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This paper presents an adaptive iterative learning control (AILC) scheme for a class of nonlinear systems with unknown time-
varying delays and unknown input dead-zone. A novel nonlinear form of deadzone nonlinearity is presented. The assumption of
identical initial condition for ILC is removed by introducing boundary layer functions. The uncertainties with time-varying delays
are compensated for with assistance of appropriate Lyapunov-Krasovskii functional and Young’s inequality.The hyperbolic tangent
function is employed to avoid the possible singularity problem. According to a property of hyperbolic tangent function, the system
output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy
function (CEF) in two cases, while maintaining all the closed-loop signals bounded. Finally, a simulation example is presented to
verify the effectiveness of the proposed approach.

1. Introduction

Practically, many engineering systems carry out repetitive
tasks in fixed finite space, such as manipulators [1–3]. In
high precision engineering, perfect tracking for such tasks
is highly desirable. Whereas existing control approaches,
such as classical PID controllers, feedback linearization, and
adaptive control, may guarantee closed-loop stability, they
can hardly achieve perfect tracking. Fortunately, learning and
repetitive control are the alternatives to address this problem,
which enhance the tracking accuracy from operation to
operation for systems executing repetitive tasks. By now,
iterative learning control (ILC) has become one of the most
important learning strategies owing to its implementation
simplicity under the repeatable control environment. The
basic idea of ILC is to improve the control performance
of systems from trial to trial. Traditional iterative learning
controllers have been developed for more than two decades
for nonlinear plants [1–12]. The control input of traditional
ILC is directly updated by a learning mechanism using the
information of error and input in the previous iteration, and
the contractionmapping theorem is often used to analyze the
stability of closed-loop systems.However, the studied systems
must satisfy global Lipschitz continuous condition. Thus,

there are some difficulties or limitations to apply traditional
ILC for certain systems. In order to circumvent this problem,
some other new ILC algorithms have been widely studied.
One of the most important developments is adaptive ILC
(AILC) [13–15], in which the control parameters are adjusted
between successive iterations, and the so-called composite
energy function (CEF) [16] is usually constructed to derive
the stability conclusions. In recent years, the control com-
munity has witnessed great progress in AILC of uncertain
nonlinear systems [17–27].

In practical control tasks, systems with time delays are
frequently encountered. The existence of time delays may
make the controllers design more complicated and chal-
lenging, especially for systems with unknown time-delays.
Stabilization problem of control systems with time delay
has drawn much attention [28–35] due to its mathematical
challenge and application demand in real-time control. In
[28–31], the controller design and stability analysis for state-
delayed systems were presented and [32–35] discussed the
stabilization of systems with input delays. In the field of ILC,
although so many results have been obtained, only few ones
were available for time-delay nonlinear systems [36–41], and
the majority of these works were traditional iterative learning
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controllers. In the framework of AILC, Chen and Zhang
[40] proposed an AILC scheme for a class of scalar systems
with unknown time-varying parameters and unknown time-
varying delay. In [41], an adaptive learning control design
was developed for a certain class of first-order nonlinearly
parameterized systems with unknown periodically time-
varying delay and further extended to a class of high-
order systems with both time-varying and time-invariant
parameters. However, they all required the identical initial
conditions on the initial states and the reference trajectory
for the AILC design, which is necessary for the stability and
convergence analysis but can hardly be satisfied in practical
systems.

In practice, nonsmooth and nonlinear characteristics
such as dead-zone, hysteresis, saturation, and backlash are
common in actuator and sensors. Dead-zone is one of the
most important nonsmooth and non-affine-in-input nonlin-
earities inmany industrial processes, which can severely dete-
riorate system performances and give rise to extra difficulties
in the controller design. Therefore, the effect of dead-zone
should be taken into consideration and has been drawing
much interest in the control community for a long time
[42–48]. To handle the problem of unknown dead-zone in
control system design, an immediate method is to construct
an adaptive dead-zone inverse [42]. Continuous and discrete
adaptive dead-zone inverses were built for linear systems
with unmeasurable dead-zone outputs [43, 44]. Based on the
assumption of the consistent dead-zone slopes in the positive
and negative regions, a robust adaptive control approach was
given for a class of special nonlinear systems without using
the dead-zone inverse [45]. In [46, 47], the dead-zone is
reconstructed into the form of a linear system with a static
time-varying gain and bounded disturbances by introducing
characteristic function. In [48], input dead-zone is taken
into account and it is proved that the simplest ILC scheme
retains its ability of achieving the satisfactory performance
in tracking control. To the best of our knowledge, there is
little work from the viewpoint of AILC to deal with nonlinear
systems with time-delay and dead-zone nonlinearity in the
literature at present stage.

In this paper, we present a novel AILC scheme for a
class of nonlinear time-varying systems with unknown time-
varying delays and unknown input dead-zone. To the best
of our knowledge, up to now, few works have been reported
in the field of AILC to deal with such kinds of systems.
The main design difficulty comes from how to deal with
dead-zone nonlinearity and delay-dependent uncertainty. In
our work, the dead-zone output is represented as a novel
simple nonlinear system with a time-varying gain, which is
more general than the linear form in [36]. The approach
removes the assumption of linear function outside the dead-
band without necessarily constructing a dead-zone inverse.
An appropriate Lyapunov-Krasovskii functional and Young’s
inequality are combined to eliminate the unknown time-
varying delays such that the design of the control law is
free from these uncertainties. Furthermore, the possible
singularity which may be caused by the appearance of the
reciprocal of tracking error is avoided by employing the

hyperbolic tangent function. By constructing a Lyapunov-
like CEF, the stability conclusion is obtained in two cases by
exploiting the properties of the hyperbolic tangent function
via a rigorous analysis. In addition, the boundary layer func-
tion is introduced to remove the requirement for identical
initial condition which is required for the majority of ILC
schemes.

The rest of this paper is organized as follows.The problem
formulation and preliminaries are given in Section 2. The
AILC design is developed in Section 3. The CEF-based sta-
bility analysis is presented in Section 4. A simulation example
is presented to verify the validity of the proposed scheme in
Section 5, followed by conclusions in Section 6.

2. Problem Formulation and Preliminaries

2.1. ProblemFormulation. Consider a class of nonlinear time-
varying systemswith unknown time-varying time-delays and
dead-zone running on a finite time interval [0, 𝑇] repeatedly
which is given by

𝑥̇
𝑖,𝑘 (𝑡) = 𝑥

𝑖+1,𝑘 (𝑡) , 𝑖 = 1, . . . , 𝑛 − 1,

𝑥̇
𝑛,𝑘 (𝑡) = 𝑓 (𝑋

𝑘 (𝑡) , 𝑋𝜏,𝑘 (𝑡) , 𝜃 (𝑡)) + 𝑏 (𝑡) 𝑢𝑘 (𝑡) + 𝑑 (𝑡) ,

𝑦
𝑘 (𝑡) = 𝑥

1,𝑘 (𝑡) , 𝑢
𝑘 (𝑡) = 𝐷 (V

𝑘 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑥
𝑖,𝑘 (𝑡) = 𝜛

𝑖 (𝑡) , 𝑡 ∈ [−𝜏max, 0) , 𝑖 = 1, . . . , 𝑛,

(1)

where 𝑡 is the time, 𝑘 ∈ 𝑁 denotes the times of iteration,𝑁 is
the integer set and denotes the sets of iteration times, 𝑦

𝑘
(𝑡) ∈

𝑅 and𝑥
𝑖,𝑘
(𝑡) ∈ 𝑅, 𝑖 = 1, . . . , 𝑛 are the systemoutput and states,

respectively, 𝑋
𝑘
(𝑡) ≜ [𝑥

1,𝑘
(𝑡), . . . , 𝑥

𝑛,𝑘
(𝑡)]
𝑇 is the state vector,

𝜏(𝑡) is unknown time-varying delay of states and𝑥
𝜏

𝑖,𝑘
≜ 𝑥
𝑖,𝑘
(𝑡−

𝜏(𝑡)), 𝑖 = 2, . . . , 𝑛, and𝑋
𝜏,𝑘

(𝑡) = [𝑥
𝜏

1,𝑘
(𝑡), . . . , 𝑥

𝜏

𝑛,𝑘
(𝑡)]
𝑇
, 𝑓(⋅, ⋅, ⋅)

are unknown smooth functions, and 𝑏(𝑡) is the unknown
continuous time-varying gain of the system input. 𝜃(𝑡) is
unknown continuous time-varying parameter vector; 𝑑(𝑡)

is unknown bounded external disturbance. 𝜛
𝑖
(𝑡) denote the

initial functions for delayed states, 𝑖 = 1, . . . , 𝑛. Consider
V
𝑘
(𝑡) ∈ 𝑅 is the control input and the actuator nonlinearity

𝐷(V
𝑘
(𝑡)) is described as a dead-zone characteristic.
In this paper, a reference trajectory vector is given by

𝑋
𝑑
(𝑡) = [𝑦

𝑑
(𝑡), ̇𝑦
𝑑
(𝑡), . . . , 𝑦

(𝑛−1)

𝑑
(𝑡)]
𝑇

. The tracking error
vector is 𝑒

𝑘
(𝑡) = [𝑒

1,𝑘
, 𝑒
2,𝑘

, . . . , 𝑒
𝑛,𝑘

]
𝑇

= 𝑋
𝑘
(𝑡) − 𝑋

𝑑
(𝑡).

