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A theoretical analysis is presented for the peristaltic motion of a magneto-hydrodynamic (MHD) non-Newtonian fluid in channel
with complaint walls. The fluid obeys viscoelastic non-Newtonian model with Burger’s constitutive equation. The relevant equations
are first developed and then solved using perturbation technique. Expressions of stream function and velocity components are
constructed under the assumption that § (characteristic ratio of transversal and axial scales of peristaltic motion) is small. The results
indicate the strong effects of Burger’s fluid parameter, Hartman number, Reynolds number, and complaint wall parameters on the

velocity field and stream function. The obtained solutions are shown graphically for the different values of involved parameters.

1. Introduction

Peristaltic pumping is a mean of fluid transport caused by
waves of contraction along the boundary of a channel/tube.
To analyze the properties of peristalsis theoretically, the flow
caused by sinusoidal traveling waves of contraction along the
boundary has been considered in an infinite channel/tube.
In general, flow in a peristaltic channel is driven by two
independent mechanisms: the movement of the walls and
due to the mean pressure gradient along the channel. After
the pioneering work of Shapiro et al. [1] the fluid flow due
to prescribed wall motion has been described theoretically
by Ebaid [2]. The approach of Fung and Yih [3] was used to
analyze the peristaltic flow by Hayat et al. [4] and Haroun
[5]. In the above mentioned studies, peristaltic motion
was investigated under various assumptions. One of the
important aspects in such studies is the nature of the fluid.
Since, it is a fact that most of the biological and industrial
fluids are non-Newtonian in nature, therefore, peristaltic
flow of these fluids has also been studied by Hayat et al.
[6] considering non-Newtonian Maxwell fluid in a channel.
Srinivas et al. [7] studied the MHD peristaltic motion with

slip and heat characteristics. The effects of wall flexibility
on the peristaltic motion have also attracted the attention
of various researchers in the field. Mittra and Prasad [8]
initiated the study of peristaltic transport of viscous fluid with
compliant walls. Their work has been generalized by Muthu
et al. [9] for viscous incompressible fluid in circular tube and
Abd Elnaby and Haroun [10] for two-dimensional channel.
The work in [10] has been extended for Maxwell fluid by
Ali et al. [11]. Peristaltic motion of Jeftrey fluid in a channel
having compliant walls was also studied by Hayat et al. [12].
Recently the heat and mass transfer effects on the peristaltic
flow of an Oldroyd-B fluid in a channel with complaint walls
were investigated by Hayat et al. [13]. Motivated by the above
mentioned investigations, the aim of the present paper is
to extend the work of [13] by considering the fluid which
obeys the constitutive equation of Burger’s fluid model. The
Burger’s fluid is a rate type viscoelastic fluid model [14] which
has been found quite successful in predicting the behavior
of viscoelastic material, food products such as cheese and
soil. The viscoelastic behavior of fine-grained polycrystalline
olivine can also be predicted by Burger’s fluid model [15].
Moreover, this model has also been used for calculation of
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transient creep proportion of the earth’s mantle [16] and in
the interpretation of postglacial uplift [17].

The paper is arranged in the following manner. Flow
geometry is explained in Section 2 while governing equations
are developed in Section 3. Series solution is provided in
Section 4. Results and discussion presented in Section 5.
Some conclusions are made at the end of article in Section 6.

2. Flow Geometry

Let us consider the flow of magneto hydrodynamic (MHD)
Burger’s fluid due to sinusoidal motion of the compliant walls
in a channel. A constant magnetic field of strength B, is
applied in the direction normal to the flow. The deformation
of the walls of the channel is represented by the expression

PR PR T T

where a is the amplitude of the peristaltic wave, A is the
wavelength, t is the time, c is the speed of the wave, and d,
is the half-width of the channel.

