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Antonio Francisco Roldán López de Hierro; afroldan@ujaen.es

Received 14 November 2013; Accepted 28 January 2014; Published 2 April 2014

Academic Editor: Calogero Vetro
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We collect, improve, and generalize very recent results due to Mongkolkeha et al. (2014) in three directions: firstly, we study g-
best proximity points; secondly, we employ more general test functions than can be found in that paper, which lets us prove best
proximity results using different kinds of control functions; thirdly, we introduce and handle a weak version of the P-property. Our
results can also be applied to the study of coincidence points between two mappings as a particular case. As a consequence, the
contractive condition we introduce is more general than was used in the mentioned paper.

1. Introduction

Fixed point theory is a branch of nonlinear analysis which has
attracted much attention in recent times due to its possible
applications. After the appearance of the pioneering Banach
contractive mapping principle in 1922, many mathematicians
have intensively investigated sufficient conditions to ensure
that certain contractive mappings have a fixed point. Some of
themost well-known generalizations are due to Zabrĕıko and
Krasnosel̆ı [1], Edelstein [2], Browder [3], and Caristi [4].

When a mapping from a metric space into itself has no
fixed points, it could be interesting to study the existence
and uniqueness of some points that minimize the distance
between an origin and its corresponding image.These points
are known as best proximity points and they were introduced
by Fan [5] and modified by Sadiq Basha in [6]. The study
of this kind of points and their properties has become one
of the newest branches of fixed point theory, and many
interesting results, generalizing the notion of fixed point, have
been presented. In fact, many theorems in fixed point theory
have been very useful so as to introduce their corresponding
extensions to this new field of study (see also [7–13] and
references therein).

On the other hand, in the past years, fixed point theorems
in partially ordered metric spaces have also attracted much
attention, especially after the works of Ran and Reurings
[14], Nieto and Rodŕıguez-López [15], Gnana Bhaskar and
Lakshmikantham [16], Berinde and Borcut [17, 18], Karapınar
and Berinde [19, 20], Berzig and Samet [21], and Roldán
et al. [22–24], among others. Their results were extended
to more general contractivity conditions in which altering
distance functions play a key role. Very recently, Alghamdi
and Karapınar [25] used a similar notion in 𝐺-metric spaces,
and Berzig andKarapınar [26] also considered amore general
kind of contractivity conditions using a pair of generalized
altering distance functions.

In order to consider a contractive condition on the whole
metric space that can be particularized to partially ordered
metric spaces, some advances have been done in recent
times (see, for instance, [25–27] and references therein). This
subject has been extended by Mongkolkeha et al. [28] to the
field of determining best proximity points, describing a wide
class of contractive mappings and using very general control
functions.Themain aim of this paper is to collect, generalize,
and improve their results using contractive conditions and
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control functions that can be particularized in a wide kind
of different results applicable to several frameworks.

2. Preliminaries

LetN = {0, 1, 2, . . .} denote the set of all nonnegative integers.
Throughout this paper, let (𝑋, 𝑑) be ametric space, let𝐴 and𝐵

two nonempty subsets of𝑋, and let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴,
and 𝛼 : 𝑋 × 𝑋 → [0,∞) be three mappings. Define

Δ
𝐴𝐵

= dist (𝐴, 𝐵) = inf ({𝑑 (𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}) ,

𝐴
0
= {𝑎 ∈ 𝐴 : ∃𝑏 ∈ 𝐵 such that 𝑑 (𝑎, 𝑏) = Δ

𝐴𝐵
} ,

𝐵
0
= {𝑏 ∈ 𝐵 : ∃𝑎 ∈ 𝐴 such that 𝑑 (𝑎, 𝑏) = Δ

𝐴𝐵
} .

(1)

Notice that, if 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 verify 𝑑(𝑎, 𝑏) = Δ
𝐴𝐵
, then

𝑎 ∈ 𝐴
0
and 𝑏 ∈ 𝐵

0
. Therefore, 𝐴

0
is nonempty if, and only

if, 𝐵
0
is nonempty. Thus, if 𝐴

0
is nonempty, then 𝐴, 𝐵, and

𝐵
0
are nonempty subsets of 𝑋. It is clear that, if 𝐴 ∩ 𝐵 ̸= 0,

then𝐴
0
is nonempty. In [29], the authors discussed sufficient

conditions in order to guarantee the nonemptiness of 𝐴
0
. In

general, if𝐴 and𝐵 are closed subsets of a normed linear space
such that Δ

𝐴𝐵
> 0, then 𝐴

0
is contained in the boundary of

𝐴 (see [6]).
The main aim of this paper is to study sufficient condi-

tions to ensure the existence and, in some cases, the unicity
of the following kind of points.

Definition 1. One will say a point 𝑥 ∈ 𝐴 is a 𝑔-best proximity
point of 𝑇 if 𝑑(𝑔𝑥, 𝑇𝑥) = Δ

𝐴𝐵
and 𝑥 is a best proximity point

of 𝑇 if 𝑑(𝑥, 𝑇𝑥) = Δ
𝐴𝐵
.

If 𝐴 = 𝐵, a 𝑔-best proximity point of 𝑇 is called a
coincidence point of 𝑇 and 𝑔 (i.e., 𝑇𝑥 = 𝑔𝑥), and if 𝑔 is
the identity mapping on 𝐴, then 𝑥 is a fixed point of 𝑇 (i.e.,
𝑇𝑥 = 𝑥).

We describe the families of functions that we will use
henceforth.

Definition 2. (i) One will denote by Ψ the family of all
functions 𝜑 : [0,∞) → [0,∞) such that, for all 𝑡 > 0,
the series∑

𝑛≥1
𝜑
𝑛
(𝑡) converges (functions inΨ are called (c)-

comparison functions).
(ii) One will denote by Φ the family of all functions 𝜙 :

[0,∞) → [0,∞) such that 𝜙(𝑡) < 𝑡 and lim
𝑟→ 𝑡
+𝜙(𝑟) < 𝑡 for

all 𝑡 > 0.
(iii) One will denote by Θ the family of all continuous

mappings 𝜃 : [0,∞)
4

→ [0,∞) such that 𝜃(𝑎, 𝑏, 𝑐, 𝑑) = 0 if
one or more arguments take the value zero (i.e., if 𝑎𝑏𝑐𝑑 = 0).

(iv) One will denote by Ω the family of all mappings 𝜃 :

[0,∞)
4

→ [0,∞) such that 𝜃(𝑎, 𝑏, 𝑐, 𝑑) = 0 if one or more
arguments take the value zero (i.e., if 𝑎𝑏𝑐𝑑 = 0).

(v) One will denote by Ω
󸀠 the family of all mappings 𝜃 :

[0,∞)
4

→ [0,∞) such that 𝜃(0, 𝑏, 𝑐, 𝑑) = 0.
(vi) One will denote by Ω

󸀠󸀠 the family of all mappings
𝜃 : [0,∞)

4
→ [0,∞) such that lim

𝑛→∞
𝜃(𝑡
1

𝑛
, 𝑡
2

𝑛
, 𝑡
3

𝑛
, 𝑡
4

𝑛
) =

0 whatever the sequences {𝑡
1

𝑛
}, {𝑡
2

𝑛
}, {𝑡
3

𝑛
}, {𝑡
4

𝑛
} ⊂ [0,∞) such

that, at least one of them, is convergent to zero (i.e., there
exists 𝑖 ∈ {1, 2, 3, 4} verifying {𝑡

𝑖

𝑛
} → 0).

Remark 3. (1) It is easy to see that, if 𝜑 ∈ Ψ, then 𝜑(𝑡) < 𝑡 for
all 𝑡 > 0.

(2) We point out that we do not impose any monotone
condition on the control function we will use.

(3) Clearly Θ ⊂ Ω ⊂ Ω
󸀠 and Θ ⊂ Ω ⊂ Ω

󸀠󸀠. Notice that
functions inΩ, Ω󸀠 andΩ

󸀠󸀠 have not to be continuous.

Example 4. Examples of functions inΘ are the following ones
(where 𝜆 > 0):

𝜃
1
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝜆𝑡

𝛽
1

1
𝑡
𝛽
2

2
𝑡
𝛽
3

3
𝑡
𝛽
4

4
, where 𝛽

1
, 𝛽
2
, 𝛽
3
, 𝛽
4
> 0;

𝜃
2
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝜆ln (1 + 𝑡

1
𝑡
2
𝑡
3
𝑡
4
)
𝛽
, where 𝛽 > 0;

𝜃
3
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝜆min (𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) .

(2)

The mappings of Φ have been very useful in the frame-
work of fixed point theory (see [30–32]). The following
lemma can be found in the literature but we recall it here for
the sake of completeness.

Lemma 5. Let 𝜙 ∈ Φ be a mapping and let {𝑎
𝑚
} ⊂ R+

0
be a

sequence. If 𝑎
𝑚+1

≤ 𝜙(𝑎
𝑚
) and 𝑎

𝑚
̸= 0 for all𝑚, then {𝑎

𝑚
} → 0.