The control objective of this paper is to design an adaptive
iterative learning controller 𝑢

𝑘
(𝑡), such that the tracking error

𝑒
𝑘
(𝑡) converges to a small neighborhood of the origin as 𝑘 →

∞; that is, lim
𝑘→∞

‖𝑒
𝑘
(𝑡)‖ ≤ 𝜀

𝑒∞
, while all the signals in

the closed-loop system remain bounded, where 𝜀
𝑒∞

is a small
positive error tolerance which will be given in the subsequent
context and ‖ ⋅ ‖ denotes the Euclidian norm. Define the
filtered tracking error as 𝑒

𝑠𝑘
(𝑡) = [Λ

𝑇
1]𝑒
𝑘
(𝑡), where Λ =

[𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛−1
]
𝑇 and 𝜆

1
, . . . , 𝜆

𝑛−1
are the coefficients of

Hurwitz polynomial𝐻(𝑠) = 𝑠
𝑛−1

+ 𝜆
𝑛−1

𝑠
𝑛−2

+ ⋅ ⋅ ⋅ + 𝜆
1
.

To facilitate control system design, wemake the following
reasonable assumptions for the system functions, unknown
time delays, and reference signals.
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Assumption 1. The unknown state time-varying delay 𝜏(𝑡)

satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏max, ̇𝜏(𝑡) ≤ 𝜅 < 1, where 𝜏max and 𝜅

are unknown positive constants.

Assumption 2. The unknown smooth functions 𝑓(⋅, ⋅, ⋅) sat-
isfy inequality

󵄨󵄨󵄨󵄨𝑓 (𝑋
𝑘
, 𝑋
𝜏,𝑘

, 𝜃 (𝑡)) − 𝑓 (𝑋
𝑑
, 𝑋
𝑑,𝜏

, 𝜃 (𝑡))
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑋

𝑑

󵄩󵄩󵄩󵄩 ℎ1 (𝑋𝑘, 𝑋𝑑) 𝜉1 (𝜃)

+
󵄩󵄩󵄩󵄩𝑋𝜏,𝑘 − 𝑋

𝑑,𝜏

󵄩󵄩󵄩󵄩 ℎ2 (𝑋𝜏,𝑘, 𝑋𝑑,𝜏) 𝜉2 (𝜃) ,

(2)

where 𝑋
𝑑,𝜏

≜ 𝑋
𝑑
(𝑡 − 𝜏(𝑡)), ℎ

1
(⋅, ⋅) and ℎ

2
(⋅, ⋅) are known

positive smooth functions, and 𝜉
1
(𝜃) and 𝜉

2
(𝜃) are unknown

smooth functions of 𝜃(𝑡).

Assumption 3. The sign of 𝑏(𝑡) is known; without loss of
generality, we always assume 𝑏(𝑡) > 0.

Assumption 4 (see [23]). The initial state errors 𝑒
𝑖,𝑘
(0) at each

iteration are not necessarily zero small and fixed, but they are
assumed to be bounded.

Assumption 5. The reference state trajectory 𝑋
𝑑
(𝑡) is contin-

uous, bounded, and available.

Assumption 6. The unknown external 𝑑(𝑡) is bounded; that
is, |𝑑(𝑡)| ≤ 𝑑max with an unknown constant 𝑑max.

Remark 7. Assumption 1 is common in the control problem
of time-varying delay systems, which guarantees that the time
delay terms can be eliminated by using Lyapunov-Krasovskii
functional. Moreover, Assumption 1 is milder than that in
[39–41] as it does not require the true value of 𝜏max and 𝜅.

Remark 8. As 𝑏(𝑡) is continuous on [0, 𝑇], there exist
constants 0 < 𝑏min ≤ 𝑏max such that 𝑏min ≤ 𝑏(𝑡) ≤ 𝑏max.
However, the control gain bounds 𝑏min and 𝑏max are only
required for analytical purposes; their true values are not
necessarily known in the sense that they are not used for
controller design.

2.2. Dead-Zone Characteristic. The dead-zone characteristic
can be described as

𝑢
𝑘 (𝑡) = 𝐷 (V

𝑘 (𝑡))

=

{{

{{

{

𝑚(𝑡) (V𝑘 (𝑡) − 𝑏
𝑟
) for V

𝑘 (𝑡) ≥ 𝑏
𝑟
,

0 for 𝑏
𝑙
< V
𝑘 (𝑡) < 𝑏

𝑟
,

𝑚 (𝑡) (V𝑘 (𝑡) − 𝑏
𝑙
) for V

𝑘 (𝑡) ≤ 𝑏
𝑙
,

(3)

where 𝑏
𝑟
≥ 0 and 𝑏

𝑙
≤ 0 are unknown constants, 𝑚(𝑡) > 0

is unknown time-varying slopes, and V
𝑘
(𝑡) is the input and

𝑢
𝑘
(𝑡) is the output of dead-zone. A graphical representation

of the dead-zone in this paper is shown in Figure 1.
The dead-zone output 𝑢

𝑘
(𝑡) is not available for measure-

ment. We make the following assumption on the dead-zone
parameters.

uk

bl

br �k

0

Figure 1: Dead-zone model.

Assumption 9. The dead-zone parameters 𝑏
𝑟
, 𝑏
𝑙
, and 𝑚(𝑡) are

bounded.That is, there exist unknown constants 𝑏
𝑟min, 𝑏𝑟max,

𝑏
𝑙min, 𝑏𝑙max, 𝑚min, and 𝑚max, such that 𝑏

𝑟min ≤ 𝑏
𝑟

≤ 𝑏
𝑟max,

𝑏
𝑙min ≤ 𝑏

𝑙
≤ 𝑏
𝑙max, and𝑚min ≤ 𝑚(𝑡) ≤ 𝑚max.

From a practical point of view, we can redefine the dead-
zone nonlinearity as

𝑢
𝑘 (𝑡) = 𝐷 (V

𝑘
) = 𝑚 (𝑡) V𝑘 (𝑡) − 𝑑

1
(V
𝑘 (𝑡)) (4)

with

𝑑
1
(V
𝑘 (𝑡)) =

{{

{{

{

𝑚(𝑡) 𝑏𝑟 for V
𝑘 (𝑡) ≥ 𝑏

𝑟
,

𝑚 (𝑡) V𝑘 (𝑡) for 𝑏
𝑙
< V
𝑘 (𝑡) < 𝑏

𝑟
,

𝑚 (𝑡) 𝑏𝑙 for V
𝑘 (𝑡) ≤ 𝑏

𝑙
.

(5)

It is obvious that 𝑑
1
(V
𝑘
(𝑡)) is bounded.

Remark 10. Obviously, the dead-zone characteristic is non-
linear. And the form in [36] is the special case of (3) when
𝑚(𝑡) is invariant. Therefore, the presentation of dead-zone in
our work is more general than the earlier results.

2.3. A Motivating Example. In order to clarify the main idea
of AILC, we show the design procedure briefly by a simple
scalar system running on [0, 𝑇] as follows:

𝑧̇
𝑘 (𝑡) = 𝜃 (𝑡) 𝜉 (𝑧

𝑘
, 𝑡) + 𝑢

𝑧

𝑘
(𝑡) , (6)

where 𝑧
𝑘
(𝑡) and 𝑢

𝑧

𝑘
(𝑡) are the system state and the control

input in the 𝑘th iteration, respectively, 𝜃(𝑡) is an unknown
time-varying parameter, and 𝜉(𝑧

𝑘
, 𝑡) is a known time-varying

function. The reference trajectory is 𝑧
𝑟
(𝑡), 𝑡 ∈ [0, 𝑇]. Define

the tracking error as 𝑒
𝑧

𝑘
(𝑡) = 𝑧

𝑘
(𝑡) − 𝑧

𝑟
(𝑡) and design the

control law and adaptive learning law for the unknown time-
varying parameter for the 𝑘th iteration as follows:

𝑢
𝑧

𝑘
(𝑡) = − 𝑘

1
𝑒
𝑧

𝑘
(𝑡) + 𝑧̇

𝑟 (𝑡) − 𝜃
𝑘 (𝑡) 𝜉 (𝑧

𝑘
, 𝑡) ,

𝜃
𝑘 (𝑡) = 𝜃

𝑘−1 (𝑡) + 𝑞𝜉 (𝑧
𝑘
, 𝑡) 𝑒
𝑧

𝑘
(𝑡) ,

𝜃
0 (𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

(7)
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where 𝑘
1
, 𝑞 > 0 are design parameters. Define the estimate

error as 𝜃
𝑘
(𝑡) = 𝜃

𝑘
(𝑡) − 𝜃(𝑡). Choose a Lyapunov-like CEF as

𝐸
𝑧

𝑘
(𝑡) =

1

2
𝑒
𝑧

𝑘
(𝑡) +

1

2𝑞
∫
𝑡

0

𝜃
𝑘 (𝜎) d𝜎. (8)

Throughout this paper, 𝜎 denotes the integral variable.
Then it can be derived that

Δ𝐸
𝑧

𝑘
(𝑡) = 𝐸

𝑧

𝑘
(𝑡) − 𝐸

𝑧

𝑘−1
(𝑡) ≤ −∫

𝑡

0

(𝑒
𝑧

𝑘
(𝜎))
2d𝜎. (9)

We can further derive that

lim
𝑘→∞

∫
𝑇

0

(𝑒
𝑧

𝑘
(𝜎))
2d𝜎 = 0. (10)

Therefore, the system state 𝑧
𝑘
(𝑡) converges to the reference

trajectory 𝑧
𝑟
(𝑡) on [0, 𝑇] as 𝑘 → ∞.

