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The increase in the occurrence of cardiovascular diseases in the world has made electrocardiogram an important tool to diagnose
the various arrhythmias of the heart. But the recorded electrocardiogram often contains artefacts like power line noise, baseline
noise, andmuscle artefacts. Hence denoising of electrocardiogram signals is very important for accurate diagnosis of heart diseases.
The properties of wavelets and multiwavelets have better denoising capability compared to conventional filtering techniques. The
electrocardiogram signals have been taken from the MIT-BIH arrhythmia database. The simulation results prove that there is a
29.7% increase in the performance of multiwavelets over the performance of wavelets in terms of signal to noise ratio (SNR).

1. Introduction

In modern medicine, there are many methods to diagnose
heart disease such as electrocardiogram (ECG), ultrasound,
magnetic resonance imaging (MRI), and computer tomog-
raphy (CT). Among these methods, diagnosis using elec-
trocardiogram has the advantages of convenience and low
cost so that it can be used in a wide area. However, certain
arrhythmia (a fast, slow, or irregular heartbeat) which can
cause abnormal symptoms may occur only sporadically or
may occur only under certain conditions such as stress.
Arrhythmia of this type is difficult to obtain on an electro-
cardiogram tracing that runs only for a few minutes. The
electrocardiogram is the record of variation of bioelectric
potential with respect to time as the human heart beats. Due
to its ease of use and noninvasiveness, electrocardiogram
plays an important role in patient monitoring and diagnosis.

The change in solar activity including electrocardio-
graphic data with variations in galactic cosmic rays, geomag-
netic activity, and atmospheric pressure suggests the possi-
bility of links among these physical environmental variations
and health risks, such as myocardial infarctions and ischemic
strokes. An increase in the incidence ofmyocardial infarction

in association with magnetic storms has been reported by
Cornélissen et al. [1].

Magnetic storms are found to decrease heart rate variabil-
ity (HRV) indicating a possible mechanism since a reduced
HRV is an important factor for coronary artery disease and
myocardial infarction. An increase of 5% in mortality during
years of maximal solar activity is found when compared with
years of minimal solar activity. These chronodiagnostics are
particularly important for those venturing into regions away
from hospitals.

Goudarzi et al. [2] made an effort to find the optimum
multiwavelet for compression of ECG signals to be used
along with SPIHT codec. This work examined different
multiwavelets on 24 sets of ECG data with entirely different
characteristics selected fromMIT-BIH database and assessed
the functionality of the different multiwavelets in compress-
ing electrocardiogram signals and their simulation results
showed the cardinal balanced multiwavelet (cardbal2) by the
means of identity (Id) prefiltering method to be the best
effective transformation and the most efficient multiwavelet
was applied for SPIHT coding algorithm on the transformed
signal by this multiwavelet.
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Kania et al. [3] studied the application of wavelet denois-
ing in noise reduction of multichannel high resolution ECG
signals. The influence of the selection of wavelet function
and the choice of decomposition level on efficiency of
denoising process was considered and whole procedures of
noise reductionwere implemented inMATLAB environment
using the fast wavelet transform. The denoising method was
found to be advantageous since noise level was decreased
in ECG signals, in which noise reduction by averaging had
limited application, that is, in case of arrhythmia.

Helenprabha and Natarajan [4] proposed a technique
used formeasuring electrical signals generated by foetal heart
as measured from multichannel potential recordings on the
mother’s body surface.They proposed a new class of adaptive
filter that combines the attractive properties of finite impulse
response (FIR) filter with infinite impulse response (IIR)
filter. The maternal ECG and foetal signals were simulated
using MATLAB. The gamma filter design was implemented
in FPGA Spartan 2E which was programmed using VHDL.
Their results have solved the complex situationsmore reliably
than normal adaptive methods used earlier for recovering
foetal signals.

Chang et al. [5] proposed measures to make the optimal
filter design under different constraints possible for ECG
signal processing. Experiments have been conducted by them
with artificially and practically corrupted ECG signals for
PLI adaptive filtering technique. The assessments included
the convergence time, the frequency tracking efficiency,
the execution time, and the relative statistics in time and
frequency domain. The results demonstrated that there is no
universal optimum approach for this application thus far.