In the following result, P
4
denotes the family of all

permutations 𝜎 : {1, 2, 3, 4} → {1, 2, 3, 4}.

Lemma 6. Given 𝜆 > 0 and 𝜃 ∈ Θ, define 𝜃
󸀠

𝜆
: [0,∞)

4
→

[0,∞) by

𝜃
󸀠

𝜆
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝜆max (𝜃 (𝑡

𝜎(1)
, 𝑡
𝜎(2)

, 𝑡
𝜎(3)

, 𝑡
𝜎(4)

) : 𝜎 ∈ P
4
)

∀𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
∈ [0,∞) .

(3)

Then 𝜃
󸀠

𝜆
∈ Θ and 𝜃

󸀠

𝜆
is symmetric. Furthermore, if 𝜆 ≥ 1, then

𝜃 ≤ 𝜃
󸀠

𝜆
.

Definition 7. IfR is a binary relation on𝑋, one will consider
the mapping 𝛼R : 𝑋×𝑋 → [0,∞) given, for all 𝑥, 𝑦 ∈ 𝑋, by

𝛼R (𝑥, 𝑦) = {
1, if 𝑥R𝑦,

0, otherwise.
(4)

Definition 8. A preorder (or a quasiorder) ≼ on 𝑋 is a binary
relation on 𝑋 that is reflexive (i.e., 𝑥 ≼ 𝑥 for all 𝑥 ∈ 𝑋) and
transitive (if 𝑥, 𝑦, 𝑧 ∈ 𝑋 verify 𝑥 ≼ 𝑦 and 𝑦 ≼ 𝑧, then 𝑥 ≼ 𝑧).
In such a case, we say that (𝑋, ≼) is a preordered space (or a
preordered set). If a preorder ≼ is also antisymmetric (𝑥 ≼ 𝑦

and 𝑦 ≼ 𝑥 implies 𝑥 = 𝑦), then ≼ is called a partial order.

Definition 9 (Raj [33]). Let𝐴 and𝐵 be two subsets of ametric
space (𝑋, 𝑑) such that 𝐴

0
is nonempty. We say that the pair

(𝐴, 𝐵) has the P-property if

𝑎
1
, 𝑎
2
∈ 𝐴
0
, 𝑏
2
, 𝑏
2
∈ 𝐵
0

𝑑 (𝑎
1
, 𝑏
1
) = Δ

𝐴𝐵

𝑑 (𝑎
2
, 𝑏
2
) = Δ

𝐴𝐵

}

}

}

󳨐⇒ 𝑑 (𝑎
1
, 𝑎
2
) = 𝑑 (𝑏

1
, 𝑏
2
) .

(5)
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In [28], the authors introduced the following find of
contractive mappings and succeed in proving the following
result.

Definition 10 (Mongkolkeha et al. [28], Definition 3.1). Let
𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋, 𝑑). A
mapping 𝑇 : 𝐴 → 𝐵 is said to be a generalized almost (𝜑, 𝜃)

𝛼

contraction if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑀 (𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑦, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑥, 𝑇𝑦)

− Δ
𝐴𝐵

, 𝑑 (𝑥, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑦, 𝑇𝑦) − 𝐴𝐵) ,

(6)

for all 𝑥, 𝑦 ∈ 𝐴, where 𝛼 : 𝐴 × 𝐴 → [0,∞), 𝜑 ∈ Ψ, 𝜃 ∈ Θ,
and

𝑀(𝑥, 𝑦) = max(𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑦, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2
− Δ
𝐴𝐵

) .

(7)

Theorem 11 (Mongkolkeha et al. [28], Theorem 3.2). Let 𝐴
and 𝐵 be nonempty closed subsets of a complete metric space
𝑋 such that 𝐴

0
is nonempty and the pair (𝐴, 𝐵) has the 𝑃-

property. Let 𝑇 : 𝐴 → 𝐵 satisfy the following conditions:

(a) 𝑇 is an 𝛼-proximal admissible and generalized almost
(𝜑, 𝜃)
𝛼
-contraction;

(b) 𝑇 is continuous;
(c) there exist elements 𝑥

0
, 𝑥
1
∈ 𝐴
0
such that 𝑑(𝑥

1
, 𝑇𝑥
0
) =

Δ
𝐴𝐵

and 𝛼(𝑥
0
, 𝑥
1
) ≥ 1;

(d) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = Δ
𝐴𝐵

. (8)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
, (9)

converges to the element 𝑥.

3. Existence of 𝑔-Best Proximity Points under
Different Conditions

The main aim of this paper is to study the following kind of
mappings and to ensure that, under some conditions, they
have a 𝑔-best proximity point.

Definition 12. Let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, 𝜑 : [0,∞) →

[0,∞), 𝜃 : [0,∞)
4

→ [0,∞), and 𝛼 : 𝑋 × 𝑋 →

[0,∞) be five mappings. One will say that 𝑇 is a (𝜑, 𝜃, 𝛼, 𝑔)-
contraction if, for all 𝑥, 𝑦 ∈ 𝐴

0
such that 𝑑(𝑔𝑦, 𝑇𝑥) = Δ

𝐴𝐵

and 𝛼(𝑔𝑥, 𝑔𝑦) ≥ 1, we have that

𝛼 (𝑔𝑥, 𝑔𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑔𝑦, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑦, 𝑇𝑦) − Δ
𝐴𝐵

) ,

(10)

where

𝑀
𝑔
(𝑥, 𝑦)

= max(𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑦, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑦) + 𝑑 (𝑔𝑦, 𝑇𝑥)

2
− Δ
𝐴𝐵

) .

(11)

In the previous definition, we have not supposed that 𝜑 ∈

Ψ or 𝜃 ∈ Θ because the main aim of the present paper is to
introduce sufficient conditions on the involved mappings (𝜑,
𝜃, 𝛼, and 𝑔) and on the ambient space to ensure the existence
and, in some cases, the unicity of 𝑔-best proximity points of
𝑇.

Remark 13. (1) Some other authors used to impose that their
contractive condition must be verified for all 𝑥, 𝑦 ∈ 𝐴.
However, our condition (10) must only be satisfied for all
𝑥, 𝑦 ∈ 𝐴

0
. Later, we will discuss when it is necessary to

assume that this property holds for all 𝑥, 𝑦 ∈ 𝐴.
(2) The mapping 𝜃 need not be symmetric. However, if

𝜃 ∈ Θ and 𝑇 is a (𝜑, 𝜃, 𝛼, 𝑔)-contraction, then 𝑇 is also a
(𝜑, 𝜃
󸀠

1
, 𝛼, 𝑔)-contraction, where 𝜃

󸀠

1
is defined as in Lemma 6.

In such a case, when 𝜃 ∈ Θ, without loss of generality, we can
consider that 𝜃 is symmetric; that is, in this case, the order of
the arguments of 𝜃 in (10) is not important.

The following definitions are very useful in order to
establish weaker conditions than the 𝑃-property (see also
[34]) or the notion of 𝛼-proximal admissible mapping.

Definition 14. Let 𝐴 and 𝐵 be two subsets of a metric space
(𝑋, 𝑑) such that 𝐴

0
is nonempty, and let 𝑇 : 𝐴 → 𝐵 and

𝑔 : 𝐴 → 𝐴 be twomappings. Onewill say that the quadruple
(𝐴, 𝐵, 𝑇, 𝑔) has the following:

(i) the weak 𝑃-property of the first kind if

𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
∈ 𝐴
0

𝑑 (𝑔𝑎
1
, 𝑇𝑎
3
) = Δ

𝐴𝐵

𝑑 (𝑔𝑎
2
, 𝑇𝑎
4
) = Δ

𝐴𝐵

}

}

}

󳨐⇒ 𝑑 (𝑔𝑎
1
, 𝑔𝑎
2
) ≤ 𝑑 (𝑇𝑎

3
, 𝑇𝑎
4
) ;

(12)
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(ii) the weak 𝑃-property of the second kind if

𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
∈ 𝐴
0

𝑑 (𝑔𝑎
1
, 𝑇𝑎
3
) = Δ

𝐴𝐵

𝑑 (𝑔𝑎
2
, 𝑇𝑎
4
) = Δ

𝐴𝐵

}

}

}

󳨐⇒ 𝑑 (𝑔𝑎
1
, 𝑔𝑎
2
) = 𝑑 (𝑇𝑎

3
, 𝑇𝑎
4
) ;

(13)

(iii) the weak 𝑃-property of the third kind if

𝑎
1
, 𝑎
2
∈ 𝐴, 𝑏

1
, 𝑏
2
∈ 𝐵

𝑑 (𝑔𝑎
1
, 𝑏
1
) = Δ

𝐴𝐵

𝑑 (𝑔𝑎
2
, 𝑏
2
) = Δ

𝐴𝐵

}

}

}

󳨐⇒ 𝑑 (𝑔𝑎
1
, 𝑔𝑎
2
) ≤ 𝑑 (𝑏

1
, 𝑏
2
) .