3. AILC Design

According to Assumption 4, we know that there exist known
constants 𝜀

𝑖
such that |𝑒

𝑖,𝑘
(0)| ≤ 𝜀

𝑖
, 𝑖 = 1, 2, . . . 𝑛 for any 𝑘 ∈

𝑁. In order to relax the identical initial condition in ILC, we
employ a boundary layer function [23] as follows:

𝑠
𝑘 (𝑡) = 𝑒

𝑠𝑘 (𝑡) − 𝜂 (𝑡) sat(
𝑒
𝑠𝑘 (𝑡)

𝜂 (𝑡)
) , (11)

𝜂 (𝑡) = 𝜀𝑒
−𝐾𝑡

, 𝐾 > 0, (12)

where 𝜀 = [Λ
𝑇

1][𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
]
𝑇 and 𝐾 is a design

parameter. The saturation function sat(⋅) is given by

sat(
𝑒
𝑠𝑘 (𝑡)

𝜂 (𝑡)
) =

{{{

{{{

{

1, if 𝑒
𝑠𝑘 (𝑡) > 𝜂 (𝑡) ,

𝑒
𝑠𝑘 (𝑡)

𝜂 (𝑡)
, if 󵄨󵄨󵄨󵄨𝑒𝑠𝑘 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝜂 (𝑡) ,

−1, if 𝑒
𝑠𝑘 (𝑡) < −𝜂 (𝑡) .

(13)

Remark 11. Note that 𝜂(𝑡) decreases along time axis with
initial condition 𝜂(0) = 𝜀 and 0 < 𝜂(𝑇) ≤ 𝜂(𝑡) ≤ 𝜀,∀𝑡 ∈ [0, 𝑇],
and then if 𝑠

𝑘
(𝑡) can be derived to zero ∀𝑡 ∈ [0, 𝑇], the states

will asymptotically converge to the reference trajectory for all
𝑡 ∈ [0, 𝑇].

It can be easily shown that

󵄨󵄨󵄨󵄨𝑒𝑠𝑘 (0)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜆1𝑒1,𝑘 (0) + 𝜆
2
𝑒
2,𝑘 (0) + ⋅ ⋅ ⋅ + 𝑒

𝑛,𝑘 (0)
󵄨󵄨󵄨󵄨

≤ 𝜆
1

󵄨󵄨󵄨󵄨𝑒1,𝑘 (0)
󵄨󵄨󵄨󵄨 + 𝜆
2

󵄨󵄨󵄨󵄨𝑒2,𝑘 (0)
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑒𝑛,𝑘 (0)
󵄨󵄨󵄨󵄨

≤ 𝜆
1
𝜀
1
+ 𝜆
2
𝜀
2
+ ⋅ ⋅ ⋅ + 𝜀

𝑛
= 𝜀 = 𝜂 (0)

(14)

which implies that 𝑠
𝑘
(0) = 𝑒

𝑠𝑘
(0) − 𝜂(0)(𝑒

𝑠𝑘
(0)/𝜂(0)) = 0 is

satisfied forall 𝑘 ∈ 𝑁. For the subsequent controller design,
we firstly give the dynamic of 𝑒

𝑛,𝑘
(𝑡) as follows:

̇𝑒
𝑛,𝑘 (𝑡) = 𝑓 (𝑋

𝑘 (𝑡) , 𝑋𝜏,𝑘, 𝜃 (𝑡)) + 𝑏 (𝑡) 𝑢𝑘 + 𝑑 (𝑡) − 𝑦
(𝑛)

𝑑
(𝑡)

= 𝑓 (𝑋
𝑘
, 𝑋
𝜏,𝑘

, 𝜃 (𝑡)) − 𝑓 (𝑋
𝑑
, 𝑋
𝑑,𝜏

, 𝜃 (𝑡))

+ 𝑓 (𝑋
𝑑
, 𝑋
𝑑,𝜏

, 𝜃 (𝑡))

+ 𝑏 (𝑡) (𝑚 (𝑡) V𝑘 (𝑡) − 𝑑
1
(V
𝑘 (𝑡))) + 𝑑 (𝑡) − 𝑦

(𝑛)

𝑑
(𝑡)

= 𝑓 (𝑋
𝑘
, 𝑋
𝜏,𝑘

, 𝜃 (𝑡)) − 𝑓 (𝑋
𝑑
, 𝑋
𝑑,𝜏

, 𝜃 (𝑡))

+ 𝑓 (𝑋
𝑑
, 𝑋
𝑑,𝜏

, 𝜃 (𝑡)) + 𝑏 (𝑡)𝑚 (𝑡) V𝑘 (𝑡)

+ 𝑑
2 (𝑡) − 𝑦

(𝑛)

𝑑
(𝑡) ,

(15)

where 𝑑
2
(𝑡) = −𝑏(𝑡)𝑑

1
(V
𝑘
(𝑡)) + 𝑑(𝑡). By Assumptions 3 and

6, we know that 𝑑
2
(𝑡) is bounded; that is, there exists

an unknown smooth positive function 𝑑(𝑡) such that
|𝑑
2
(𝑡)| ≤ 𝑑(𝑡). For the simplicity of expression, we define

𝑏
𝑚
(𝑡) = 𝑏(𝑡)𝑚(𝑡), Θ(𝑡) = 𝑓(𝑋

𝑑
, 𝑋
𝑑,𝜏

, 𝜃(𝑡)), and Δ
𝑘
(𝑡)

= 𝑓(𝑋
𝑘
, 𝑋
𝜏,𝑘

, 𝜃(𝑡)) − 𝑓(𝑋
𝑑
, 𝑋
𝑑,𝜏

, 𝜃(𝑡)). It is clear that Θ(𝑡) is
an unknown time-varying function which is invariant in the
iteration domain and 𝑏

𝑚
= 𝑚min𝑏min ≤ 𝑏

𝑚
(𝑡) ≤ 𝑚max𝑏max =

𝑏
𝑚
. Define a smooth scalar function as

𝑉
𝑠𝑘
(𝑡) =

1

2
𝑠
2

𝑘
(𝑡) . (16)

Differentiating 𝑉
𝑠𝑘
(𝑡) with respect to time, we can obtain

𝑉̇
𝑠𝑘
(𝑡) = 𝑠

𝑘 (𝑡) ̇𝑠
𝑘 (𝑡)

=

{{

{{

{

𝑠
𝑘 (𝑡) ( ̇𝑒

𝑠𝑘 (𝑡) − ̇𝜂 (𝑡)) , if 𝑒
𝑠𝑘 (𝑡) > 𝜂 (𝑡)

0, if 󵄨󵄨󵄨󵄨𝑒𝑠𝑘 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜂 (𝑡)

𝑠
𝑘 (𝑡) ( ̇𝑒

𝑠𝑘 (𝑡) + ̇𝜂 (𝑡)) , if 𝑒
𝑠𝑘 (𝑡) < −𝜂 (𝑡)

= 𝑠
𝑘 (𝑡) ( ̇𝑒

𝑠𝑘 (𝑡) − ̇𝜂 (𝑡) sgn (𝑠
𝑘 (𝑡)))

= 𝑠
𝑘 (𝑡)(

𝑛−1

∑
𝑗=1

𝜆
𝑗
𝑒
𝑗+1,𝑘 (𝑡) − ̇𝜂 (𝑡) sgn (𝑠

𝑘 (𝑡))

+ Θ (𝑡) + Δ
𝑘 (𝑡) + 𝑏

𝑚 (𝑡) V𝑘 (𝑡)

+𝑑
2 (𝑡) − 𝑦

(𝑛)

𝑑
(𝑡))

= 𝑠
𝑘 (𝑡)(

𝑛−1

∑
𝑗=1

𝜆
𝑗
𝑒
𝑗+1,𝑘 (𝑡) + 𝐾𝜂 (𝑡) sgn (𝑠

𝑘 (𝑡))

+ 𝐾𝑒
𝑠𝑘 (𝑡) − 𝐾𝑒

𝑠𝑘 (𝑡) + Θ (𝑡) + Δ
𝑘 (𝑡)
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+ 𝑏
𝑚 (𝑡) V𝑘 (𝑡) + 𝑑

2 (𝑡) − 𝑦
(𝑛)

𝑑
(𝑡))