Alfaouri and Daqrouq [6] performed wavelet transform
thresholding technique for ECG signal denoising. They
decomposed the signal into five levels of wavelet transform
using theDaubechies wavelet (db4) and determined a thresh-
old through a loop to find the value where minimum error
was achieved between the detailed coefficients of threshold
noisy signal and the original signal. The threshold value was
accomplished experimentally after using a loop of calculating
a minimum error between the denoised wavelet subsignals
and the original free of noise subsignals. The experimental
application of the threshold result was better than Donoho’s
threshold particularly in ECG signal denoising.

Zhidong and Chan [7] proposed a novel method for the
removal of power line frequency from ECG signals based
on empirical mode decomposition (EMD) and adaptive
filter. A data-driven adaptive technique called EMD was
used to decompose ECG signal into a series of intrinsic
mode functions (IMFs).The adaptive power line cancellation
filter was designed to remove the power line interference,
the reference signal of which was produced by selective
reconstruction of IMFs. Clinic ECG signals were used to
evaluate the performance of the filter. Results indicated that
the power line interference of ECG was removed effectively
by the new method.

Kaur and Singh [8] proposed a combination method
for power line interference reduction in ECG. The methods
were moving average method and using the IIR notch
characteristics. Their results showed reduction in the power

line noise in the ECG signal using the proposed filter that has
fewer coefficients and hence lesser computation time for real
time processing.

Haque et al. [9] used wavelet method to detect the small
variations of ECG features. They simulated standard ECG
signals as well as the simulated noise corrupted signal using
FFT and wavelet for proper feature extraction. They found
wavelet to be superior to the conventional FFT method in
finding the small abnormalities in electrocardiogram signals.

Tan and Lei [10] used wavelet transform to filter out
noise interferences of electrocardiogram signals for the fil-
tering of the myoelectric interference, the power frequency
interference, and the baseline drift. Firstly Coif4 wavelet was
adapted to decompose electrocardiogram signals containing
noises. Secondly, the soft and hard threshold value quantified
high-frequency coefficients of every scale and finally the
electrocardiogram were reconstructed using high-frequency
coefficients of every scale which were quantified by the
threshold value. Experiments showed that wavelet transform
had good real time filtering effect and it hadmore advantages
than traditional methods.

2. Materials and Methods

2.1. Wavelet Method. A wavelet is simply a small wave which
has energy concentrated in time. It is compactly supported
and has finite energy function. It can satisfy admissibil-
ity condition and could be amendable for multiresolution
analysis. The wavelet transform is a mathematical tool for
decomposing a signal into a set of orthogonal waveforms
localized both in time and frequency domains. The wavelet
transform is a suitable tool to analyse the electrocardiogram
signal, which is characterized by a cyclic occurrence of
patterns with different frequency content (P wave, QRS
complex, and T wave). It is a decomposition of the signal
as a combination of a set of basic functions, obtained by
means of dilation (a) and translation (b) of a single prototype
wavelet; there are several wavelet functions (mother wavelet
with different properties) like the Morlet or Mexican Hat
wavelets or complex frequency B spline wavelets that are used
in study.

Wavelet analysis is done by the breaking up of a signal
into a shifted and scaled version of the original wavelet. A
continuous wavelet transform can be defined as the sum of
overall time of the signal multiplied by a scaled and shifted
version of the wavelet function. The greater the scale factor
“a” is, the wider the basis function is and, consequently,
the corresponding coefficient gives information about lower
frequency components of the signal and vice versa.

Thewavelet transform is designed to address the problem
of nonstationary signals such as electrocardiogram signals.
It involves representing a time function in terms of simple,
fixed building blocks, and termed wavelets. The next step
is the selection of number of decomposition levels of signal
𝑥
𝑖
(𝑡); see Figure 1. First decomposition level is obtained by

using two complementary high- and low-pass filters and
then half of the samples are eliminated. The filters cut
frequency is equal to half of the bandwidth of analysed signal.
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Figure 1: Diagram of multiresolution analysis of signal 𝑥
𝑖
(𝑡).

Such algorithm, which is amplification of discrete wavelet
transform, is known as fast wavelet transform.

For analysis the following mother wavelet was used:

Ψ
𝑚,𝑛 (

𝑡) = 2
−𝑚/2

Ψ (2
−𝑚
𝑡 − 𝑛) , (1)

where 𝑛 is coefficient of time translation and 𝑚 is coefficient
of scale (compression).