3. Governing Equations

Let u and v denote the velocity components in the axial and
transverse direction, respectively, then we can write

V= [u(x,y.t),v(x, y.t),0]. (2)

The law of conservation of mass and momentum for the flow
of an incompressible fluid are

divV =0,

(3)
pil_\tf =-Vp+divs,

where V is the velocity, p is the density, p is the pressure, and S
is the extra stress tensor, which satisfies the following relation
for a Burger’s fluid:

DS . D’S D
S+A1D—t+BD—t2:‘I/l<1+A2D—t)A1. (43)
In the above equation y is the dynamic viscosity, A, is the
first Rivlin-Ericksen tensor, A, and A, are the relaxation and
retardation times, respectively, 8 is Burger’s fluid parameter,
L is the gradient of velocity, and D/Dt is the upper convective
derivative and defined as

DS _3S

o _9P . —Ls-sL”. 4b
D at+(v V)S—LS-SL (4b)
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Using the definition of velocity and D/Dt in (3) we get the
following equations:

ou Oov
— 4+ = =0,
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P<at “ox Vay> ox T ox "oy T
(6)
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ot o0x 0oy Jdy  Ox Jy

Vool o o 50U
= (—2 — @)Sxy + m (Sxx - Syy) _0305’

(8)

where the components of extra stress appearing in the above
equations satisfy three equations that can be obtained directly
from (4a).

The relevant boundary conditions are [8]

u=0,

Fx o F
2 S
"o M oxor T axor |1
b oS N
_ Bur + =2 - p@ - oBlu,

ox oy dt

at y = 1,

where 7 is the tension in the wall, m is the mass per unit
area, d is the coeflicient of viscous damping, and o is the
electrical conductivity of fluid. Defining the stream function
y such that u = OJy/dy, v = —0y/0x, and the following
dimensionless variables:
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L ¢t . m . _dip
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we find that the continuity equation (5) is identically satisfied
and (8)-(9), after dropping the primes, reduce to

2 2
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& & &’
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=0
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In the above equations# = +(1+e sin 271(x—t)), & = a/d, isthe
dimensionless amplitude, § = d; /A denotes the characteristic
ratio of transversal and axial scales of peristaltic motion, R =
cd, /v is the Reynolds number, M = /o/uBd; denotes the
Hartman number, E, = —1d;/\uc, E, = mcd; /A, E
dd’ /A’ u are the nondimensional elasticity parameters, and
B* = Bc*/d? is the dimensionless Burger’s fluid parameter.

4. Solution of the Problem

Due to nonlinearity of (11) it seems impossible to get a closed
form solution. Therefore, some plausible assumptions must
be made to put these equations in tractable form. We would
like to mention here that without such assumptions one
cannot obtain solution of these equations even for Newtonian
fluid. Following [1], we assume that the § is small and proceed
to write

o0
y =Yy,
k=0
(13)
& k ..
Sij = 28 Sijk’ 1,_] = 1,2
k=0

Substituting expressions (13) into (11) and (12) and collecting
the terms of equal powers of §, we get the following systems.

4.1. Zero-Order System
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4.2. First-Order System

29y

2

R(L%i_%i)m
ot 0dy 0x 0x dy) 0y? oy

oS, 0
Xy
= ayz + axay (Soxx - SO}’;V) >

oY, 0y, 0 >
Slxx + )” [ (at SOxx

dy 0x Ox 9y
Oy,
- 2—
a a SOXX
a 11/ a Y,
a 21 SOxy a 20 Slxy]
ny azl//0 oy,
axay 0y?
(W P W]
dy 0x0y> 0x 0y? 0%y
2
YAl s
0x0y
81//0 9y 0 ) S,
ay ox oxoy)| ™

,( P\
ay2 0y? 0y

_ 262‘/’0 A0 o'y 0y,

oxdy 2 oy2 0y
0 9yy 0 9y 0 > Oy,
Syt A (24208 T g g
tyy ¥ ‘[(aﬁ 3y ox  ox 9y ) T 2axay
_ oy,
axay
0 9yy 0 9y 0 )
Sy + A, | (L4 T2 Ho
ey ¥ 1[<at+ dy 9x  ox ay) ™
oy, oy
SShs,, - Shs,
92 T T gy2 T
_ P " ( L0 Oy 0 ) Py,
0y? ot 3y ox ox dy/) 9>
Oy, 0y
0xdy 0y?