= 𝑠
𝑘 (𝑡) (Θ (𝑡) + Δ

𝑘 (𝑡) + 𝑏
𝑚 (𝑡) V𝑘 (𝑡)

+𝜇
𝑘 (𝑡) + 𝑑

2 (𝑡)) − 𝐾𝑠
2

𝑘
(𝑡) ,

(17)

where 𝜇
𝑘
(𝑡) = ∑

𝑛−1

𝑗=1
𝜆
𝑗
𝑒
𝑗+1,𝑘

(𝑡) + 𝐾𝑒
𝑠𝑘
(𝑡) − 𝑦

(𝑛)

𝑑
(𝑡), and we use

the relation

𝑠
𝑘 (𝑡) (−𝐾𝑒

𝑠𝑘 (𝑡) + 𝐾𝜂 (𝑡) sgn (𝑠
𝑘 (𝑡)))

= 𝑠
𝑘 (𝑡) (−𝐾𝑠

𝑘 (𝑡) − 𝐾𝜂 (𝑡) sat(
𝑒
𝑠𝑘 (𝑡)

𝜂 (𝑡)
)

+𝐾𝜂 (𝑡) sgn (𝑠
𝑘 (𝑡)) )

= −𝐾𝑠
2

𝑘
(𝑡) − 𝐾𝜂 (𝑡)

󵄨󵄨󵄨󵄨𝑠𝑘 (𝑡)
󵄨󵄨󵄨󵄨 + 𝐾𝜂 (𝑡)

󵄨󵄨󵄨󵄨𝑠𝑘 (𝑡)
󵄨󵄨󵄨󵄨

= −𝐾𝑠
2

𝑘
(𝑡) .

(18)

Utilizing Young’s inequality and noting Assumption 2, it
follows that

𝑠
𝑘 (𝑡) Δ 𝑘 (𝑡) ≤

󵄨󵄨󵄨󵄨𝑠𝑘 (𝑡)
󵄨󵄨󵄨󵄨

× (
󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑋

𝑑

󵄩󵄩󵄩󵄩 ℎ1 (𝑋𝑘, 𝑋𝑑) 𝜉1 (𝜃)

+
󵄩󵄩󵄩󵄩𝑋𝜏,𝑘 − 𝑋

𝑑,𝜏

󵄩󵄩󵄩󵄩 ℎ2 (𝑋𝜏,𝑘, 𝑋𝑑,𝜏) 𝜉2 (𝜃))

≤
1

2
𝑠
2

𝑘
(𝑡) 𝜉
2

1
(𝜃) +

1

2

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

1
(𝑋
𝑘
, 𝑋
𝑑
)

+
1

2
𝑠
2

𝑘
(𝑡) 𝜉
2

2
(𝜃) +

1

2

󵄩󵄩󵄩󵄩𝑒𝜏,𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝜏,𝑘

, 𝑋
𝑑,𝜏

) .

(19)

Substituting (19) into (17) leads to

𝑉̇
𝑠𝑘
(𝑡) ≤ 𝑠

𝑘 (𝑡)

× (Θ (𝑡) + 𝑏
𝑚 (𝑡) V𝑘 (𝑡) + 𝜇

𝑘 (𝑡) + 𝑑
2 (𝑡)

+
1

2
𝑠
𝑘 (𝑡) 𝜉
2

1
(𝜃) +

1

2
𝑠
𝑘 (𝑡) 𝜉
2

2
(𝜃)) − 𝐾𝑠

2

𝑘
(𝑡)

+
1

2

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

1
(𝑋
𝑘
, 𝑋
𝑑
) +

1

2

󵄩󵄩󵄩󵄩𝑒𝜏,𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝜏,𝑘

, 𝑋
𝑑,𝜏

) .

(20)

To overcome the design difficulty arising from the
unknown time-varying delay term, consider the following
Lyapunov-Krasovskii functional:

𝑉
𝑈𝑘

(𝑡) =
1

2 (1 − 𝜅)
∫
𝑡

𝑡−𝜏(𝑡)

󵄩󵄩󵄩󵄩𝑒𝑘 (𝜎)
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝑘 (𝜎) , 𝑋𝑑 (𝜎)) d𝜎.

(21)

Recalling Assumption 1, taking the time derivative of 𝑉
𝑈𝑘

(𝑡)

leads to

𝑉̇
𝑈𝑘

(𝑡) =
1

2 (1 − 𝜅)

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝑘
, 𝑋
𝑑
)

−
1 − ̇𝜏 (𝑡)

2 (1 − 𝜅)

󵄩󵄩󵄩󵄩𝑒𝜏,𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝜏,𝑘

, 𝑋
𝑑,𝜏

)

≤
1

2 (1 − 𝜅)

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝑘
, 𝑋
𝑑
)

−
1

2

󵄩󵄩󵄩󵄩𝑒𝜏,𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝜏,𝑘

, 𝑋
𝑑,𝜏

) .

(22)

Define a Lyapunov functional as 𝑉
𝑘
(𝑡) = 𝑉

𝑠𝑘
(𝑡) + 𝑉

𝑈𝑘
(𝑡);

combining (20) and (22), we can obtain

𝑉̇
𝑘 (𝑡) ≤ 𝑠

𝑘 (𝑡)

× (Θ (𝑡) + 𝑏
𝑚 (𝑡) V𝑘 (𝑡) + 𝜇

𝑘 (𝑡) + 𝑑
2 (𝑡)

+
1

2
𝑠
𝑘 (𝑡) 𝜉
2

1
(𝜃) +

1

2
𝑠
𝑘 (𝑡) 𝜉
2

2
(𝜃)) − 𝐾𝑠

2

𝑘
(𝑡)

+
1

2

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

1
(𝑋
𝑘
, 𝑋
𝑑
) +

1

2 (1 − 𝜅)

󵄩󵄩󵄩󵄩𝑒𝑘
󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝑘
, 𝑋
𝑑
) .

(23)

For the convenience of expression, denote 𝜁
𝑘
(𝑡) = (1/2)

‖𝑒
𝑘
‖
2
ℎ
2

1
(𝑋
𝑘
, 𝑋
𝑑
) + (1/2(1 − 𝜅))‖𝑒

𝑘
‖
2
ℎ
2

2
(𝑋
𝑘
, 𝑋
𝑑
) then (23) can

be simplified as

𝑉̇
𝑘 (𝑡) ≤ 𝑠

𝑘 (𝑡)

× (Θ (𝑡) + 𝑏
𝑚 (𝑡) V𝑘 (𝑡) + 𝜇

𝑘 (𝑡) + 𝑑
2 (𝑡)

+
1

2
𝑠
𝑘 (𝑡) 𝜉
2

1
(𝜃) +

1

2
𝑠
𝑘 (𝑡) 𝜉
2

2
(𝜃) +

𝜁
𝑘 (𝑡)

𝑠
𝑘 (𝑡)

)

− 𝐾𝑠
2

𝑘
(𝑡) .

(24)

Here, we note that singularity problem may occur in (24)
due to the term 𝜁

𝑘
(𝑡)/𝑠
𝑘
(𝑡) which approaches ∞ as 𝑠

𝑘
(𝑡)

approaches zero. In order to tackle this problem, we exploit
the following characteristic of hyperbolic tangent function.

Lemma 12 (see [49]). For any constant 𝜂 > 0 and any variable
𝑝 ∈ 𝑅,

lim
𝑝→0

tanh2 (𝑝/𝜂)
𝑝

= 0. (25)
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By employing the hyperbolic tangent function, (24) can
be rewritten as

𝑉̇
𝑘 (𝑡) ≤ 𝑠

𝑘 (𝑡)

× (Θ (𝑡) + 𝑑
2 (𝑡) + 𝑏

𝑚 (𝑡) V𝑘 (𝑡) + 𝜇
𝑘 (𝑡)

+
1

2
𝑠
𝑘 (𝑡) 𝜉
2

1
(𝜃) +

1

2
𝑠
𝑘 (𝑡) 𝜉
2

2
(𝜃)

+
𝑎

2𝑠
𝑘 (𝑡)

tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)
󵄩󵄩󵄩󵄩𝑒𝑘

󵄩󵄩󵄩󵄩
2
ℎ
2

1
(𝑋
𝑘
, 𝑋
𝑑
)

+
𝑎

2 (1 − 𝜅) 𝑠𝑘 (𝑡)
tanh2 (

𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)

×
󵄩󵄩󵄩󵄩𝑒𝑘

󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝑘
, 𝑋
𝑑
) )

− 𝐾𝑠
2

𝑘
(𝑡) + (1 − 𝑎 tanh2 (

𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)) 𝜁
𝑘 (𝑡) ,

(26)

where 𝑎 > 1 is a constant. From Lemma 12, we know
that lim

𝑠𝑘(𝑡)→0
(𝑎/𝑠
𝑘
(𝑡))tanh2(𝑠

𝑘
(𝑡)/𝜂(𝑡))𝜁

𝑘
(𝑡) = 0. Hence,

(𝑎/𝑠
𝑘
(𝑡))tanh2(𝑠

𝑘
(𝑡)/𝜂(𝑡))𝜁

𝑘
(𝑡) is defined at 𝑠

𝑘
(𝑡) = 0 and

the possible singularity problem has been avoided. Upon
multiplication of (26) by 1/𝑏