In the first step threshold values for detail coefficients at
every level of decomposition are determined according to the
following relationship:

THR
𝐽
= √2 log 󵄩󵄩󵄩󵄩

󵄩
𝑐𝐷
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
. (2)

The next step is the modification of values of the jth level
detail coefficients basis of appointed threshold. This method
is called soft thresholding procedure as follows:

𝑐𝐷
𝑗 (
𝑡) = {

sgn (𝑐𝐷
𝑗 (
𝑡)) (|𝑥| − THR

𝑗
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𝑗 (
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𝑗
,

0; 𝑐𝐷
𝑗 (
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𝑗
.

(3)

The final step of the analysis is reconstruction of signal
𝑥
𝑖
(𝑡) based of approximation coefficients chosen 𝑖th level of

decomposition (𝑐𝐴
𝑖
) andmodified detail coefficients from 𝑖th

(𝑐𝐷
𝑖
) as well as higher levels of decomposition

𝑥
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(4)

where Φ
𝑘
(𝑡) is scaling function from kth level of decompo-

sition and Ψ
𝑚,𝑛
(𝑡) are wavelet functions for 𝑚 = 𝑚

0
, . . . , 𝑚

𝑘

levels of decomposition.
The advantages of wavelet methods are possibility of

receiving good quality signal for beat to beat analysis and

possibility of having high quality signal while averaging
technique is impossible, as causing morphology distortion
of electrocardiogram signals, it provides a way for analysing
waveforms bounded in both frequency and duration, it allows
signals to be stored more efficiently than by the Fourier
transform, it can lead to better approximate real-world signals
and it is well-suited for approximating data with sharp
discontinuities. The disadvantage of wavelet method is that
the wavelet transforms ignore polynomial components of the
signal up to the approximation order of the basis.

2.2. Equation for ContinuousWavelet Transform. Thewavelet
transform equation is given by

CWTΨ
𝑥
(𝜏, 𝑠) = Ψ (𝜏, 𝑠) =

1

√|𝑠|𝑡

∫𝑥 (𝑡) Ψ
∗
(

𝑡 − 𝜏

𝑠

) 𝑑𝑡, (5)

where 𝑥(𝑡) = given signal, 𝜏 = translation parameter, 𝑠 =
scaling parameter = 1/𝑓, and Ψ(𝑡) = mother wavelet.

2.3. Multiwavelet Method. Multiwavelets constitute a new
chapter which has been added to wavelet theory in recent
years. Recently, much interest has been generated in the study
of the multiwavelets where more than one scaling functions
and mother wavelet are used to represent a given signal. The
first construction for polynomial multiwavelets was given by
Albert, who used them as a basis for the representation of
certain operators. Later, Geronimo, Hardin, and Massopust
constructed amultiscaling functionwith 2 components using
fractal interpolation.

In spite of many theoretical results on multiwavelet,
their successful applications to various problems in signal
processing are still limited. Unlike scalar wavelets in which
Mallet’s pyramid algorithm have provided a solution for good
signal decomposition and reconstruction, a good framework
for the application of the multiwavelet is still not available.
Nevertheless, several researchers have proposed method of
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how to apply a given multiwavelet filter to signal and image
decomposition.

2.4. Multiscaling Functions and Multiwavelets. The concept
of multiresolution analysis can be extended from the scalar
case to general dimension 𝑟 N. A vector valued function
𝜑 = [𝜑

1
𝜑
2
, . . . , 𝜑

𝑟
]
𝑇 belonging to 𝐿2(𝑅)𝑟 and 𝑟 N is called a

multiscaling function if the sequence of closed spaces

𝑉
𝑗
= span {2𝑗/2𝜑

𝑖
(2
𝑗
− 𝑘) : 1 ≤ 𝑖 ≤ 𝑟, 𝑘 ∈ 𝑍} . (6)

𝑗 ∈ 𝑍 constitute a multiresolution analysis (MRA) of
multiplicity 𝑟 for 𝐿2(𝑅). The multiscaling function must
satisfy the two-scale dilation equation

𝜑 (𝑡) = √2∑

𝑘

𝐺
𝑘
𝜑 (2𝑡 − 𝑘) . (7)