Journal of Applied Mathematics

aSOxx + aslxy _ 821//2 821//0
0x oy oy>  0x?
_R<2+%i_%i>%_Mz%=o ‘l (L%i_%i)a%
ot 0y O0x Ox dy/ oy dy ’ [\ot 9y ox ox dy/ 0y?
Y1, =0, aty=zn. +<%i_%i>az%
(15) dy 0x 0x dy/) 0y?
Iy Py 0w 82%]
4.3. Second-Order System oxdy 0y’ 0xdy 9y
9 9y, 9
e[ (542002 202,
(2202 o)y ey
ot Jdy ox Ox dy/) 0y? 8 I ¢ _28 Yo
axay Dy gk T
(81//1 ~ %3) oy,
o 0x 0x 3/ oy +ﬁHi+2<%3_a% )
ot*
i azszxy i Pe Soxy i 3, ot \ dy ox Ox Oy
o oy* +<%i_%ﬂ>
. Jdy 0x  Ox Oy
0
+ dxdy (Slxx - SI;V)’) ’ _ a31/’0 + 4821//0 22
0x0yot  O0x0y Ot Ot
dy, 9 dy; 0 ) <av/o 9y, 0 )
S Ml=——-—=—
2y ¥ 1 [( dy 0x 0x Oy Soxy ! dy 0x 0x Oy
2
9y, 9y + <61//0 - %2> ¥ +4 ¥
+<at+ga_gay>sx dy 0x  0x dy/ 0xOy 0x0y
9%y, a%(%i_a% >
a =5 Soxx 0x0y \ dy 0x Ox Oy
2 2
"y P’y oy, 2%%
ER Sapy ~ ayzl Sy~ 9y Soyy ’ dy* ox? Soy
2
0 0 9 _ 9y
+Bizat s (ﬂ—- Yo 9 = 5%
ot* 0t \ dy ox Ox ay y
Oy, 0 9y, 0 —2) (2+%i_%2> CRZ)
"\ oy ox ox oy 2| \ot "~ oy ox ox dy/ oxoy
2
A %3)2 Y (AT WA LA
ot\ dy 0x 0x Oy 0x0y 0x? 0y?
AR Biay |, By _ 2
By2 ox2 | "% ox oy ay
oy, 0 Oy oy
7 25 \? _ [( 9 0 _ _0_) 9y
N AT Y AT R\t 3y ax axay) 3y
0x0y ot 0x0y
+(61//1 9y, 0 )%]:0
26 Yo (% Oy 0 > dy ox ox dy/) oy
0xdy \ dy ox ox Jy 3
[ &)
— =0, aty==n
(2 Py v Dv, y T
dy 0x20y  0x 0x0y? 4 (16)



Journal of Applied Mathematics 5
— o
6 e RN - ~~
L 12 L N
5 . o SN
y " 10 ST B
4 / \\ // L7 N \\
/// \\ 8 //,// PR \\\\
L T P \ /// - -7 T~ \\\\
“ 3 // \\ " 6 ///_-'. e T~ BN
/ \ /’." .7 So W
2 ;o Y 0 RN
S e T T e e e s _ , N
// //”’— ‘\\\\ :.\\ 4 /7-'// \\"?\\\
S e N0 o iy
1 e NN 2 & %
147 N 14 k)
2 Xy 4
ol” \ oL/ \
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
y y
-—- M=3 --- M=5 --- B=0.00 --- =010
...... M=4 ———= M=6 ﬁ=0.05 N ﬁ:O.IS

(a)

()

FIGURE 1: Variation on u when E, = 1, E, = 0.2, E; = 0.5, =0.2,5 = 0.01,¢ = 0.2, R = 0.01, A, = 0.1, A, = 0.05, and x = 0.3 plotted for (a)

for different values of M and (b) different Burger’s fluid parameter f3.

The solution of these systems yields

u = uy + Ou, +8°u,, (17)

where

uy = L (sech My cosh My — 1),

u, = A,y+ A, sinh My + L,y cosh My + L, y* sinh My
(18)

and value of u, is given in the appendix.
The value of constants involved in (18) is given in the
appendix.

5. Results and Discussion

The purpose of this section is to provide the graphical
illustration of the solution obtained in previous section.
Emphasis has been given to examine the influence of emerg-
ing parameters such as §, R, M, and the rheological parameter
of the Burger’s fluid  on the axial velocity and the stream
function.