(14)

Lemma 15. If the pair (𝐴, 𝐵) has the 𝑃-property, then the
quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak 𝑃-property of the first, the
second, and the third kind, whatever the mappings 𝑇 : 𝐴 → 𝐵

and 𝑔 : 𝐴 → 𝐴.

Remark 16. Obviously, if (𝑋, 𝑑) is a metric space, then the
pair (𝑋,𝑋) has the 𝑃-property. Therefore, the quadruple
(𝑋,𝑋, 𝑇, 𝑔) has the weak 𝑃-property of the first, the second,
and the third kinds whatever the mappings 𝑇 : 𝐴 → 𝐵 and
𝑔 : 𝐴 → 𝐴.

Definition 17. Let 𝐴 and 𝐵 be two subsets of a metric space
(𝑋, 𝑑) such that 𝐴

0
is nonempty, and let 𝑇 : 𝐴 → 𝐵, 𝑔 :

𝐴 → 𝐴, and 𝛼 : 𝑋 × 𝑋 → [0,∞) be three mappings. One
will say that 𝑇 is (𝛼, 𝑔)-proximal admissible if

𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
∈ 𝐴
0

𝛼 (𝑔𝑏
1
, 𝑔𝑏
2
) ≥ 1

𝑑 (𝑔𝑎
1
, 𝑇𝑏
1
) = Δ

𝐴𝐵

𝑑 (𝑔𝑎
2
, 𝑇𝑏
2
) = Δ

𝐴𝐵

}}}

}}}

}

󳨐⇒ 𝛼 (𝑔𝑎
1
, 𝑔𝑎
2
) ≥ 1. (15)

Lemma 18. If 𝑇 is 𝛼-proximal admissible, then 𝑇 is (𝛼, 𝑔)-
proximal admissible, whatever 𝑔 : 𝐴 → 𝐴.

Definition 19. Let 𝑔 : 𝐴 → 𝐴 and 𝛼 : 𝑋 × 𝑋 → [0,∞) be
two mappings and let𝑁 ∈ N and𝑁 ≥ 2. We will say that 𝛼 is
(𝑁, 𝑔)-transitive on 𝐴

0
if

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁+1
∈ 𝐴
0

𝛼 (𝑔𝑥
𝑖
, 𝑔𝑥
𝑖+1

) ≥ 1, ∀𝑖 ∈ {1, 2, . . . , 𝑁}

⇓

𝛼 (𝑔𝑥
1
, 𝑔𝑥
𝑁+1

) ≥ 1.

(16)

Indeed, one will only use the notion of (2, 𝑔)-transitive
mapping on 𝐴

0
; that is,

𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴
0

𝛼 (𝑔𝑥
1
, 𝑔𝑥
2
) ≥ 1

𝛼 (𝑔𝑥
2
, 𝑔𝑥
3
) ≥ 1

}

}

}

󳨐⇒ 𝛼 (𝑔𝑥
1
, 𝑔𝑥
3
) ≥ 1. (17)

Next we prove our first main result.

Theorem 20. Let 𝐴 and 𝐵 be two closed subsets of a complete
metric space (𝑋, 𝑑) and let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, 𝜑 :

[0,∞) → [0,∞), 𝜃 : [0,∞)
4

→ [0,∞), and 𝛼 : 𝑋 × 𝑋 →

[0,∞) be five mappings. Assume that the following conditions
hold:

(a) 0 ̸=𝐴
0
⊆ 𝑔𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(b) the quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak 𝑃-property of
the first kind;

(c) 𝑇 is a (𝛼, 𝑔)-proximal admissible (𝜑, 𝜃, 𝛼, 𝑔)-
contraction;

(d) if {𝑧
𝑛
} ⊆ 𝐴

0
is a sequence such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is

Cauchy, then {𝑧
𝑛
} also is Cauchy;

(e) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴
0
×𝐴
0
such that 𝑑(𝑔𝑥

1
, 𝑇𝑥
0
) =

Δ
𝐴𝐵

and 𝛼(𝑔𝑥
0
, 𝑔𝑥
1
) ≥ 1;

(f) 𝑔 is a continuous mapping;
(g) 𝑇 is a continuous mapping;
(h) 𝜑 ∈ Ψ and 𝜃 ∈ Ω

󸀠.

Then there exists a convergent sequence {𝑥
𝑛
}
𝑛≥0

⊆ 𝐴
0

verifying

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
∀𝑛 ≥ 0, (18)

whose limit is a 𝑔-best proximity point of 𝑇.
Actually, every sequence {𝑥

𝑛
}
𝑛≥0

⊆ 𝐴
0
verifying (18) and

𝛼(𝑔𝑥
0
, 𝑔𝑥
1
) ≥ 1 converges to a 𝑔-best proximity point of 𝑇.

Remark 21. (1) Although the previous result seems to have
too many hypotheses, actually, this is its best advantage. As
we will see in Section 5, there are a lot of different ways to
particularize this theoremwhich generate many independent
results. For instance, our control functions do not need any
kind of monotone property.

(2) This result improves the main theorem in [28] in
several aspects: firstly, we introduce a mapping 𝑔 : 𝐴 → 𝐴

which is not necessarily the identity mapping on𝐴; secondly,
(𝐴, 𝐵) need not have the 𝑃-property; thirdly, the contractive
condition on 𝑇 is weaker; finally, we only suppose 𝜃 ∈ Ω

󸀠;
that is, 𝜃 is not necessarily continuous.

(3) Taking into account the completeness of the ambient
space𝑋, the condition (d) can be interpreted as the continuity
of the inverse mapping of 𝑔, if 𝑔 is invertible. A simple way to
guarantee this condition is to suppose that there are 𝜆, 𝑛 > 0

such that 𝑑(𝑥, 𝑦) ≤ 𝜆𝑑(𝑔𝑥, 𝑔𝑦)
𝑛 for all 𝑥, 𝑦 ∈ 𝐴. For instance,

the condition 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑔𝑥, 𝑔𝑦) for all 𝑥, 𝑦 ∈ 𝐴 can be
found in [35].

(4) Notice that the second part of the thesis does not
clarify whether the 𝑔-best proximity point of 𝑇 is unique or
not.

Proof. Given 𝑥
1

∈ 𝐴
0
, we know that 𝑇𝑥

1
∈ 𝑇(𝐴

0
) ⊆ 𝐵

0
.

Then, there is 𝑧
2
∈ 𝐴 such that 𝑑(𝑧

2
, 𝑇𝑥
1
) = Δ

𝐴𝐵
. Therefore,

𝑧
2
∈ 𝐴
0
. Since 𝐴

0
⊆ 𝑔𝐴

0
, there is 𝑥

2
∈ 𝐴
0
such that 𝑔𝑥

2
=

𝑧
1
, so 𝑑(𝑔𝑥

2
, 𝑇𝑥
1
) = 𝑑(𝑧

2
, 𝑇𝑥
1
) = Δ

𝐴𝐵
. Repeating the same

argument starting from 𝑥
2
∈ 𝐴
0
, there is 𝑥

3
∈ 𝐴
0
such that

𝑑(𝑔𝑥
3
, 𝑇𝑥
2
) = Δ

𝐴𝐵
. By induction, we can consider a sequence

{𝑥
𝑛
} ⊆ 𝐴

0
such that

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
∀𝑛 ≥ 0. (19)

If there exists some 𝑛
0

∈ N such that 𝑔𝑥
𝑛
0

= 𝑔𝑥
𝑛
0
+1
, then

𝑑(𝑔𝑥
𝑛
0

, 𝑇𝑥
𝑛
0

) = 𝑑(𝑔𝑥
𝑛
0
+1

, 𝑇𝑥
𝑛
0

) = Δ
𝐴𝐵
, so 𝑥

𝑛
0

is a 𝑔-best
proximity point of 𝑇. In such a case, if we define 𝑥

𝑚
= 𝑥
𝑛
0

for
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all𝑚 ≥ 𝑛
0
, we have that {𝑥

𝑛
}
𝑛≥𝑛
0

is constant, so {𝑥
𝑛
} converges

to a 𝑔-best proximity point of 𝑇. In this case, the proof is
finished.