Now let𝑊
𝑗
denote a complementary space of 𝑉

𝑗
in 𝑉
𝑗+1

. The
vector valued function Ψ = [Ψ

1
Ψ
2
, . . . , Ψ

𝑟
]
𝑇 such that

𝑊
𝑗
= span {2𝑗/2𝜑

𝑖
(2
𝑗
− 𝑘) : 1 ≤ 𝑖 ≤ 𝑟, 𝑘 ∈ 𝑍} . (8)

𝑗 ∈ 𝑍 is called amultiwavelet.Themultiscaling functionmust
satisfy the two-scale equation

Ψ (𝑡) = √2∑

𝑘

𝐻
𝑘
𝜑 (2𝑡 − 𝑘) . (9)

𝐻
𝑘
∈ 𝐿
2
(𝑍)
𝑟×𝑟 is an 𝑟 × 𝑟 matrix of coefficients. The two-

scale equations (2) and (4) can be realized as amultifilter bank
operating on 𝑟 input data streams and filtering them in two
2r output data streams, each of which is downsampled by a
factor of two. If 𝑥(𝑡) is the given signal and it is assumed that
𝑥(𝑡) ∈ 𝑉

0
, then

𝑥 (𝑡) = √2∑

𝑘

𝑉
𝑇

0,𝑘
𝜑 (𝑡 − 𝑘) . (10)

And the scaling coefficient𝑉𝑇
1,𝑘

of the first level can be consid-
ered as a result of low-pass multifiltering and downsampling
as follows:

𝑉
1,𝑘
= ∑

𝑚

𝐺
𝑚−2𝑘

𝑉
0,𝑚
. (11)

Analogously, the first level multiwavelet coefficients𝑊
1,𝑘

are
obtained using high-passmultifiltering and downsampling as
follows:

𝑊
1,𝑘
= ∑

𝑚

𝐻
𝑚−2𝑘

𝑉
0,𝑚
. (12)

Full multiwavelet decomposition of the signal 𝑥(𝑡) can be
found by iterative filtering of the scaling coefficient as follows:

𝑉
𝑗,𝑘
= ∑

𝑚

𝐺
𝑚−2𝑘

𝑉
𝑗−1,𝑚

,

𝑊
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𝑚
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𝑚−2𝑘

𝑉
𝑗−1,𝑚

.

(13)

Note that 𝑉
𝑗,𝑘

and𝑊
𝑗,𝑘

are 𝑟 × 1 column vectors.

2.5. Advantages of Wavelets and Multiwavelets Compared to
Conventional Filtering Techniques

(i) The Fourier transform fails to analyze the nonsta-
tionary signal, whereas wavelet transform allows the
components of a nonstationary signal to be analyzed.

(ii) Wavelet transform holds the property of multires-
olution to give both time and frequency domain
information in a simultaneous manner.

(iii) A set of wavelets which are complementary can
decompose the given data without gaps or overlap so
that the decomposition process becomes mathemati-
cally reversible.

2.6. Comparison between Wavelet and Multiwavelet. Multi-
wavelets contain multiple scaling functions, whereas scalar
wavelets contain one scaling function and one wavelet.
This leads to more degrees of freedom in constructing
wavelets. Therefore, opposed to scalar wavelets, properties
such as compact support, orthogonality, symmetry, vanishing
moments, and short support can be gathered simultaneously
in multiwavelets which are fundamental in signal processing.

The increase in degree of freedom in multiwavelets is
obtained at the expense of replacing scalars with matrices,
scalar functions with vector functions, and single matrices
with block of matrices. However, prefiltering is an essential
task which should be performed for any use of multiwavelet
in signal processing.

3. Results and Discussions

3.1. Data Collection

3.1.1. MIT-BIH Arrhythmia Database. MIT-BIH arrhythmia
database consists of 48-half-hour electrocardiogram record-
ings. The recordings were digitized at 360Hz (samples per
second per channel) with 11-bit resolution over 10mV. The
simulations were carried out in MATLAB environment
R2010b. Various benchmark records from the MIT-BIH
database were considered for this study.

