). Consider

4𝑥
3

1
+ 4𝑥
1
𝑥
2
+ 2𝑥
2

2
− 42𝑥

1
− 14 = 0,

4𝑥
3

2
+ 2𝑥
2

1
+ 4𝑥
1
𝑥
2
− 26𝑥

2
− 22 = 0,

−5 ≤ 𝑥
𝑖
≤ 5, 𝑖 = 1, 2.

(14)

There are nine known solutions as shown in [16] (see Table 2).
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Table 1

Parameter Description

𝑘
The number of iterations in finding the 𝑘th local
minimizer

𝑥
0

The initial point which satisfies 𝑥
0
∈ 𝑋

𝑥∗
𝑘

The 𝑘th local minimizer which we take as a
solution or an approximate solution to (SNE)

𝑓(𝑥∗
𝑘
)

The function value of 𝑓(𝑥) in finding the 𝑘th local
minimizer

𝐹(𝑥∗
𝑘
)

The function value of 𝐹(𝑥) in finding the 𝑘th local
minimizer

Problem 10 (test problem 14.1.2 in [16]). Consider

𝑥
1
𝑥
2
+ 𝑥
1
− 3𝑥
5
= 0,

2𝑥
1
𝑥
2
+ 𝑥
1
+ 3𝑅
10
𝑥
2

2
+ 𝑥
2
𝑥
2

3
+ 𝑅
7
𝑥
2
𝑥
3

+ 𝑅
9
𝑥
2
𝑥
4
+ 𝑅
8
𝑥
2
− 𝑅𝑥
5
= 0,

2𝑥
2
𝑥
2

3
+ 𝑅
7
𝑥
2
𝑥
3
+ 2𝑅
5
𝑥
2

3
+ 𝑅
6
𝑥
3
− 8𝑥
5
= 0,

𝑅
9
𝑥
2
𝑥
4
+ 2𝑥
2

4
− 4𝑅𝑥

5
= 0,

𝑥
1
𝑥
2
+ 𝑥
1
+ 𝑅
10
𝑥
2

2
+ 𝑥
2
𝑥
2

3
+ 𝑅
7
𝑥
2
𝑥
3
+ 𝑅
9
𝑥
2
𝑥
4

+ 𝑅
8
𝑥
2
+ 𝑅
5
𝑥
2

3
+ 𝑅
6
𝑥
3
+ 𝑥
2

4
− 1 = 0,

0.0001 ≤ 𝑥
𝑖
≤ 100, 𝑖 = 1, . . . , 5,

(15)

where 𝑅 = 10, 𝑅
5
= 0.193, 𝑅

6
= 4.10622 × 10−4, 𝑅

7
=

5.45177 × 10−4, 𝑅
8
= 4.4975 × 10−7, 𝑅

9
= 3.40735 × 10−5,

and 𝑅
10

= 9.615 × 10−7.
The known solution in [16] is

(0.003431, 31.325636, 0.068352, 0.859530, 0.036963)
𝑇.

Problem 11 (test problem 14.1.3 in [16]). Consider

10
4

𝑥
1
𝑥
2
− 1 = 0,

exp (−𝑥
1
) + exp (−𝑥

2
) − 1.001 = 0,

5.49 × 10
−6

≤ 𝑥
1
≤ 4.553,

2.196 × 10
−3

≤ 𝑥
2
≤ 18.21.

(16)

The known solution is (0.0000145067, 6.89335287)𝑇.

Problem 12 (test problem 14.1.4 in [16]). Consider

0.5 sin (𝑥
1
𝑥
2
) −

0.25𝑥
2

𝜋
− 0.5𝑥

1
= 0,

(1 −
0.25

𝜋
) (𝑒
2𝑥
1 − 𝑒) +

𝑒𝑥
2

𝜋
− 2𝑒𝑥

1
= 0,

0.25 ≤ 𝑥
1
≤ 1, 1.5 ≤ 𝑥

2
≤ 2𝜋.

(17)

The known solution is (0.29945, 2.83693)
𝑇 and

(0.5, 3.14159)
𝑇.

Problem 13 (test problem 14.1.5 in [16]). Consider

2𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
+ 2𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
+ 𝑥
2
+ 2𝑥
3
+ 𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 2𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
𝑥
2
𝑥
3
𝑥
4
𝑥
5
− 1 = 0

−2 ≤ 𝑥
𝑖
≤ 2, 𝑖 = 1, . . . , 5.

(18)

The known solution is (1, 1, 1, 1, 1)
𝑇 and

(0.916, 0.916, 0.916, 0.916, 1.418)
𝑇.

Problem 14 (test problem 14.1.6 in [16]). Consider

4.731 × 10
−3

𝑥
1
𝑥
3
− 0.3578𝑥

2
𝑥
3
− 0.1238𝑥

1

+ 𝑥
7
− 1.637 × 10

−3

𝑥
2
− 0.9338𝑥

4
− 0.3571 = 0,

0.2238𝑥
1
𝑥
3
+ 0.7623𝑥

2
𝑥
3
+ 0.2638𝑥

1
− 𝑥
7

− 0.07745𝑥
2
− 0.6734𝑥

4
− 0.6022 = 0,

𝑥
6
𝑥
8
+ 0.3578𝑥

1
+ 4.731 × 10

−3

𝑥
2
= 0,

−0.7623𝑥
1
+ 0.2238𝑥

2
+ 0.3461 = 0,

𝑥
2

1
+ 𝑥
2

2
− 1 = 0,

𝑥
2

3
+ 𝑥
2

4
− 1 = 0,

𝑥
2

5
+ 𝑥
2

6
− 1 = 0,

𝑥
2

7
+ 𝑥
2

8
− 1 = 0,

−1 ≤ 𝑥
𝑖
≤ 1, 𝑖 = 1, . . . , 8.