𝑚
(𝑡), it becomes

𝑉̇
𝑘 (𝑡)

𝑏
𝑚 (𝑡)

≤ 𝑠
𝑘 (𝑡)

× (
1

𝑏
𝑚 (𝑡)

(Θ (𝑡) + 𝑑
2 (𝑡)) + V

𝑘 (𝑡) +
1

𝑏
𝑚 (𝑡)

𝜇
𝑘 (𝑡)

+
1

2𝑏
𝑚 (𝑡)

𝑠
𝑘 (𝑡) (𝜉

2

1
(𝜃) + 𝜉

2

2
(𝜃))

+
𝑎

2𝑏
𝑚 (𝑡) 𝑠𝑘 (𝑡)

tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)

×
󵄩󵄩󵄩󵄩𝑒𝑘

󵄩󵄩󵄩󵄩
2
ℎ
2

1
(𝑋
𝑘
, 𝑋
𝑑
)

+
𝑎

2𝑏
𝑚 (𝑡) (1 − 𝜅) 𝑠𝑘 (𝑡)

tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)

×
󵄩󵄩󵄩󵄩𝑒𝑘

󵄩󵄩󵄩󵄩
2
ℎ
2

2
(𝑋
𝑘
, 𝑋
𝑑
) )

−
𝐾

𝑏
𝑚 (𝑡)

𝑠
2

𝑘
(𝑡) +

1

𝑏
𝑚 (𝑡)

× (1 − 𝑎 tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)) 𝜁
𝑘 (𝑡)

= 𝑠
𝑘 (𝑡) (𝛽

𝑇
(𝑡) Φ𝑘 (𝑡) + V

𝑘 (𝑡)) −
𝐾

𝑏
𝑚 (𝑡)

𝑠
2

𝑘
(𝑡)

+
1

𝑏
𝑚 (𝑡)

(1 − 𝑎 tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)) 𝜁
𝑘 (𝑡) ,

(27)

where 𝛽(𝑡) = [(1/𝑏
𝑚
(𝑡))(Θ(𝑡) + 𝑑

2
(𝑡)), 1/𝑏

𝑚
(𝑡), (1/𝑏

𝑚
(𝑡))

(𝜉
2

1
(𝜃) + 𝜉

2

2
(𝜃)), (1/(1 − 𝜅)𝑏

𝑚
(𝑡))]
𝑇 denote the unknown

time-varying parameter vector that is invariant along
the iteration axis and Φ

𝑘
(𝑡) = [1, 𝜇

𝑘
(𝑡) + (𝑎/2𝑠

𝑘
(𝑡))

tanh2(𝑠
𝑘
(𝑡)/𝜂(𝑡))‖𝑒

𝑘
‖
2
ℎ
2

1
(𝑋
𝑘
, 𝑋
𝑑
), 𝑠
𝑘
(𝑡), (𝑎/2𝑠

𝑘
(𝑡))tanh2(𝑠

𝑘

(𝑡)/𝜂(𝑡))‖𝑒
𝑘
‖
2
ℎ
2

2
(𝑋
𝑘
, 𝑋
𝑑
)]
𝑇. Based on (27), we can design the

adaptive iterative learning controller as follows:

V
𝑘 (𝑡) = −𝛽

𝑘 (𝑡) Φ𝑘 (𝑡) − 𝐾
1
𝑠
𝑘 (𝑡) , (28)

where 𝐾
1
> 0 is design parameters and 𝛽

𝑘
(𝑡) is the estimate

of 𝛽(𝑡) in the kth iteration. The adaptive learning algorithms
for unknown parameter are given by

𝛽
𝑘 (𝑡) = 𝛽

𝑘−1 (𝑡) + 𝑞𝑠
𝑘 (𝑡) Φ𝑘 (𝑡) ,

𝛽
0 (𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

(29)

where 𝑞 > 0 is the learning gain. Define the estimation error
as 𝛽
𝑘
(𝑡) = 𝛽

𝑘
(𝑡) − 𝛽(𝑡). Hence, substituting the controller

(28) back into (27) yields

𝑉̇
𝑘 (𝑡)

𝑏
𝑚 (𝑡)

≤ − 𝑠
𝑘 (𝑡) 𝛽

𝑇

𝑘
(𝑡) Φ𝑘 (𝑡) − (

𝐾

𝑏
𝑚 (𝑡)

+ 𝐾
1
) 𝑠
2

𝑘
(𝑡)

+
1

𝑏
𝑚 (𝑡)

(1 − 𝑎 tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)) 𝜁
𝑘 (𝑡)

≤ − 𝑠
𝑘 (𝑡) 𝛽

𝑇

𝑘
(𝑡) Φ𝑘 (𝑡) − (

𝐾

𝑏
𝑚

+ 𝐾
1
) 𝑠
2

𝑘
(𝑡)

+
1

𝑏
𝑚 (𝑡)

(1 − 𝑎 tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)) 𝜁
𝑘 (𝑡) .

(30)

For simplicity in expression, we denote (𝐾/𝑏
𝑚

+ 𝐾
1
) by

𝐾
2
= (𝐾/𝑏

𝑚
+ 𝐾
1
). Then, (30) can be continued as

𝑠
𝑘 (𝑡) 𝛽

𝑇

𝑘
(𝑡) Φ𝑘 (𝑡) ≤ −

𝑉̇
𝑘 (𝑡)

𝑏
𝑚 (𝑡)

− 𝐾
2
𝑠
2

𝑘
(𝑡)

+
1

𝑏
𝑚 (𝑡)

(1 − 𝑎 tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
)) 𝜁
𝑘 (𝑡) .

(31)

4. Stability and Convergence Analysis

In this section, we will check the stability of the closed-loop
system and the convergence of tracking errors by CEF-based
analysis. First of all, we give the following property of the
tangent hyperbolic function.

Lemma 13. Define a compact set Ω
𝑠𝑘

as Ω
𝑠𝑘

:= {𝑠
𝑘
(𝑡) |

|𝑠
𝑘
(𝑡)| ≤ 𝑚𝜂(𝑡)}. Then, for any 𝑠

𝑘
(𝑡) ∉ Ω

𝑠𝑘
, the following

inequality holds:

1 − 𝑎 tanh2 (
𝑠
𝑘 (𝑡)

𝜂 (𝑡)
) < 0, (32)

where𝑚 = ln(√𝑎/(𝑎 − 1) + √1/(𝑎 − 1)).
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Proof. See the appendix.

The stability and convergence property of the proposed
AILC scheme is summarized as follows.

Theorem 14. Considering closed-loop system (1), if Assump-
tions 1–6 and 9 hold, designing the control laws (28) with
adaptive updating laws (29), the following properties can be
guaranteed: (i) all the signals of the closed-loop system are
bounded; (ii) the filtered tracking error 𝑒

𝑠𝑘
(𝑡) converges to a

small neighborhood of zero as 𝑘 → ∞ in 𝐿
2
norm; that is,

lim
𝑘→∞

∫
𝑇

0
(𝑒
𝑠𝑘
(𝜎))
2d𝜎 ≤ 𝜀

𝑒𝑠𝑘
, 𝜀
𝑒𝑠𝑘

= (1/2𝐾)(1 + 𝑚)
2
𝜀
2; and

(iii) the tracking error vector satisfies lim
𝑘→∞

‖𝑒
𝑘
(𝑡)‖ ≤ 𝜀

𝑒∞
,

𝜀
𝑒∞

= (1+‖Λ‖)(𝑘
0
∑
𝑛−1

𝑖=1
𝜀
𝑖
+(1/(𝜆

0
−𝐾))(1+𝑚)𝜀𝑘

0
)+(1+𝑚)𝜀,

where 𝜆
0
and 𝑘
0
are positive constants and will be given later.

Proof. Define a Lyapunov-like CEF as follows:

𝐸
𝑘 (𝑡) =

1

2𝑞
∫
𝑡

0

𝛽
𝑇

𝑘
(𝜎) 𝛽𝑘 (𝜎) d𝜎. (33)

The difference of 𝐸
𝑘
(𝑡) is

Δ𝐸
𝑘 (𝑡) = 𝐸

𝑘 (𝑡) − 𝐸
𝑘−1 (𝑡)

=
1

2𝑞
∫
𝑡

0

(𝛽
𝑇

𝑘
(𝜎) 𝛽𝑘 (𝜎) − 𝛽

𝑇

𝑘−1
(𝜎) 𝛽𝑘−1 (𝜎)) d𝜎.