In fact the novelty of the present analysis is based on
the effects of Burger’s fluid parameter 8 on various flow
characteristics. This is because of the fact that the results
in the absence of f are available already in the literature
[13] for comparison. Particularly the velocity u is plotted
for different values of the involved parameter including the
Burger’s fluid parameter f. Figure 1 interprets the effects of
Hartman number M and f on w. It is noted from this figure
that u is an increasing function of 3, while it decreases with
M. The decrease of u with M is a result of the fact that
magnetic force acts in the transverse direction and hence
resists the flow due to peristalsis.

The effects of R and § on u can be seen through Figure 2.
This figure shows that u increases by increasing R and §.
The Reynolds number represents the relative magnitude of

inertial to the viscous force and with the increase of Reynolds
number, the viscous forces decrease resulting in increases in
velocity. Similarly with an increase in § the wavelength of
wave decreases which causes the increase in the velocity. It
is worth mentioning that these results are in accordance with
those obtained in [11] for a Maxwell fluid. A maximum in the
velocity at center of the channel and an increase of velocity
with R and & are also observed from Figure 2.

Figure 3 is prepared to see the effects of complaint wall
parameters E,, E,, and E; on longitudinal distribution of
velocity u. This figure reveals that the velocity increases when
both wall parameters E, and E, increase because of the
increase in flexibility and elasticity of the wall. However,
velocity decreases with E; due to the increase in rigidity of
the wall. Note that we recover the results reported in [11] for
A, =p=0.

Figure 4 illustrates the effects of A; and A, on u. It is
observed that when we increase the relaxation parameter the
velocity u gets increased due to the increment in A,. The
effects of retardation parameter A, on the velocity are quite
opposite to that of A;.

The purpose of Figures 5, 6, 7, and 8 is to capture the
variation in size and circulation of the trapped bolus, in
particular, the effects of E,, E,, 3, and E;. It is observed from
these figures that the size of bolus decreases by increasing E,
and E, while it increases with E; and f3.

6. Conclusions

Peristaltic motion of a (MHD) non-Newtonian fluid with
Burger’s constitutive equation in channel with complaint
walls is taken into account. The results for velocity and stream
function are obtained and compared with the literature. It is
observed that Reynolds number and & cause an increase in
the velocity while a decrease in velocity is noted by increasing
Hartman number. In previous mathematical model [13],
Burger’s parameter is absent and therefore such models



10

Journal of Applied Mathematics

(a)

FIGURE 2: Variation on u when E, = 1, E, = 0.2, E; = 0.5, = 0.2, 3 = 0.05,t = 0.2, M = 2.5, 1, = 0.1, A, = 0.0, and x = 0.3 plotted for (a)

for different values of R and (b) different values of 6.
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FIGURE 3: Variation on u when R = 0.01,§ = 0.01,e = 0.2, § = 0.01,t = 02, M = 2.6, A, = 0.1, A, = 0.0, and x = 0.3 plotted for (a) for
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and (b) E; = 0.5.

cannot accurately describe the peristaltic motion of food stuft
like cheese and so forth. The physical impact of this parameter
is quite interesting. Our mathematical model predicts an
increase in velocity by increasing Burger’s fluid parameter.
The model further reveals that the size and circulation of the
trapped bolus increase with Burger’s fluid parameter.

Appendix

Here we provide the value of u, along with various constants
appearing in it and in the expressions of 1, and u,, as follows:

U, = M (2“49

+ M (4c,M + 2a5,y

+a52y2 + 4(148)/2 + 4a38y4)) cosh My

T aM (a7, + 24as,

+ M (2a5, + 4ags + 4, + (ay,, + 12a5,) y°
+M (2a,y cosh My — a,;))) cosh® My

1

+
108 M*

% ((3M (ay,y - 3a;4M — 12M?ay, ) ) cosh My
+ (a27x +3M? (2a51 +12Ma,, - 3a27xy2))

x sinh My) sinh 3My

1
EYYE (ay;.y + M (asg + 4Mas, y)) cosh My sinh My

1
iy (3a, sinh My — 3as, cosh My) sinh 4My
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+ m (24054 — Gy7y