On the contrary, suppose that

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) > 0 ∀𝑛 ≥ 0. (20)

Notice that, in particular, 𝑥
𝑛
, 𝑔𝑥
𝑛+1

∈ 𝐴
0
and 𝑇𝑥

𝑛
∈ 𝐵
0
for all

𝑛 ≥ 0. We claim that

𝛼 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≥ 1 ∀𝑛 ≥ 0. (21)

If 𝑛 = 0, then 𝛼(𝑔𝑥
0
, 𝑔𝑥
1
) ≥ 1 by hypothesis. Suppose that

𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≥ 1 for some 𝑛 ≥ 0. Hence, taking into account
that 𝑇 is (𝛼, 𝑔)-proximal admissible, we have that

𝑥
𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

∈ 𝐴
0

𝛼 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≥ 1

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵

𝑑 (𝑔𝑥
𝑛+2

, 𝑇𝑥
𝑛+1

) = Δ
𝐴𝐵

}}}

}}}

}

󳨐⇒ 𝛼 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) ≥ 1. (22)

This proves that (21) holds. Moreover, using the weak 𝑃-
property of the first kind, for all 𝑛 ≥ 0,

𝑥
𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

∈ 𝐴
0

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵

𝑑 (𝑔𝑥
𝑛+2

, 𝑇𝑥
𝑛+1

) = Δ
𝐴𝐵

⇓

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) ≤ 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

) .

(23)

Next we use (21), (23), and the (𝜑, 𝜃, 𝛼, 𝑔)-contractive prop-
erty of 𝑇 to see that, for all 𝑛 ≥ 0,

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) ≤ 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)

≤ 𝛼 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)

≤ 𝜑 (𝑀
𝑔
(𝑥
𝑛
, 𝑥
𝑛+1

))

+ 𝜃 (𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) − Δ

𝐴𝐵
,

𝑑 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛+1

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛
)

−Δ
𝐴𝐵

, 𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛+1

) − Δ
𝐴𝐵

)

= 𝜑 (𝑀
𝑔
(𝑥
𝑛
, 𝑥
𝑛+1

))

(24)

(the last equality holds since the first argument of 𝜃 is zero),
where

𝑀
𝑔
(𝑥
𝑛
, 𝑥
𝑛+1

)

= max(𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛
) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛+1

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛+1

) + 𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
)

2
− Δ
𝐴𝐵

)

≤ max (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

)

+ 𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) + 𝑑 (𝑔𝑥
𝑛+2

, 𝑇𝑥
𝑛+1

) − Δ
𝐴𝐵

,

((𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) + 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

)

+ 𝑑 (𝑔𝑥
𝑛+2

, 𝑇𝑥
𝑛+1

)

+𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
)) ×2
−1

) − Δ
𝐴𝐵

)

= max (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) + Δ
𝐴𝐵

− Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) + Δ
𝐴𝐵

− Δ
𝐴𝐵

,

((𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) + 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

)

+Δ
𝐴𝐵

+ Δ
𝐴𝐵

) × 2
−1

) − Δ
𝐴𝐵

)

= max (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) ,

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) + 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

)

2
)

= max (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

)) .

(25)

Joining (24) and (25), we have that

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

)

≤ 𝜑 (max (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

))) ∀𝑛 ≥ 0.

(26)

Using (20) and the fact that 𝜑(𝑡) < 𝑡 for all 𝑡 > 0, if there exists
some 𝑛

0
∈ N such that

max (𝑑 (𝑔𝑥
𝑛
0

, 𝑔𝑥
𝑛
0
+1

) , 𝑑 (𝑔𝑥
𝑛
0
+1

, 𝑔𝑥
𝑛
0
+2

))

= 𝑑 (𝑔𝑥
𝑛
0
+1

, 𝑔𝑥
𝑛
0
+2

) ,

(27)

then we have that 𝑑(𝑔𝑥
𝑛
0
+1

, 𝑔𝑥
𝑛
0
+2

) ≤ 𝜑(𝑑(𝑔𝑥
𝑛
0
+1

, 𝑔𝑥
𝑛
0
+2

)) <

𝑑(𝑔𝑥
𝑛
0
+1

, 𝑔𝑥
𝑛
0
+2

), which is impossible. Then max(𝑑(𝑔𝑥
𝑛
,

𝑔𝑥
𝑛+1

), 𝑑(𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

)) = 𝑑(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) for all 𝑛 ≥ 0 and
(26) yields to

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) ≤ 𝜑 (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

)) ∀𝑛 ≥ 0. (28)
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In particular, for all 𝑛 ≥ 1,

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≤ 𝜑 (𝑑 (𝑔𝑥
𝑛−1

, 𝑔𝑥
𝑛
))

≤ 𝜑
2
(𝑑 (𝑔𝑥

𝑛−2
, 𝑔𝑥
𝑛−1

))

≤ ⋅ ⋅ ⋅ ≤ 𝜑
𝑛
(𝑑 (𝑔𝑥

0
, 𝑔𝑥
1
)) .

(29)

Next we prove that {𝑔𝑥
𝑛
} is a Cauchy sequence. Fix 𝜀 > 0

arbitrary and consider 𝑡
0
= 𝑑(𝑔𝑥

0
, 𝑔𝑥
1
) > 0. Since 𝜑 ∈ Ψ, the

series ∑
𝑛≥1

𝜑
𝑛
(𝑡
0
) converges. In particular, there exists 𝑚

0
∈

N such that
∞

∑

𝑘=𝑚
0

𝜑
𝑛
(𝑡
0
) < 𝜀. (30)

Therefore, if 𝑚 > 𝑛 ≥ 𝑚
0
, we have that

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑚
) ≤

𝑚−1

∑

𝑘=𝑛

𝑑 (𝑔𝑥
𝑘
, 𝑔𝑥
𝑘+1

)

≤

𝑚−1

∑

𝑘=𝑛

𝜑
𝑘
(𝑑 (𝑔𝑥

0
, 𝑔𝑥
1
))

≤

∞

∑

𝑘=𝑚
0

𝜑
𝑛
(𝑡
0
) < 𝜀.

(31)

This means that {𝑔𝑥
𝑛
} is a Cauchy sequence. Using the

hypothesis (d), {𝑥
𝑛
} also is a Cauchy sequence. By the

completeness of (𝑋, 𝑑), there exists 𝑧 ∈ 𝑋 such that {𝑥
𝑛
} →

𝑧. From 𝑥
𝑛

∈ 𝐴
0

⊆ 𝐴 for all 𝑛, we deduce that 𝑧 ∈ 𝐴

(because𝐴 is closed). Since𝑇 and𝑔 are continuousmappings,
{𝑇𝑥
𝑛
} → 𝑇𝑧 and {𝑔𝑥

𝑛
} → 𝑔𝑧. Taking limit in (19) as

𝑛 → ∞, we conclude that 𝑧 is a 𝑔-best proximity point of
𝑇.

Next we change the conditions on the control functions.

Theorem 22. Theorem 20 also holds if one replaces condition
(h) by the following one:

(ℎ
󸀠
) 𝜑 ∈ Φ, 𝜃 ∈ Ω

󸀠󸀠, and 𝛼 is (2, 𝑔)-transitive.

Proof. Taking into account that 𝜑(𝑡) < 𝑡 for all 𝑡 > 0 and
following the lines of the proof ofTheorem 20, we deduce that

𝑥
𝑛
∈ 𝐴
0
, 𝑑 (𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
,

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) > 0, 𝛼 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≥ 1,

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛+2

) ≤ 𝜑 (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

))

∀𝑛 ≥ 0.

(32)

By Lemma 5, we have that

{𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

)} 󳨀→ 0. (33)

Next, we are going to prove that {𝑔𝑥
𝑛
} is a Cauchy sequence

reasoning by contradiction. Assume that {𝑔𝑥
𝑛
} is not Cauchy.

In this case (following, for instance, [27]), there exist 𝜀
0

>

0 and two subsequences {𝑥
𝑚(𝑘)

}
𝑘∈N and {𝑥

𝑛(𝑘)
}
𝑘∈N verifying

that, for all 𝑘 ∈ N,

𝑘 ≤ 𝑚 (𝑘) < 𝑛 (𝑘) ,

𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑛(𝑘)

) > 𝜀
0
,

𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑝
) ≤ 𝜀
0

∀𝑝 ∈ {𝑚 (𝑘) + 1,𝑚 (𝑘) + 2, . . . , 𝑛 (𝑘) − 2, 𝑛 (𝑘) − 1} ,

lim
𝑘→∞

𝑑 (𝑔𝑥
𝑚(𝑘)−1

, 𝑔𝑥
𝑛(𝑘)−1

) = 𝜀
0
,

lim
𝑘→∞

𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑛(𝑘)+𝑝

) = 𝜀
0

∀𝑝 ≥ 0.

(34)

Notice that

0 ≤ 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

≤ 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

= 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥
𝑛(𝑘)+1

) .

(35)

Therefore

lim
𝑘→∞

[𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

] = 0. (36)

Similarly,

lim
𝑘→∞

[𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑚(𝑘)

) − Δ
𝐴𝐵

] = 0. (37)

Furthermore,

𝜀
0
< 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)

) ≤ 𝑀
𝑔
(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ∀𝑘 ≥ 0, (38)

where, for all 𝑘 ≥ 0,

𝑀
𝑔
(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)

= max(𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑛(𝑘)

) , 𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑚(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) + 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑚(𝑘)

)

2
− Δ
𝐴𝐵

) .