(34)

Utilizing the algebraic relation (𝑎 − 𝑏)
𝑇
(𝑎 − 𝑏) − (𝑎 − 𝑐)

𝑇
(𝑎 −

𝑐) = (𝑐 − 𝑏)
𝑇
[2(𝑎 − 𝑏) + (𝑏 − 𝑐)] and taking adaptive learning

law (29) into account, we have the following inequality:

Δ𝐸
𝑘 (𝑡) = ∫

𝑡

0

𝑠
𝑘 (𝜎) 𝛽

𝑇

𝑘
(𝜎)Φ𝑘 (𝜎) d𝜎

−
𝑞

2
∫
𝑡

0

𝑠
2

𝑘
(𝜎)

󵄩󵄩󵄩󵄩Φ𝑘 (𝜎)
󵄩󵄩󵄩󵄩
2d𝜎

≤ ∫
𝑡

0

𝑠
𝑘 (𝜎) 𝛽

𝑇

𝑘
(𝜎)Φ𝑘 (𝜎) d𝜎.

(35)

Substituting (31) into (35), it follows that

Δ𝐸
𝑘 (𝑡) ≤ − ∫

𝑡

0

𝑉̇
𝑘 (𝜎)

𝑏
𝑚 (𝜎)

d𝜎

+ ∫
𝑡

0

1

𝑏
𝑚 (𝜎)

(1 − 𝑎 tanh2 (
𝑠
𝑘 (𝜎)

𝜂 (𝜎)
)) 𝜁
𝑘 (𝜎) d𝜎

− ∫
𝑡

0

𝐾
2
𝑠
2

𝑘
(𝜎) d𝜎

≤ −
1

𝑏
𝑚

𝑉
𝑘 (𝑡) − 𝐾

2
∫
𝑡

0

𝑠
2

𝑘
(𝜎) d𝜎

+ ∫
𝑡

0

1

𝑏
𝑚 (𝜎)

(1 − 𝑎 tanh2 (
𝑠
𝑘 (𝜎)

𝜂 (𝜎)
)) 𝜁
𝑘 (𝜎) d𝜎.

(36)

For analysis of stability, we consider two cases.

Case 1. Consider (𝑠
𝑘
(𝑡) ∈ Ω

𝑠𝑘
). When 𝑠

𝑘
(𝑡) ∈ Ω

𝑠𝑘
, |𝑠
𝑘
(𝑡)| ≤

𝑚𝜂(𝑡) holds. If 𝑠
𝑘
(𝑡) = 0, we know 𝑒

𝑠𝑘
(𝑡) is bounded by 𝜂(𝑡);

that is, |𝑒
𝑠𝑘
(𝑡)| ≤ 𝜂(𝑡). If 𝑠

𝑘
(𝑡) > 0, we have 𝑠

𝑘
(𝑡) = 𝑒

𝑠𝑘
(𝑡)−𝜂(𝑡),

and from |𝑠
𝑘
(𝑡)| ≤ 𝑚𝜂(𝑡) we can obtain 𝑠

𝑘
(𝑡) = 𝑒

𝑠𝑘
(𝑡) − 𝜂(𝑡) ≤

𝑚𝜂(𝑡) which further implies 0 < 𝑒
𝑠𝑘

≤ (1 + 𝑚)𝜂(𝑡). Similarly,
if 𝑠
𝑘
(𝑡) < 0, we have 𝑠

𝑘
(𝑡) = 𝑒

𝑠𝑘
(𝑡) + 𝜂(𝑡) ≥ −𝑚𝜂(𝑡) which

means 0 > 𝑒
𝑠𝑘
(𝑡) ≥ −(1 + 𝑚)𝜂(𝑡). Synthesizing the above

analysis, we know that |𝑒
𝑠𝑘
(𝑡)| ≤ (1+𝑚)𝜂(𝑡) holds. Obviously,

𝑥
𝑖,𝑘
(𝑡) are bounded since 𝑋

𝑑
(𝑡) is bounded. According to

the smoothness of ℎ
1
(⋅, ⋅) and ℎ

2
(⋅, ⋅), we know that Φ

𝑘
(𝑡)

is a bounded vector. Recalling updating law (29), we know
𝛽
0
(𝑡) = 0, 𝑡 ∈ [0, 𝑇]; then, when 𝑠

𝑘
(𝑡) ∈ Ω

𝑠𝑘
, 𝛽
𝑘
(𝑡) is

bounded as well, 𝑘 ∈ 𝑁. Following this chain of reasoning,
the boundedness of V

𝑘
(𝑡) can be deduced. As such, all closed-

loop signals are bounded.

Remark 15. Theoretically, 𝑚 can be made arbitrarily small
by choosing 𝑎, for example, when we choose 𝑎 = 100 and
𝑚 = 0.099. This leads to 𝑠

𝑘
arbitrarily small. However, large

𝑎 may give rise to high gain control which can deteriorate
the transient performance of closed-loop system. Conse-
quently, in practical applications, the designers should choose
appropriate design parameters to gain satisfactory transient
performance and the ideal tracking error.

Case 2. Consider (𝑠
𝑘
(𝑡) ∉ Ω

𝑠𝑘
). According to Lemma 13, we

know that the last term of Δ𝐸
𝑘
(𝑡) can be removed from the

analysis. Therefore, (36) can be simplified as

Δ𝐸
𝑘 (𝑡) ≤ −

1

𝑏
𝑚

𝑉
𝑘 (𝑡) − 𝐾

2
∫
𝑡

0

𝑠
2

𝑘
(𝜎) d𝜎 < 0. (37)

Inequality (37) shows that 𝐸
𝑘
(𝑡) is decreasing along iter-

ation axis. Thus, the boundedness of 𝐸
𝑘
(𝑡) can be guaranteed

as long as 𝐸
1
(𝑡) is finite. According to the definition 𝐸

𝑘
, 𝐸
1
(𝑡)

is given by

𝐸
1 (𝑡) =

1

2𝑞
∫
𝑡

0

𝛽
𝑇

1
(𝜎) 𝛽1 (𝜎) d𝜎. (38)

Taking the time derivative of 𝐸
1
(𝑡) results in

𝐸̇
1 (𝑡) =

1

2𝑞
𝛽
𝑇

1
(𝑡) 𝛽1 (𝑡) . (39)

Recalling parameter adaptive laws (29), we have 𝛽
1
(𝑡) =

𝑞𝑠
1
(𝑡)Φ
1
(𝑡), and then we obtain

𝐸̇
1 (𝑡) =

1

2𝑞
𝛽
𝑇

1
(𝑡) 𝛽1 (𝑡)

=
1

2𝑞
(𝛽
𝑇

1
(𝑡) 𝛽1 (𝑡) − 2𝛽

𝑇

1
(𝑡) 𝛽1 (𝑡)) +

1

𝑞
𝛽
𝑇

1
(𝑡) 𝛽1 (𝑡)

=
1

2𝑞
((𝛽
1 (𝑡) − 𝛽 (𝑡))

𝑇

(𝛽
1 (𝑡) − 𝛽 (𝑡))
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−2(𝛽
1 (𝑡) − 𝛽 (𝑡))

𝑇

𝛽
1 (𝑡))

+ 𝑠
1 (𝑡) 𝛽

𝑇

1
(𝑡) Φ1 (𝑡)

=
1

2𝑞
(−𝛽
𝑇

1
(𝑡) 𝛽1 + 𝛽

𝑇
(𝑡) 𝛽 (𝑡)) + 𝑠

1 (𝑡) 𝛽
𝑇

1
(𝑡) Φ1 (𝑡) .

(40)

Substituting (31) into (40) yields

𝐸̇
1 (𝑡) ≤ −

𝑉̇
1 (𝑡)

𝑏
𝑚 (𝑡)

− 𝐾
2
𝑠
2

1
(𝑡) +

1

2𝑞
𝛽
𝑇
(𝑡) 𝛽 (𝑡) . (41)

Denote 𝛽max = max
𝑡∈[0,𝑇]

{(1/2𝑞)𝛽
𝑇
(𝑡)𝛽(𝑡)}. Integrating the

above inequality over [0, 𝑡] leads to

𝐸
1 (𝑡) − 𝐸

1 (0) ≤ −
1

𝑏
𝑚

𝑉
1 (𝑡) − 𝐾

2
∫
𝑡

0

𝑠
2

1
(𝜎) d𝜎 + 𝑡 ⋅ 𝛽max.

(42)

Obviously, 𝐸
1
(0) = 0, and then it follows from (42) that

𝐸
1 (𝑡) ≤ 𝑡 ⋅ 𝛽max < ∞ (43)

which indicates the boundedness of𝐸
1
(𝑡), so𝐸

𝑘
(𝑡) is finite for

any 𝑘 ∈ 𝑁. Using (37) repeatedly, we have

𝐸
𝑘 (𝑡) = 𝐸

1 (𝑡) +

𝑘

∑
𝑙=2

Δ𝐸
𝑙 (𝑡)

< 𝐸
1 (𝑡) −

1

𝑏
𝑚

𝑘

∑
𝑙=2

𝑉
𝑙 (𝑡) −

𝑘

∑
𝑙=2

𝐾
2
∫
𝑡

0

𝑠
2

𝑙
(𝜎) d𝜎

≤ 𝐸
1 (𝑡) −

𝑘

∑
𝑙=2

𝐾
2
∫
𝑡

0

𝑠
2

𝑙
(𝜎) d𝜎.