+ M (4(ass + ¢
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L
16M°

X ( — 3a,, + 2M° (a48 ~ Mas, + 2M” (3a,5 — 2a,9)

+

- (3a38 + 2a48M2) yz)) cosh My cosh 2My

1
8M*

(2M2 (6Ma50 - Mas; —agy — Mas,y - “38)’3)

+3a38y) cosh My sinh 2My
1

" 8M*
X (ZM3 (3asy + as; + as,y)
+2M* (a48y + a38y3) - 3a38y) cosh 2My sinh My
( 1
+ —
108M*
X (—a27x - 65151M2 - 36a47M3 + 9a27xM2y2)
3a
x cosh3My — — cosh 4My) cosh My
8M
1
+ 3y (3 (a53 + 2M2% + a49M2y +as, My + u38y3)

+u48y2M2) sinh My

+2M? (a52 —ay +2M’ (36146 +ay+ a48y2)
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1 2
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3
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1
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e
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L
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+A (A - 1,)
x((1+2L+3(1+L)L, +4MLL,sech My)L,
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+A, (A -1y) (LL?M3 sech Mn)
-B (LL?M3 sech M17) ,
ay = -4 -14,)

2L
x ((—2L2 + ﬁ - 2A4M) L
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( ( ) i
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as= -, -1,)
x (-2(4L5 + LyM) L, — 4LL3,M sech M#)
+A, (A, —A,)
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~LL* sech My
a; = A (A - 1y) (1T>
+p (4L2Ltsech2M17) ,

ag =1, (A, - 1,) (—3LL21 sech MY]),

4LL* sech M
ay = A (A - A,) (17”

- 5L2Ltsech2M17) ,

ay =LA, (A, - 1,) (3LL1L,M2 secth),

2L°L, sech M.
ay = A (/\1 _Az) <_M -I’L

-B (LLIM sech M11) R

L’L,
M

ay=A (A, - 1,) ( +2L°L,, sech Mn)

+ B (LL,M? sech Mn),
ay =M (A, - A,) (4L°L sech’My) ,
a, = 4B (A, = A,) (LML, sech My),
a5 =— (A, - 4,) (-L,LsM?),
ay = -4, (A, = A,) (L°Ly,),
ay = (A, = A,) (ALM’Ly sech My),
My =4(h - 1,)
x (2ML, sech Mn

+ A M sech My + 2Ly sech M) LM

usech®M ;1>
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+6A,A, (1 +L)LL, M sech My

- 6% (1+ L) LL, M sech My

- 6B (1+L)LL,M sech Mn,

ayo = 4(A; = A,) (ML, + 4L,) LM” sech Mp
—6A,A,L°L,M’sech’ My
+ 60 L* L, M’sech’ My
+6BL°L,M’sech’ My,
a3y = =2 2Ly, + L, M),
a5, = -2 (LZt + % - AMM),

ap =-2(Ay - L), as3 = =M (3a,; + 2ay,),

L,L
]1\43 -LL,, secth) ,

Qsy = R(
35 = ~Gyg, — 2 (ay, + a;5) M,
36 = =2 (a5, + ay) M,
az; = = (2ay5 + 3ay,) M,
Ay = —(ay + L,Ly;M Re) M,
azg = = (2a55 + ay)
— (a6 + ayy) M +2L;, Re(1+ L)
—L,MRe(L, + A;M) A, LMR sech My
+L,,MR(1+1L),
g =~ (a + ays, + a1 M),

L,R
ay = = (a5 +a M)+ (3L +L,) ﬁ

L
—(L,+ i)LR h My,

( 2t sech My
ap = —3ay —azM

+2L5, M — (Z‘SLtL3 - LSt) MR

+(LLy, - L,L,M) MR

1
A3 = — (s + ay +a5,,) + M (Ly — A,LR)

—(ay-A,(1+L)-A,LR)M

+(L,L,+(1+L)L, — A, LRsech M#y)R,

-L,L;R LL;Rsech My
My = , t >
2M 2M
a5 = —L,L; Re —LL;, MR sech M#,

19 as3

Aue = — 5
46 12 12M

1
(Ayre + As5) + — (ag + ay +2a,,),

1
Ay, = ———
T 8M? aM
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x (4L + L,M) L, M

3a a
e A
+ (4L 4, + L,,M) LM sech My
Ay = —%—L(ZMQ + 6asg)
49 4 Mt 42 T s —12A, (A, = A,) LL,L,M? sech M7) ,