(39)
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Notice that

𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) + 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑚(𝑘)

)

2
− Δ
𝐴𝐵

≤ ( (𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

)

+ 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑔𝑥
𝑚(𝑘)+1

, 𝑇𝑥
𝑚(𝑘)

))

× 2
−1

) − Δ
𝐴𝐵

= ( (𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑛(𝑘)+1

) + Δ
𝐴𝐵

+𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥
𝑚(𝑘)+1

) + Δ
𝐴𝐵

) × 2
−1

) − Δ
𝐴𝐵

=
𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥
𝑚(𝑘)+1

)

2
.

(40)

Taking limit as 𝑘 → ∞ and using (34),

lim
𝑘→∞

(
𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) + 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑚(𝑘)

)

2
− Δ
𝐴𝐵

)

≤
𝜀
0
+ 𝜀
0

2
= 𝜀
0
.

(41)

Taking limit as 𝑘 → ∞ in (39) and using (34), (36), (37), and
(41), we deduce that

lim
𝑘→∞

𝑀
𝑔
(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = max (𝜀
0
, 0, 0, 𝜀

0
) = 𝜀
0
. (42)

This means that {𝑀
𝑔
(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)}
𝑘∈N is a sequence of real

numbers converging to 𝜀
0
andwhose terms are strictly greater

than 𝜀
0
. In particular, since 𝜑 ∈ Φ,

lim
𝑘→∞

𝜑 (𝑀
𝑔
(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)) = lim
𝑡→ 𝜀
+

0

𝜑 (𝑡) < 𝜀
0
. (43)

From the fact that 𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≥ 1 for all 𝑛 ≥ 0 and using
that 𝛼 is (2, 𝑔)-transitive, we deduce that

𝛼 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑛(𝑘)

) ≥ 1 ∀𝑘 ≥ 0. (44)

Since (𝐴, 𝐵, 𝑇, 𝑔) has the weak𝑃-property of the first kind, for
all 𝑘 ≥ 0,

𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

∈ 𝐴
0

𝑑 (𝑔𝑥
𝑚(𝑘)+1

, 𝑇𝑥
𝑚(𝑘)

) = Δ
𝐴𝐵

𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

) = Δ
𝐴𝐵

⇓

𝑑 (𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑛(𝑘)+1

) ≤ 𝑑 (𝑇𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) .

(45)

Therefore, from the (𝜑, 𝜃, 𝛼, 𝑔)-contractivity condition on 𝑇,
it follows that, for all 𝑘 ≥ 0,

𝑑 (𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑛(𝑘)+1

) ≤ 𝑑 (𝑇𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

)

≤ 𝛼 (𝑇𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) 𝑑 (𝑇𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

)

≤ 𝜑 (𝑀
𝑔
(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

))

+ 𝜃 (𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑚(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑚(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

) .

(46)

Using (36), the third and the fourth arguments of 𝜃 converge
to zero as 𝑘 → ∞. Since 𝜃 ∈ Ω

󸀠󸀠, all the terms tend to zero as
𝑘 → ∞. Hence, letting 𝑘 → ∞ in (46) and using (34) and
(43), we conclude that

𝜀
0
= lim
𝑘→∞

𝑑 (𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑛(𝑘)+1

)

≤ lim
𝑘→∞

𝜑 (𝑀
𝑔
(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)) < 𝜀
0
,

(47)

which is impossible. This contradiction proves that {𝑔𝑥
𝑛
} is a

Cauchy sequence. Then, the rest of the proof is similar to the
proof of Theorem 20.

In the following theorem, we replace the continuity of 𝑇
by another condition.

Theorem 23. Theorem 20 also holds if one supposes that the
contractive condition (10) is valid for all 𝑥 ∈ 𝐴

0
and all 𝑦 ∈ 𝐴,

and one replaces conditions (𝑏) and (𝑔) by the following ones:

(𝑏
󸀠
) the quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak P-property of
the second kind;

(𝑔
󸀠
) If {𝑥

𝑛
} ⊆ 𝐴

0
is a sequence verifying {𝑥

𝑛
} → 𝑥 ∈ 𝐴

and 𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≥ 1 for all 𝑛 ≥ 0, then there
exists a partial subsequence {𝑥

𝑛(𝑘)
} of {𝑥

𝑛
} such that

𝛼(𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥) ≥ 1 for all 𝑘 ≥ 0.

Proof. Following the lines of the proof of Theorem 20, we
deduce that {𝑔𝑥

𝑛
} and {𝑥

𝑛
} are Cauchy sequences, contained

in the closed subset 𝐴, of the complete metric space (𝑋, 𝑑).
Then, there is 𝑥 ∈ 𝐴 such that {𝑥

𝑛
} → 𝑥 and, using that 𝑔 is

continuous, {𝑔𝑥
𝑛
} → 𝑔𝑥. We are going to prove that 𝑥 is a

𝑔-best proximity point of 𝑇.
Since (𝐴, 𝐵, 𝑇, 𝑔) has the weak 𝑃-property of the second

kind, for all 𝑛,𝑚 ∈ N,

𝑥
𝑚
, 𝑥
𝑚+1

, 𝑥
𝑛
, 𝑥
𝑛+1

∈ 𝐴
0

𝑑 (𝑔𝑥
𝑚+1

, 𝑇𝑥
𝑚
) = Δ

𝐴𝐵

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵

⇓

𝑑 (𝑔𝑥
𝑚+1

, 𝑔𝑥
𝑛+1

) = 𝑑 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑛
) .

(48)
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It follows that {𝑇𝑥
𝑛
} is also a Cauchy sequence in the closed

subset 𝐵. Hence, there is 𝑧 ∈ 𝐵 such that {𝑇𝑥
𝑛
} → 𝑧. This

means that

{𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥)} 󳨀→ 0, {𝑑 (𝑇𝑥

𝑛
, 𝑧)} 󳨀→ 0. (49)

Since 𝑑(𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
for all 𝑛 ≥ 0, we deduce that

𝑑 (𝑔𝑥, 𝑧) = Δ
𝐴𝐵

; (50)

that is, 𝑔𝑥 ∈ 𝐴
0
and 𝑧 ∈ 𝐵

0
. Using condition (g󸀠), we deduce

that there exists a partial subsequence {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that

𝛼 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥) ≥ 1 ∀𝑘 ≥ 0. (51)

Notice that

0 ≤ 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

≤ 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥
𝑛(𝑘)+1

)

+ 𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

= 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥
𝑛(𝑘)+1

) .

(52)

Therefore

lim
𝑘→∞

[𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

] = 0. (53)

The first and the second arguments of

𝑀
𝑔
(𝑥
𝑛(𝑘)

, 𝑥)

= max(𝑑 (𝑔𝑥, 𝑔𝑥
𝑛(𝑘)

) , 𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥) + 𝑑 (𝑔𝑥, 𝑇𝑥
𝑛(𝑘)

)

2
− Δ
𝐴𝐵

)

(54)

tend to zero, and the last argument tends to

lim
𝑘→∞

(
𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥) + 𝑑 (𝑔𝑥, 𝑇𝑥
𝑛(𝑘)

)

2
− Δ
𝐴𝐵

)

≤ lim
𝑘→∞

(( (𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥) + 𝑑 (𝑔𝑥, 𝑔𝑥
𝑛(𝑘)+1

)

+ 𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

)) × 2
−1

) −Δ
𝐴𝐵

)

= lim
𝑘→∞

(
𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥) + 𝑑 (𝑔𝑥, 𝑔𝑥
𝑛(𝑘)+1

) + Δ
𝐴𝐵

2
− Δ
𝐴𝐵

)

=
𝑑 (𝑔𝑥, 𝑇𝑥) + 0 + Δ

𝐴𝐵

2
− Δ
𝐴𝐵

=
𝑑 (𝑔𝑥, 𝑇𝑥) − Δ

𝐴𝐵

2
.

(55)

Therefore,

lim
𝑘→∞

𝑀
𝑔
(𝑥
𝑛(𝑘)

, 𝑥) = 𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

. (56)

Next we are going to show that𝑥 is a𝑔-best proximity point of
𝑇 reasoning by contradiction. Suppose that 𝑑(𝑔𝑥, 𝑇𝑥) ̸= Δ

𝐴𝐵
;

that is,

𝑡
0
= 𝑑 (𝑔𝑥, 𝑇𝑥) − Δ

𝐴𝐵
> 0. (57)

Since the first and the second terms in the maximum in (54)
tend to zero, and the fourth term tends to 𝑡

0
/2, then there

exists 𝑘
0
∈ N such that

𝑀
𝑔
(𝑥
𝑛(𝑘)

, 𝑥) = 𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

= 𝑡
0
> 0 ∀𝑘 ≥ 𝑘

0
. (58)

Using the contractivity condition (notice that 𝑥
𝑛(𝑘)

∈ 𝐴
0
but

𝑥 ∈ 𝐴), for all 𝑘 ≥ 𝑘
0
,

𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥) ≤ 𝛼 (𝑔𝑥
𝑛(𝑘)

, 𝑔𝑥) 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥)

≤ 𝜑 (𝑀
𝑔
(𝑥
𝑛(𝑘)

, 𝑥))

+ 𝜃 (𝑑 (𝑔𝑥, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

)

= 𝜑 (𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

)

+ 𝜃 (𝑑 (𝑔𝑥, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

) .