(44)

We rewrite inequality (44) as

𝑘

∑
𝑙=2

𝐾
2
∫
𝑡

0

𝑠
2

𝑙
(𝜎) d𝜎 ≤ (𝐸

1 (𝑡) − 𝐸
𝑘 (𝑡)) ≤ 𝐸

1 (𝑡) . (45)

Let 𝑡 = 𝑇, and, taking the limitation of (45), it follows that

lim
𝑘→∞

𝑘

∑
𝑙=2

∫
𝑇

0

𝑠
2

𝑙
(𝜎) d𝜎 ≤

1

𝐾
2

𝐸
1 (𝑇) . (46)

Since 𝐸
1
(𝑇) is bounded, with the aid of the convergence

theorem of the sum of series, lim
𝑘→∞

∫
𝑇

0
𝑠
2

𝑘
(𝜎)d𝜎 = 0, which

implies that lim
𝑘→∞

𝑠
𝑘
(𝑡) = 𝑠

∞
(𝑡) = 0, ∀𝑡 ∈ [0, 𝑇]. Moreover,

from definition (11), we can know that, when |𝑒
𝑠𝑘
(𝑡)| ≤

𝜂(𝑡), 𝑠
𝑘
(𝑡) = 0, then lim

𝑘→∞
∫
𝑇

0
𝑠
2

𝑘
(𝜎)d𝜎 = 0 is equivalent

to lim
𝑘→∞

|𝑒
𝑠𝑘
(𝑡)| ≤ 𝜂(𝑡), which furthermore implies that

lim
𝑘→∞

∫
𝑇

0
(𝑒
𝑠𝑘
(𝜎))
2d𝜎 ≤ ∫

𝑇

0
(𝜂(𝜎))

2d𝜎.

According to the boundedness of 𝐸
𝑘
(𝑡), we can obtain the

boundedness of 𝛽
𝑘
(𝑡). From ∫

𝑡

0
𝑠
2

𝑘
(𝜎)d𝜎 ≤ ∫

𝑇

0
𝑠
2

𝑘
(𝜎)d𝜎, we can

get the boundedness of 𝑠
𝑘
(𝑡). Considering the finiteness of

reference trajectory 𝑋
𝑑
(𝑡), we further obtain that 𝑥

𝑖,𝑘
(𝑡) are

bounded. Based on the above reasoning, we can obtain the
boundedness of V

𝑘
(𝑡) by similar analysis in Case 1.

Synthesizing the derivations in two cases, we can
conclude that the proposed control algorithm is able to
guarantee that all closed-loop signals are bounded and
lim
𝑘→∞

|𝑒
𝑠𝑘
(𝑡)| ≤ (1 + 𝑚)𝜂(𝑡). Therefore, we can obtain

lim
𝑘→∞

∫
𝑇

0
(𝑒
𝑠𝑘
(𝜎))
2d𝜎 ≤ 𝜀

𝑒
, 𝜀
𝑒

= ∫
𝑇

0
((1 + 𝑚)𝜂(𝜎))

2d𝜎 =

(1/2𝐾)(1 + 𝑚)
2
𝜀
2
(1−𝑒
−2𝐾𝑇

) ≤ (1/2𝐾)(1 + 𝑚)
2
𝜀
2
= 𝜀
𝑒𝑠𝑘
; thus,

the control objective is achieved. Furthermore, the bound of
𝑒
𝑠∞

(𝑡) will satisfy lim
𝑘→∞

|𝑒
𝑠𝑘
(𝑡)| = 𝑒

𝑠∞
(𝑡) = (1 + 𝑚)𝜀𝑒

−𝐾𝑡,
∀𝑡 ∈ [0, 𝑇].

Define the vector 𝜓
𝑘
(𝑡) = [𝑒

1,𝑘
(𝑡), 𝑒
2,𝑘

(𝑡), . . . , 𝑒
𝑛−1,𝑘

(𝑡)]
𝑇,

and then a state representation of 𝑒
𝑠𝑘
(𝑡) = [Λ

𝑇
1] 𝑒𝑘(𝑡) can

be expressed as

𝜓̇
𝑘 (𝑡) = 𝐴

𝑠
𝜓
𝑘 (𝑡) + 𝑏

𝑠
𝑒
𝑠𝑘 (𝑡) , (47)

where

𝐴
𝑠
=

[
[
[
[

[

0 1 ⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ 1

−𝜆
1

−𝜆
2

⋅ ⋅ ⋅ −𝜆
𝑛−1

]
]
]
]

]

∈ 𝑅
(𝑛−1)×(𝑛−1)

,

𝑏
𝑠
=

[
[
[
[

[

0
...
0

1

]
]
]
]

]

∈ 𝑅
𝑛−1

(48)

with𝐴
𝑠
as a stablematrix. In addition, there are two constants

𝑘
0

> 0 and 𝜆
0

> 0 such that ‖𝑒
𝐴𝑠𝑡‖ ≤ 𝑘

0
𝑒
−𝜆0𝑡 [50]. The

solution for 𝜓̇
𝑘
(𝑡) is

𝜓
𝑘 (𝑡) = 𝑒

𝐴𝑠𝑡𝜓
𝑘 (0) + ∫

𝑡

0

𝑒
𝐴𝑠(𝑡−𝜎)𝑏

𝑠

󵄨󵄨󵄨󵄨𝑒𝑠𝑘 (𝜎)
󵄨󵄨󵄨󵄨 d𝜎. (49)

Accordingly, it follows from (49) that

󵄩󵄩󵄩󵄩𝜓𝑘 (𝑡)
󵄩󵄩󵄩󵄩 = 𝑘
0

󵄩󵄩󵄩󵄩𝜓𝑘 (0)
󵄩󵄩󵄩󵄩 𝑒
−𝜆0𝑡 + 𝑘

0
∫
𝑡

0

𝑒
−𝜆0(𝑡−𝜎) 󵄨󵄨󵄨󵄨𝑒𝑠𝑘 (𝜎)

󵄨󵄨󵄨󵄨 d𝜎.

(50)

When we choose suitable parameters such that 𝜆
0
> 𝐾, from

lim
𝑘→∞

|𝑒
𝑠𝑘
(𝑡)| ≤ (1 + 𝑚)𝜂(𝑡), we can have

󵄩󵄩󵄩󵄩𝜓∞ (𝑡)
󵄩󵄩󵄩󵄩 = 𝑘
0

󵄩󵄩󵄩󵄩𝜓∞ (0)
󵄩󵄩󵄩󵄩 𝑒
−𝜆0𝑡 + 𝑘

0
∫
𝑡

0

𝑒
−𝜆0(𝑡−𝜎) 󵄨󵄨󵄨󵄨𝑒𝑠∞ (𝜎)

󵄨󵄨󵄨󵄨 d𝜎

≤ 𝑘
0

󵄩󵄩󵄩󵄩𝜓∞ (0)
󵄩󵄩󵄩󵄩 + (1 + 𝑚) 𝜀𝑘0 ∫

𝑡

0

𝑒
−𝜆0(𝑡−𝜎)𝑒

−𝐾𝜎d𝜎

= 𝑘
0

󵄩󵄩󵄩󵄩𝜓∞ (0)
󵄩󵄩󵄩󵄩 + (1 + 𝑚) 𝜀𝑘0

1

𝜆
0
− 𝐾

(𝑒
−𝐾𝑡

− 𝑒
−𝜆0𝑡)

≤ 𝑘
0

󵄩󵄩󵄩󵄩𝜓∞ (0)
󵄩󵄩󵄩󵄩 +

1

𝜆
0
− 𝐾

(1 + 𝑚) 𝜀𝑘0.

(51)
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Noting 𝑒
𝑠𝑘
(𝑡) = [Λ

𝑇
1]𝑒
𝑘
(𝑡) and 𝑒

𝑘
(𝑡) = [𝜓

𝑇

𝑘
(𝑡) 𝑒
𝑛,𝑘

(𝑡)]
𝑇

,
we have

󵄩󵄩󵄩󵄩𝑒𝑘 (𝑡)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜓𝑘 (𝑡)
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝑒𝑛,𝑘 (𝑡)
󵄨󵄨󵄨󵄨

=
󵄩󵄩󵄩󵄩𝜓𝑘 (𝑡)

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑠𝑘 (𝑡) − Λ

𝑇
𝜓
𝑘 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤ (1 + ‖Λ‖)
󵄩󵄩󵄩󵄩𝜓𝑘 (𝑡)

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝑒𝑠𝑘 (𝑡)

󵄨󵄨󵄨󵄨 .

(52)

Combining the previous two inequalities, we can obtain
󵄩󵄩󵄩󵄩𝑒∞ (𝑡)

󵄩󵄩󵄩󵄩 ≤ (1 + ‖Λ‖)
󵄩󵄩󵄩󵄩𝜓∞ (𝑡)

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝑒𝑠∞ (𝑡)

󵄨󵄨󵄨󵄨

≤ (1 + ‖Λ‖) (𝑘
0

󵄩󵄩󵄩󵄩𝜓∞ (0)
󵄩󵄩󵄩󵄩 +

1

𝜆
0
− 𝐾

(1 + 𝑚) 𝜀𝑘0)

+ (1 + 𝑚) 𝜂 (𝑡)

≤ (1 + ‖Λ‖)(𝑘
0

𝑛−1

∑
𝑖=1

𝜀
𝑖
+

1

𝜆
0
− 𝐾

(1 + 𝑚) 𝜀𝑘0)

+ (1 + 𝑚) 𝜂 (𝑡)

≤ (1 + ‖Λ‖)(𝑘
0

𝑛−1

∑
𝑖=1

𝜀
𝑖
+

1

𝜆
0
− 𝐾

(1 + 𝑚) 𝜀𝑘0)

+ (1 + 𝑚) 𝜀 = 𝜀
𝑒∞

.