(A) Performance Analysis of Wavelet Based Denoising Method
for Electrocardiogram

Wavelet Denoising Using Biorthogonal 1D Wavelet. Figure 2
shows the wavelet denoising for the record 103m in which
level 1 approximation coefficient 𝑑

1
for Biorthogonal wavelet

shows that there is maximum noise in it. Hence reconstruc-
tion of the original signal to obtain the denoised electrocar-
diogram from 𝑑

1
coefficients will also contain the maximum

noise. The level 4 decomposition contains the least noise and
hence reconstruction is done using 𝑑

4
.

Original and Denoised Signals Using Biorthogonal Wavelet.
Figure 3 shows the comparison of the original signal and
the denoised signal using Biorthogonal wavelet at level 4
decomposition for the record 103m. In this the signal to
noise ratio obtained is 32.2094 dB and the power line noise
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Figure 2: Wavelet denoising for ECG record no 103m using Biorthogonal 1D wavelet.
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Figure 3: Original and denoised signals for ECG record no 103m using Biorthogonal wavelet.

is reduced for this record. Figure 4 shows the approximation
and coefficient details after the signal in record 114m has
been subjected to the Biorthogonal wavelet transform and
Figure 5 shows the original and denoised electrocardiogram
in the record 114m. The signal to noise ratio obtained is
9.184 dB.This shows that the noise has to be removed further
to enhance the quality of the obtained electrocardiogram.

(B) Performance Analysis of Multiwavelet Based Denoising
Method for Electrocardiogram

Biothogonal Based Multiwavelet Denoising. The multiwavelet
denoising for the record 103m shown in Figure 6 yields
a signal to noise ratio of 35.5220 dB in which the power

line noise gets removed. Figure 7 shows the multiwavelet
denoising for the record 114m and the signal to noise ratio
obtained is 13.4022 dB because of the removalof power line
noise.

3.2. Performance Comparison of Wavelet and Multiwavelet
Methods. Comparison of signal to noise ratio for wavelet
and multiwavelet based denoising techniques for various
electrocardiogram records.

4. Conclusion

The inference fromTables 1, 2, 3, and 4 is that the output signal
to noise ratio value of multiwavelet denoising functions is
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Figure 4: Wavelet denoising for ECG record no 114m using Biorthogonal 1D wavelet.
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Figure 5: Original and denoised signals for ECG record no 114m using Biorthogonal wavelet.

Table 1: Performance comparison of wavelet and multiwavelet for
record 100m.

Wavelet family
SNR (dB)

Record no 100m
Wavelet Multiwavelet

Bio 6.8 11.5708 29.8328
Db 3 2.7306 21.7829
Db10 0.561 7.3489
Coif 4 2.466 3.6112
Sym 4 9.0630 21.956

greater than the signal to noise value ofwavelet functions.The
table also indicates that the Daubechies wavelet 10 has better
denoising capability than when compared to corresponding
values of the wavelet denoising as the shape of this wavelet

Table 2: Performance comparison of wavelet and multiwavelet for
record 103m.

Wavelet family
SNR (dB)

Record no 103m
Wavelet Multiwavelet

Bio 6.8 32.2094 35.5220
Db 3 15.827 27.7849
Db10 19.1099 33.1183
Coif 4 24.1340 29.7007
Sym 4 24.6220 36.0964

is more close to the shape of electrocardiogram.The increase
in signal to noise ratio value indicates that there is no loss in
the information contained in the original electrocardiogram
signal and multiwavelet has better denoising capability to
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Figure 6: Multiwavelet denoising for ECG record no 103m using Biorthogonal 1D wavelet.
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Figure 7: Multiwavelet denoising for ECG record no 114m using Biorthogonal 1D wavelet.

Table 3: Performance comparison of wavelet and multiwavelet for
record 114m.

Wavelet family
SNR (dB)

Record no 114m
Wavelet Multiwavelet

Bio 6.8 9.184 13.4022
Db 3 28.6913 31.0045
Db10 18.2315 28.5193
Coif 4 19.3813 36.6501
Sym 4 29.6574 30.8971

Table 4: Performance comparison of wavelet and multiwavelet for
record 201m.

Wavelet family
SNR (dB)

Record no 201m
Wavelet Multiwavelet

Bio 6.8 11.5636 32.3220
Db 3 20.1344 29.3001
Db10 21.2696 33.7040
Coif 4 17.8031 21.2874
Sym 4 24.0735 25.1638
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remove the power line noise in the various electrocardiogram
records.
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