1
— — (a5 +4a,), b, = —2(ay +a,) M

4M
2 3. 12
Qe = _%is + 7 a = Gy7x | B34 | G35 —6BL°L,, M sech”Mp
50 — > 51 — 2 >
12 12M 4M* 2M  4M —6A, (A, = A,) LletMssecthr],
6asyy  2a,  ay
G52 = M M? + M’ by = _2(‘113 _2L31x)
3a 937 = ((ays + @y + 2Ly, ) M +2(1 + L) Ly,
gy = —— — Oy + ——,
o4 M +((1+ L)Ly —L,L, - A,L,M
G54 = “z67x + %> +A,Lsech Mn) M) R,
_ o | % _ by = —(3a5 + M (a;; - 2Ly, ) M)
G55 = T3x — + 5 Tt
+(L;,1+L)-L,(3L; + L,M) MR),
b, = -(a, - 2(119) M
by = - (a16 +ay — 2L21x) +M (2A41x - an)
+6f (4L21 + LML, sech M11) Lsech Mn
+R (LtL2 +L,, (1+L)
+64, (4, -1,)
—A,Lsech Mn - Al )
2 —
M

X (4L21 + LML, sech Mn) Lsech My,
+(A,(1+L)+A,L,) MR,

by, = (LyL; + LL;,M sech M#n) R
b,y = —(L,L; + LL;,M sech Mn) R,

+4(1, - 1,)

x (L, Ly + LLy, M sech M) M, by = = (a5 +a,, M)

- (A,ML, - L, L,

bi; = —(a, + May, — A L, Re)
R
- (L, — A,M) ML sech Mn) 72

2L,R
+ == (Ly + ML,)

M2
—6B((1+ L)L}

—(LyL, = Ly, (1 + L)) LM sech M)

by =2A,,-L,+(A,(1+L)+A,L)R,
G = ((bn - a,3) cosh My

2 . 2
- h’M.
+ Ay,LMRsech Mn+ (A, - A,) + (b + ) 1 = a) sinh” My
2 2
x (8L, (Ly + ML,) + 4A,L, M (1 + M sech My) +(butr” + by —a) cosh’ My
X ((b14 — y) 772

—6A, (A, - A,) +((bys — as;) cosh My
- - h M
x (L2 (1+ L)+ (L L, + Ly, (1+ L)) LM sech M), + (b = 1) 1+ biy = asg) cosh My

+8L (Ly, + L, M) M sech Mp)

by = —(a + L,.L;MR) M, +(bys + az) 71) sinh My
bs = — (2a,5 + 3a,,) M + 6BL°L,, M*sech’ My +((Big = @) 7" + by = ay,) cosh My — ay, cosh 2My
+6A, (A, - A,) L’L,,M*sech> My, — aysinh 2Mn — a5’ + Ly + by + s,
b= —2(ap +a;5) M G = ﬁ (coscth
+ 2% (LyL3 = LLy,M sech Mn) X (12a53M211 cosh My
—128M°LL L, M” sech My + 6ag; M sinh My + 4a,4 sinh 2Mn
+4(1, - A,) +9as,M sinh 3Mn)),
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L1
Y 43M°
X (432 sech My
X (—6a54M -M (ass +¢ + 3a54172))
— (81455 — 54M°
X (a48 - as, M + 4(149M2 - 112

x (3as — M* (2a,5 + 2a5,M

+a38112))))) cosh Mn

- M (112ay,,
+ M* (240a5, - 288a,,M
+72a27x112)) cosh 2Mn

+162a,,M* cosh 3Mp
+ Mn (1625138
- 108M°

X <a48 —as, M - 2:149M2

2
- (a38 + 3 a48M2))) sinh Mn

+24M?n (5ay;, + 12a5) M ) sinh 2M.
(A1)
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