(53)

This concludes the proof.

5. Simulation Studies

In this section, a simulation example is presented to verify
the effectiveness of the AILC scheme. Consider the following
second-order nonlinear system with unknown time-varying
delays and unknown dead-zone running on [0, 10], repeti-
tively:

𝑥̇
1,𝑘 (𝑡) = 𝑥

2,𝑘 (𝑡) ,

𝑥̇
2,𝑘 (𝑡) = 𝑓 (𝑋

𝑘 (𝑡) , 𝑋𝜏,𝑘 (𝑡) , 𝜃 (𝑡)) + 𝑏 (𝑡) 𝑢𝑘 (𝑡) + 𝑑 (𝑡) ,

𝑦
𝑘 (𝑡) = 𝑥

1,𝑘 (𝑡) , 𝑢
𝑘 (𝑡) = 𝐷 (V

𝑘 (𝑡)) ,

(54)

where 𝑓(𝑋
𝑘
(𝑡), 𝑋
𝜏,𝑘

(𝑡), 𝜃(𝑡)) = −(𝑥
1,𝑘

(𝑡) + 𝑥
2,𝑘

(𝑡))𝜃(𝑡) +

exp(−𝜃(𝑡)((𝑥𝜏
1,𝑘

(𝑡))
2
+ (𝑥
𝜏

2,𝑘
(𝑡))
2
)), 𝑏(𝑡) = 2 + 0.5 sin 𝑡, 𝑑(𝑡) =

0.1 sin 𝑡, and the time delays are 𝜏(𝑡) = 0.5(1 + sin 𝑡) with
𝜏max = 1, 𝜃(𝑡) = |cos(𝑡)|. It can be easily verified that

󵄨󵄨󵄨󵄨󵄨
exp (−𝜃 (𝑡)

󵄩󵄩󵄩󵄩𝑋𝑘
󵄩󵄩󵄩󵄩
2
) − exp (−𝜃 (𝑡)

󵄩󵄩󵄩󵄩𝑋𝑑
󵄩󵄩󵄩󵄩
2
)
󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑋

𝑑

󵄩󵄩󵄩󵄩√2 |𝜃 (𝑡)|𝑒
−0.5

.

(55)

Obviously, Assumptions 1–3 and Assumptions 5, 6, and 9 are
satisfied. Moreover, we can know that ℎ

1
= 1 and ℎ

2
= 1. We

give the simulation study in the following three cases.

Case 1. The reference trajectory to be tracked by the state
vector is given by 𝑋

𝑑
(𝑡) = [sin 𝑡, cos 𝑡]𝑇. The design
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Figure 2: System output 𝑦 on 𝑦
𝑑
(𝑘 = 1) in Case 1.
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Figure 3: System output 𝑦 on 𝑦
𝑑
(𝑘 = 10) in Case 1.

parameters are chosen as 𝜀
1
= 𝜀
2
= 1, 𝜆 = 2, 𝐾 = 3, 𝛾 = 0.5,

𝐾
1
= 2, 𝑞 = 1, 𝑎 = 5, 𝜀 = 𝜆𝜀

1
+ 𝜀
2
= 3. The parameters for

dead-zone are specified by 𝑚 = 1 + 0.2 sin 𝑡, 𝑏
𝑟
= 0.25, 𝑏

𝑙
=

−0.25. The initial conditions 𝑥
1,𝑘

(0) and 𝑥
2,𝑘

(0) are randomly
taken in the intervals [−0.5, 0.5] and [0.5, 1.5], respectively.
Parts of the simulation results are shown in Figures 2, 3, 4,
5, and 6. From the simulation results, we can see that the
proposed AILC is effective in the sense that it can drive the
tracking errors converge to zero along the iteration axis.

Case 2. To show the control performance for more
complicated reference trajectory, we choose the reference
trajectory as𝑋

𝑑
(𝑡) = [sin 𝑡 + sin(1.5𝑡), cos 𝑡 + 1.5 cos(1.5𝑡)]𝑇.

The design parameters are chosen the same as those in case 1.
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(𝑘 = 10) in Case 1.

The initial conditions 𝑥
1,𝑘

(0) and 𝑥
2,𝑘

(0) are randomly taken
in the intervals [−0.5, 0.5] and [2, 3], respectively. Parts of
the simulation results are shown in Figures 7, 8, 9, 10, and 11.
It shows that for more complicated reference trajectory the
proposed approach is also able to achieve excellent tracking
performance.

Case 3. Finally, the contribution of this paper is shown by
comparing the proposed controller with traditional adaptive
controller. The controller is the same, but the adaptive laws
using 𝜎-modification for parameters are given by

̇̂
𝛽 (𝑡) = −Γ [Φ

𝑘 (𝑡) 𝑠𝑘 + 𝜎𝛽 (𝑡)] , 𝛽 (0) = 0. (56)
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Figure 7: System output 𝑦 on 𝑦
𝑑
(𝑘 = 1) in Case 2.

The design parameters are given by Γ = diag{0.01} and
𝜎 = 0.5. Since traditional adaptive controller does not run
repeatedly, the notation 𝑘 in this case does not have any
practical meaning. Figure 12, 13, and 14 provide simulation
results. From the simulation results shown below, it is obvious
that the adaptive controller cannot achieve perfect tracking
performance of the system output and reference trajectory.

As observed in simulation results above, the proposed
AILC can achieve a good tracking performance and tracking
errors decrease along the iteration axis, which demonstrates
the validity of the proposed AILC approach in this paper.
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Figure 8: System output 𝑦 on 𝑦
𝑑
(𝑘 = 10) in Case 2.
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6. Conclusions

In this paper, a new AILC scheme is proposed for a class of
nonlinear time-varying systems with both unknown time-
varying time-delay and unknown input dead-zone nonlin-
earity in the presence of disturbance running on a finite
time interval repetitively. A novel representation of the dead-
zone output is given. Using appropriate Lyapunov-Krasovskii
functional in the Lyapunov function candidate, the uncer-
tainties fromunknown time-varying delays are removed such
that control law is delay-independent. The identical initial
condition for ILC is relaxed by introducing the boundary
layer. The hyperbolic tangent function is employed to avoid
the possible singularity problem. Theoretical analysis by
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Figure 10: Control input 𝑢
𝑘
and V

𝑘
(𝑘 = 10) in Case 2.
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(𝑡)d𝑡 versus the number of iterations in Case 2.

constructing Lyapunov-like CEF has shown that the tracking
errors converge to a small residual domain around the
origin as iteration goes to infinity. At the same time, all the
closed-loop signals remain bounded. Simulation results have
been provided to demonstrate the effectiveness the proposed
control scheme.

Appendix

Proof of Lemma 13. For convenience in expression, denote
𝑥 = 𝑠
𝑘
(𝑡)/𝜂(𝑡). We rewrite inequality (32) as

1

𝑏
< tanh2 (𝑥) = (

𝑒
𝑥
− 𝑒
−𝑥

𝑒𝑥 + 𝑒−𝑥
)

2

= 1 − (
2

𝑒𝑥 + 𝑒−𝑥
)
2

. (A.1)
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𝑑
in Case 3.
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Noting the fact that 𝑒𝑥 and 𝑒
−𝑥 are positive, it follows from

(A.1) that

𝑒
𝑥
+ 𝑒
−𝑥

> 2√
𝑏

𝑏 − 1
. (A.2)

Then, we can obtain

𝑒
2𝑥

− 2√
𝑏

𝑏 − 1
𝑒
𝑥
+ 1 > 0. (A.3)
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Figure 14: Tracking error 𝑠(𝑡) versus time.

Solving the quadratic inequality (A.3), we can have

0 < 𝑒
𝑥
< √

𝑏

(𝑏 − 1)
− √

1

(𝑏 − 1)

or 𝑒
𝑥
> √

𝑏

(𝑏 − 1)
+ √

1

(𝑏 − 1)
.

(A.4)

On the other hand, from |𝑠
𝑘
(𝑡)| > 𝑚𝜂(𝑡), we know that

𝑥 < −𝑚 or 𝑥 > 𝑚 (A.5)

which implies

0 < 𝑒
𝑥
<

1

√𝑏/ (𝑏 − 1) + √1/ (𝑏 − 1)

= √
𝑏

(𝑏 − 1)
− √

1

(𝑏 − 1)

or 𝑒
𝑥
> √

𝑏

(𝑏 − 1)
+ √

1

(𝑏 − 1)
.

(A.6)

Obviously, from the homology of (A.4) and (A.6), we
know that Lemma 13 holds.
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