(59)

Since the third argument of 𝜃 in (59) tends to zero and 𝜃 ∈ Ω
󸀠󸀠,

its limit as 𝑘 → ∞ is zero.Therefore, letting 𝑘 → ∞ in (59),
we have that

𝑑 (𝑧, 𝑇𝑥) = lim
𝑘→∞

𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥) ≤ 𝜑 (𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

) .

(60)

As 𝑑(𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

> 0, item (1) of Remark 13 guarantees
that 𝜑(𝑑(𝑔𝑥, 𝑇𝑥) − Δ

𝐴𝐵
) < 𝑑(𝑔𝑥, 𝑇𝑥) − Δ

𝐴𝐵
. Thus,

𝑑 (𝑧, 𝑇𝑥) ≤ 𝜑 (𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

)

< 𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

≤ 𝑑 (𝑔𝑥, 𝑧) + 𝑑 (𝑧, 𝑇𝑥) − Δ
𝐴𝐵

≤ Δ
𝐴𝐵

+ 𝑑 (𝑧, 𝑇𝑥) − Δ
𝐴𝐵

= 𝑑 (𝑧, 𝑇𝑥) ,

(61)

which is impossible. This contradiction shows that 𝑥 must
verify 𝑑(𝑔𝑥, 𝑇𝑥) = Δ

𝐴𝐵
; that is, 𝑥 is a 𝑔-best proximity point

of 𝑇.
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Remark 24. When 𝛼 is (2, 𝑔)-transitive, condition (𝑔
󸀠
) is

equivalent to the following one.

(𝑔
󸀠󸀠
) If {𝑥

𝑛
} ⊆ 𝐴

0
is a sequence verifying {𝑥

𝑛
} → 𝑥 ∈ 𝐴

0

and 𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≥ 1 for all 𝑛 ≥ 0, then 𝛼(𝑔𝑥
𝑛
, 𝑔𝑥) ≥

1 for all 𝑛 ≥ 0.

Remark 25. Notice that, following the same sketch of proof
with appropriate changes,Theorem23 remains true under the
hypothesis of Theorem 22.

4. Uniqueness of 𝑔-Best Proximity Points

In this section, we introduce a sufficient condition in order to
demonstrate that the 𝑔-best proximity point, whose existence
is guaranteed by the previous results, is unique.

Definition 26. Let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, and 𝛼 : 𝑋 ×

𝑋 → [0,∞) be three mappings. One will say that 𝑇 is (𝛼, 𝑔)-
regular if, for all 𝑥, 𝑦 ∈ 𝐴

0
such that 𝛼(𝑔𝑥, 𝑔𝑦) < 1, there

exists 𝑧 ∈ 𝐴
0
such that 𝛼(𝑔𝑥, 𝑔𝑧) ≥ 1 and 𝛼(𝑔𝑦, 𝑔𝑧) ≥ 1.

Theorem27. Under the hypothesis ofTheorem20, assume that
𝜃 ∈ Θ and 𝑇 is (𝛼, 𝑔)-regular. Then for all 𝑔-best proximity
points 𝑥 and 𝑦 of 𝑇 in 𝐴

0
One has that 𝑔𝑥 = 𝑔𝑦.

In particular, if 𝑔 is injective on the set of all 𝑔-best
proximity points of 𝑇 in 𝐴

0
, then 𝑇 has a unique 𝑔-best

proximity point.

Proof. Let 𝑥, 𝑦 ∈ 𝐴
0
be two 𝑔-best proximity points of 𝑇 in

𝐴
0
. Since 𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝑔𝑦, 𝑇𝑦) = Δ

𝐴𝐵
and 𝑇 is a (𝛼, 𝑔)-

proximal admissible, we deduce that

𝑑 (𝑔𝑥, 𝑔𝑦) ≤ 𝑑 (𝑇𝑥, 𝑇𝑦) . (62)

We distinguish whether 𝛼(𝑔𝑥, 𝑔𝑦) ≥ 1 or 𝛼(𝑔𝑥, 𝑔𝑦) < 1.
Firstly, assume that 𝛼(𝑔𝑥, 𝑔𝑦) ≥ 1. In such a case, the cont-
ractivity condition yields to

𝑑 (𝑔𝑥, 𝑔𝑦) ≤ 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝛼 (𝑔𝑥, 𝑔𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑔𝑦, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑥, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑦, 𝑇𝑦) − Δ
𝐴𝐵

)

= 𝜑 (𝑀
𝑔
(𝑥, 𝑦)) ,

(63)

where the last equality holds since 𝜃 ∈ Θ and the last two
arguments of 𝜃 are zero. Since

𝑑 (𝑔𝑥, 𝑇𝑦) + 𝑑 (𝑔𝑦, 𝑇𝑥)

2
− Δ
𝐴𝐵

≤
𝑑 (𝑔𝑥, 𝑔𝑦) + 𝑑 (𝑔𝑦, 𝑇𝑦) + 𝑑 (𝑔𝑦, 𝑔𝑥) + 𝑑 (𝑔𝑥, 𝑇𝑥)

2
− Δ
𝐴𝐵

=
𝑑 (𝑔𝑥, 𝑔𝑦) + Δ

𝐴𝐵
+ 𝑑 (𝑔𝑦, 𝑔𝑥) + Δ

𝐴𝐵

2
− Δ
𝐴𝐵

=
𝑑 (𝑔𝑥, 𝑔𝑦) + 𝑑 (𝑔𝑦, 𝑔𝑥)

2

= 𝑑 (𝑔𝑥, 𝑔𝑦) ,

(64)

it follows that

𝑀
𝑔
(𝑥, 𝑦) = max(𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑇𝑥) − Δ

𝐴𝐵
,

𝑑 (𝑔𝑦, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑦) + 𝑑 (𝑔𝑦, 𝑇𝑥)

2
− Δ
𝐴𝐵

)

= 𝑑 (𝑔𝑥, 𝑔𝑦) .

(65)

Therefore

𝑑 (𝑔𝑥, 𝑔𝑦) ≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑦)) = 𝜑 (𝑑 (𝑔𝑥, 𝑔𝑦)) , (66)

which is only possible when 𝑑(𝑔𝑥, 𝑔𝑦) = 0; that is, 𝑔𝑥 = 𝑔𝑦.
Next, suppose that 𝛼(𝑔𝑥, 𝑔𝑦) < 1. In this case, by

the (𝛼, 𝑔)-regularity of 𝑇, there exists 𝑧
0

∈ 𝐴
0
such that

𝛼(𝑔𝑥, 𝑔𝑧
0
) ≥ 1 and 𝛼(𝑔𝑦, 𝑔𝑧

0
) ≥ 1. Based on 𝑧

0
, we are going

to define a sequence {𝑧
𝑛
} such that {𝑔𝑧

𝑛
} will converge, at the

same time, to 𝑔𝑥 and to 𝑔𝑦. By the unicity of the limit, this
will prove that 𝑔𝑥 = 𝑔𝑦. We only reason with 𝑥, but the same
argument is valid for 𝑦.

Indeed, since 𝑇𝑧
0
∈ 𝑇𝐴
0
⊆ 𝐵
0
, there is 𝑠

0
∈ 𝐴
0
such that

𝑑(𝑠
0
, 𝑇𝑧
0
) = Δ

𝐴𝐵
, and since 𝑠

0
∈ 𝐴
0
⊆ 𝑔𝐴
0
, there is 𝑧

1
∈ 𝐴
0

verifying 𝑔𝑧
1
= 𝑠
0
. Therefore, 𝑑(𝑔𝑧

1
, 𝑇𝑧
0
) = Δ

𝐴𝐵
. Repeating

this argument, there exists a sequence {𝑧
𝑛
} ⊆ 𝐴

0
such that

𝑑(𝑔𝑧
𝑛+1

, 𝑇𝑧
𝑛
) = Δ

𝐴𝐵
for all 𝑛 ≥ 0. In particular, 𝑔𝑧

𝑛+1
∈ 𝐴
0

and 𝑇𝑧
𝑛
∈ 𝐵
0
.