(19)

The are sixteen known solutions of problem 6 are given in
[16].

Problem 15 (test problem 1 in [17]). Consider

1 − 2𝑥
2
+ 0.2 sin (4𝜋𝑥

2
) − 𝑥
1
= 0,

𝑥
2
− 0.5 sin (2𝜋𝑥

1
) = 0,

−10 ≤ 𝑥
1
, 𝑥

2
≤ 10.

(20)

The known solution is (0.1025250, 0.3005036)𝑇.

Problem 16 (test problem 7 in [18]). Consider

𝑥
1
− 0.7 sin (𝑥

1
) − 0.2 cos (𝑥

2
) = 0,

𝑥
2
− 0.7 cos (𝑥

1
) + 0.2 sin (𝑥

2
) = 0,

−100 ≤ 𝑥
1
, 𝑥

2
≤ 100.

(21)

The known solution is (0.5268, 0.5084)𝑇.
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Table 2

Sol 1 2 3 4 5 6 7 8 9
𝑥
∗

1
−3.7793 −3.0730 −2.8051 −0.2709 −0.1280 0.0867 3.0 3.3852 3.5844

𝑥∗
2

−3.2832 −0.0814 3.1313 −0.9230 −1.9537 2.8843 2.0 0.0739 −1.8481

Table 3: Computational results for Problems 9–16.

Prob. Number 𝑥
0

𝑘 𝑥∗
𝑘

𝑓(𝑥∗
𝑘
) 𝐹(𝑥∗

𝑘
)

9 (
−5

−3
) 1 (

3.3852

0.0738
) 3.2970 × 10

−9

(
−1.9488 × 10−5

7.8830 × 10
−5

)

(
2

3
) 1 (

−0.2708

−0.9230
) 2.9217 × 10−9 (

4.8628 × 10−5

5.8981 × 10−5
)

10 (

(

26

1 × 10
−4

6

10

10

)

)

2 (

(

3.4524 × 10−3

3.1121 × 10
1

6.8586 × 10−2

8.5953 × 10−1

3.6963 × 10
−2

)

)

5.4171 × 10−9 (

(

5.5404 × 10−6

−1.6118 × 10
−5

9.2403 × 10−5

−2.4911 × 10−5

3.7147 × 10
−5

)

)

11 (
0

3
) 2 (

1.4529 × 10
−5

6.8831
) 4.9269 × 10

−9

(
−5.1847 × 10

−6

3.7377 × 10−5
)

(
0.8000

1.5000
) 1 (

0.2994

2.8369
) 4.0955 × 10−15 (

−7.7216 × 10−8

−4.7209 × 10−8
)

13 (

(

−1

2

−1

2

−1

)

)

1 (

(

0.99999

0.99999

0.99999

0.99999

1.00010

)

)

8.2910 × 10−11 (

(

5.0000 × 10
−5

5.0000 × 10
−5

5.0000 × 10−5

5.0000 × 10−5

5.9997 × 10
−5

)

)

14

(
(
(
(
(
(
(
(

(

1

0

1

0

1

0

1

0

)
)
)
)
)
)
)
)

)

1

(
(
(
(
(
(
(
(

(

6.7156 × 10
−1

7.4093 × 101

9.5188 × 10−1

−3.0643 × 10
−1

−1.00000

6.0044 × 10−1

4.0461 × 10
−1

−4.0580 × 10
−1

)
)
)
)
)
)
)
)

)

9.8094 × 10−9

(
(
(
(
(
(
(
(

(

−2.1344 × 10
−6

7.6246 × 10−6

1.3096 × 10−4

−1.0054 × 10
−5

−2.9901 × 10−5

−2.5121 × 10−5

0

0

)
)
)
)
)
)
)
)

)

15 (
6.0000

−2.0000
) 1 (

1.8784

−0.3458
) 1.2341 × 10−14 (

9.5452 × 10−8

1.2478 × 10−7
)

16 (
0

1
) 4 (

5.2656 × 10−1

5.0791 × 10−1
) 8.8529 × 10−11 (

1.3812 × 10−5

1.7315 × 10−6
)

The numerical results are listed in Table 3. From Table 3,
it is easy to see that all problems that we tested have been
solved with a small number of iterations.

5. Conclusions

In this paper, the filled function 𝐹(𝑥, 𝑥∗, 𝑞) with one param-
eter is constructed for solving nonlinear equations and it
has been proved that it satisfies the basic characteristics of
the filled function definition. Promising computation results
have been observed from our numerical experiments. In
the future, the filled function method can be used to solve
other problems such as nonlinear systems of equalities and
inequalities and nonlinear feasibility problems with expen-
sive functions.
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