Now we reason using 𝑥. We claim that

𝛼 (𝑔𝑥, 𝑔𝑧
𝑛
) ≥ 1 ∀𝑛 ≥ 0. (67)

If 𝑛 = 0, 𝛼(𝑔𝑥, 𝑔𝑧
0
) ≥ 1 by the choice of 𝑧

0
. Suppose that

𝛼(𝑔𝑥, 𝑔𝑧
𝑛
) ≥ 1 for some 𝑛 ≥ 0. In such a case, taking into

account that 𝑇 is (𝛼, 𝑔)-proximal admissible, we have that

𝑥, 𝑧
𝑛
, 𝑧
𝑛+1

∈ 𝐴
0

𝛼 (𝑔𝑥, 𝑔𝑧
𝑛
) ≥ 1

𝑑 (𝑔𝑥, 𝑇𝑥) = Δ
𝐴𝐵

𝑑 (𝑔𝑧
𝑛+1

, 𝑇𝑧
𝑛
) = Δ

𝐴𝐵

}}}

}}}

}

󳨐⇒ 𝛼 (𝑔𝑥, 𝑔𝑧
𝑛+1

) ≥ 1. (68)
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This concludes that (67) holds. Taking into account that, for
all 𝑛 ≥ 0,

𝑑 (𝑔𝑥, 𝑇𝑧
𝑛
) + 𝑑 (𝑔𝑧

𝑛
, 𝑇𝑥)

2
− Δ
𝐴𝐵

≤
𝑑 (𝑔𝑥, 𝑔𝑧

𝑛+1
) + 𝑑 (𝑔𝑧

𝑛+1
, 𝑇𝑧
𝑛
) + 𝑑 (𝑔𝑧

𝑛
, 𝑔𝑥) + 𝑑 (𝑔𝑥, 𝑇𝑥)

2

− Δ
𝐴𝐵

=
𝑑 (𝑔𝑥, 𝑔𝑧

𝑛+1
) + Δ
𝐴𝐵

+ 𝑑 (𝑔𝑧
𝑛
, 𝑔𝑥) + Δ

𝐴𝐵

2
− Δ
𝐴𝐵

=
𝑑 (𝑔𝑥, 𝑔𝑧

𝑛+1
) + 𝑑 (𝑔𝑧

𝑛
, 𝑔𝑥)

2

≤ max (𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
) , 𝑑 (𝑔𝑥, 𝑔𝑧

𝑛+1
)) ,

(69)

it follows that, for all 𝑛 ≥ 0,

𝑀
𝑔
(𝑥, 𝑧
𝑛
)

= max(𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
) , 𝑑 (𝑔𝑥, 𝑇𝑥) − Δ

𝐴𝐵
,

𝑑 (𝑔𝑧
𝑛
, 𝑇𝑧
𝑛
) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑧
𝑛
) + 𝑑 (𝑔𝑧

𝑛
, 𝑇𝑥)

2
− Δ
𝐴𝐵

)

≤ max (𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
) , 𝑑 (𝑔𝑥, 𝑔𝑧

𝑛+1
)) .

(70)

Therefore, using the weak 𝑃-property of the first kind,

𝑥, 𝑧
𝑛
, 𝑧
𝑛+1

∈ 𝐴
0

𝑑 (𝑔𝑥, 𝑇𝑥) = Δ
𝐴𝐵

𝑑 (𝑔𝑧
𝑛+1

, 𝑇𝑧
𝑛
) = Δ

𝐴𝐵

}

}

}

󳨐⇒ 𝑑 (𝑔𝑥, 𝑔𝑧
𝑛+1

) ≤ 𝑑 (𝑇𝑥, 𝑇𝑧
𝑛
) ,

(71)

and, hence, by the contractivity condition, for all 𝑛 ≥ 0,

𝑑 (𝑔𝑥, 𝑔𝑧
𝑛+1

) ≤ 𝑑 (𝑇𝑥, 𝑇𝑧
𝑛
)

≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑧
𝑛
))

+ 𝜃 (𝑑 (𝑔𝑧
𝑛
, 𝑇𝑥) − Δ

𝐴𝐵
, 𝑑 (𝑔𝑥, 𝑇𝑧

𝑛
) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑧
𝑛
, 𝑇𝑧
𝑛
) − Δ
𝐴𝐵

)

≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑧
𝑛
))

≤ 𝜑 (max (𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
) , 𝑑 (𝑔𝑥, 𝑔𝑧

𝑛+1
))) .

(72)

Suppose that there is 𝑛
0
∈ N such that 𝑔𝑧

𝑛
0

= 𝑔𝑥. In this
case

𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
0
+1

) ≤ 𝜑 (max (𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
0

) , 𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
0
+1

)))

= 𝜑 (𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
0
+1

)) ,

(73)

but this is only possible when 𝑑(𝑔𝑥, 𝑔𝑧
𝑛
0
+1

) = 0; that is,
𝑔𝑧
𝑛
0
+1

= 𝑔𝑥. Repeating this argument, we have that 𝑔𝑧
𝑛

=

𝑔𝑥 for all 𝑛 ≥ 𝑛
0
, which proves that {𝑔𝑧

𝑛
} is a sequence

converging to 𝑔𝑥. In this case, the proof is finished.
On the other hand, suppose that 𝑔𝑧

𝑛
̸= 𝑔𝑥 for all 𝑛 ≥ 0;

that is, 𝑑(𝑔𝑥, 𝑔𝑧
𝑛
) > 0 for all 𝑛 ≥ 0. In this case, it is impos-

sible that max(𝑑(𝑔𝑥, 𝑔𝑧
𝑛
), 𝑑(𝑔𝑥, 𝑔𝑧

𝑛+1
)) = 𝑑(𝑔𝑥, 𝑔𝑧

𝑛+1
) for

some 𝑛, since (72) would yield to

𝑑 (𝑔𝑥, 𝑔𝑧
𝑛+1

) ≤ 𝜑 (max (𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
) , 𝑑 (𝑔𝑥, 𝑔𝑧

𝑛+1
)))

= 𝜑 (𝑑 (𝑔𝑥, 𝑔𝑧
𝑛+1

))

< 𝑑 (𝑔𝑥, 𝑔𝑧
𝑛+1

) .

(74)

Therefore, max(𝑑(𝑔𝑥, 𝑔𝑧
𝑛
), 𝑑(𝑔𝑥, 𝑔𝑧

𝑛+1
)) = 𝑑(𝑔𝑥, 𝑔𝑧

𝑛
)); that

is, for all 𝑛 ≥ 0,

𝑑 (𝑔𝑥, 𝑔𝑧
𝑛+1

) ≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑧
𝑛
)) = 𝜑 (𝑑 (𝑔𝑥, 𝑔𝑧

𝑛
)) . (75)

Recursively, for all 𝑛 ≥ 0,

𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
) ≤ 𝜑 (𝑑 (𝑔𝑥, 𝑔𝑧

𝑛−1
))

≤ 𝜑
2
(𝑑 (𝑔𝑥, 𝑔𝑧

𝑛−2
))

≤ ⋅ ⋅ ⋅ ≤ 𝜑
𝑛
(𝑑 (𝑔𝑥, 𝑔𝑧

0
)) .

(76)

Next we prove that {𝑔𝑧
𝑛
} converges to 𝑔𝑥. Fix 𝜀 > 0 arbitrary

and consider 𝑡
0

= 𝑑(𝑔𝑥, 𝑔𝑧
0
) > 0. Since 𝜑 ∈ Ψ, the series

∑
𝑛≥1

𝜑
𝑛
(𝑡
0
) converges. In particular, there exists𝑚

0
∈ N such

that ∑∞
𝑘=𝑚
0

𝜑
𝑛
(𝑡
0
) < 𝜀. More precisely, 𝜑𝑛(𝑡

0
) < 𝜀 for all 𝑛 ≥

𝑚
0
. Therefore, if 𝑛 ≥ 𝑚

0
, we have that

𝑑 (𝑔𝑥, 𝑔𝑧
𝑛
) ≤ 𝜑
𝑛
(𝑑 (𝑔𝑥, 𝑔𝑧

0
)) = 𝜑

𝑛
(𝑡
0
) < 𝜀. (77)

This means that {𝑔𝑥
𝑛
} converges to 𝑔𝑥, and this finishes the

proof.

Notice that if the regularity condition considered in
Definition 26 holds for all 𝑥, 𝑦 ∈ 𝐴, then we can deduce
that 𝑔𝑥 = 𝑔𝑦 for all 𝑔-best proximity points 𝑥 and 𝑦 of 𝑇
in 𝐴, but using the weak 𝑃-property of the third kind in 𝐴.
We also point out that we could deduce the unicity of the 𝑔-
best proximity point if 𝑔 is injective on the set of all 𝑔-best
proximity points of 𝑇 (not necessarily on 𝐴).

5. Consequences

If 𝑔 is the identity mapping on 𝐴, we deduce the following
result.

Corollary 28. Theorem 11 immediately follows from Theo-
rem 20.

If there is 𝑘 ∈ [0, 1) such that 𝜑(𝑡) = 𝑘𝑡 for all 𝑡 > 0, one
has the following result.

Corollary 29. Let𝐴 and 𝐵 be two closed subsets of a complete
metric space (𝑋, 𝑑). Let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, 𝜑 :

[0,∞) → [0,∞), 𝜃 : [0,∞)
4

→ [0,∞), and 𝛼 : 𝑋 × 𝑋 →

[0,∞) be five mappings. Assume that the following conditions
hold:
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(a) 0 ̸=𝐴
0
⊆ 𝑔𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(b) the quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak P-property of
the first kind;

(c) 𝑇 is a (𝛼, 𝑔)-proximal admissible and there is 𝑘 ∈ [0, 1)

verifying that for all 𝑥, 𝑦 ∈ 𝐴
0
such that 𝑑(𝑔𝑦, 𝑇𝑥) =

Δ
𝐴𝐵

and 𝛼(𝑔𝑥, 𝑔𝑦) ≥ 1, one has that

𝛼 (𝑔𝑥, 𝑔𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘𝑀
𝑔
(𝑥, 𝑦)

+ 𝜃 (𝑑 (𝑔𝑦, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑥, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑦, 𝑇𝑦) − Δ
𝐴𝐵

) ;

(78)

(d) if {𝑧
𝑛
} ⊆ 𝐴

0
is a sequence such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is

Cauchy, then {𝑧
𝑛
} also is Cauchy;

(e) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴
0
×𝐴
0
such that 𝑑(𝑔𝑥

1
, 𝑇𝑥
0
) =

Δ
𝐴𝐵

and 𝛼(𝑔𝑥
0
, 𝑔𝑥
1
) ≥ 1;

(f) 𝑔 is a continuous mapping;
(g) 𝑇 is a continuous mapping;
(h) 𝜑 ∈ Ψ and 𝜃 ∈ Ω

󸀠.

Then there exists a convergent sequence {𝑥
𝑛
}
𝑛≥0

⊆ 𝐴
0

verifying

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
∀𝑛 ≥ 0, (79)

whose limit is a 𝑔-best proximity point of 𝑇. Actually, every
sequence {𝑥

𝑛
}
𝑛≥0

⊆ 𝐴
0
verifying (18) and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1

converges to a 𝑔-best proximity point of 𝑇.

If 𝜃(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 0 for all 𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
≥ 0, we deduce the

following corollary.

Corollary 30. Let𝐴 and 𝐵 be two closed subsets of a complete
metric space (𝑋, 𝑑). Let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, 𝜑 :

[0,∞) → [0,∞), 𝜃 : [0,∞)
4

→ [0,∞), and 𝛼 : 𝑋 × 𝑋 →

[0,∞) be five mappings. Assume that the following conditions
hold:

(a) 0 ̸=𝐴
0
⊆ 𝑔𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(b) the quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak P-property of
the first kind;

(c) 𝑇 is a (𝛼, 𝑔)-proximal admissible and there is 𝜑 ∈ Ψ

verifying that for all 𝑥, 𝑦 ∈ 𝐴
0
such that 𝑑(𝑔𝑦, 𝑇𝑥) =

Δ
𝐴𝐵

and 𝛼(𝑔𝑥, 𝑔𝑦) ≥ 1, one has that

𝛼 (𝑔𝑥, 𝑔𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑦)) ; (80)

(d) if {𝑧
𝑛
} ⊆ 𝐴

0
is a sequence such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is

Cauchy, then {𝑧
𝑛
} also is Cauchy;

(e) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴
0
×A
0
such that 𝑑(𝑔𝑥

1
, 𝑇𝑥
0
) =

Δ
𝐴𝐵

and 𝛼(𝑔𝑥
0
, 𝑔𝑥
1
) ≥ 1;

(f) 𝑔 is a continuous mapping;

(g) 𝑇 is a continuous mapping;
(h) 𝜑 ∈ Ψ and 𝜃 ∈ Ω

󸀠.

Then there exists a convergent sequence {𝑥
𝑛
}
𝑛≥0

⊆ 𝐴
0

verifying

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
∀𝑛 ≥ 0, (81)

whose limit is a 𝑔-best proximity point of 𝑇. Actually, every
sequence {𝑥

𝑛
}
𝑛≥0

⊆ 𝐴
0
verifying (18) and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1

converges to a 𝑔-best proximity point of 𝑇.

If the pair (𝐴, 𝐵) has the 𝑃-property, we conclude the
following particular version.

Corollary 31. Let 𝐴 and 𝐵 be two closed subsets of a complete
metric space (𝑋, 𝑑). Let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, 𝜑 :

[0,∞) → [0,∞), 𝜃 : [0,∞)
4

→ [0,∞), and 𝛼 : 𝑋 × 𝑋 →

[0,∞) be five mappings. Assume that the following conditions
hold:

(a) 0 ̸=𝐴
0
⊆ 𝑔𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(b) the pair (𝐴, 𝐵) has the 𝑃-property;
(c) 𝑇 is a (𝛼, 𝑔)-proximal admissible (𝜑, 𝜃, 𝛼, 𝑔)-

contraction;
(d) if {𝑧

𝑛
} ⊆ 𝐴

0
is a sequence such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is

Cauchy, then {𝑧
𝑛
} also is Cauchy;

(e) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴
0
×𝐴
0
such that 𝑑(𝑔𝑥

1
, 𝑇𝑥
0
) =

Δ
𝐴𝐵

and 𝛼(𝑔𝑥
0
, 𝑔𝑥
1
) ≥ 1;

(f) 𝑔 is a continuous mapping;
(g) 𝑇 is a continuous mapping;
(h) 𝜑 ∈ Ψ and 𝜃 ∈ Ω

󸀠.

Then there exists a convergent sequence {𝑥
𝑛
}
𝑛≥0

⊆ 𝐴
0

verifying

𝑑 (𝑔𝑥
𝑛+1

,T𝑥
𝑛
) = Δ

𝐴𝐵
∀𝑛 ≥ 0, (82)

whose limit is a 𝑔-best proximity point of 𝑇. Actually, every
sequence {𝑥

𝑛
}
𝑛≥0

⊆ 𝐴
0
verifying (18) and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1

converges to a 𝑔-best proximity point of 𝑇.

If 𝛼 is the mapping associated to a binary relation ≼ (a
transitive relation, a preorder, or a partial order), we have the
following result.

Corollary 32. Let 𝐴 and 𝐵 be two closed subsets of a complete
metric space (𝑋, 𝑑) provided with a binary relation ≼. Let
𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, 𝜑 : [0,∞) → [0,∞), and
𝜃 : [0,∞)

4
→ [0,∞) be four mappings. Assume that the

following conditions hold:

(a) 0 ̸=𝐴
0
⊆ 𝑔𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(b) the quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak 𝑃-property of
the first kind;

(c) 𝑇 verifies the following properties:
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(c.1) if 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
∈ 𝐴
0
, then

𝑔𝑏
1
≼ 𝑔𝑏
2

𝑑 (𝑔𝑎
1
, 𝑇𝑏
1
) = Δ

𝐴𝐵

𝑑 (𝑔𝑎
2
, 𝑇𝑏
2
) = Δ

𝐴𝐵

}

}

}

󳨐⇒ 𝑔𝑎
1
≼ 𝑔𝑎
2
; (83)

(c.2) for all 𝑥, 𝑦 ∈ 𝐴
0
such that 𝑑(𝑔𝑦, 𝑇𝑥) = Δ

𝐴𝐵
and

𝑔𝑥 ≼ 𝑔𝑦, one has that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑔𝑦, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑥, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑦, 𝑇𝑦) − Δ
𝐴𝐵

) ,

(84)

(d) if {𝑧
𝑛
} ⊆ 𝐴

0
is a sequence such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is

Cauchy, then {𝑧
𝑛
} also is Cauchy;

(e) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴
0
×𝐴
0
such that 𝑑(𝑔𝑥

1
, 𝑇𝑥
0
) =

Δ
𝐴𝐵

and 𝑔𝑥
0
≼ 𝑔𝑥
1
;

(f) 𝑔 is a continuous mapping;
(g) 𝑇 is a continuous mapping;
(h) 𝜑 ∈ Ψ and 𝜃 ∈ Ω

󸀠.

Then there exists a convergent sequence {𝑥
𝑛
}
𝑛≥0

⊆ 𝐴
0

verifying

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
∀𝑛 ≥ 0, (85)

whose limit is a 𝑔-best proximity point of 𝑇. Actually, every
sequence {𝑥

𝑛
}
𝑛≥0

⊆ 𝐴
0
verifying (18) and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1

converges to a 𝑔-best proximity point of 𝑇.

If 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋, then we conclude the
following consequence.

Corollary 33. Let 𝐴 and 𝐵 be two closed subsets of a complete
metric space (𝑋, 𝑑) provided with a binary relationship ≼. Let
𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, 𝜑 : [0,∞) → [0,∞), and
𝜃 : [0,∞)

4
→ [0,∞) be four mappings. Assume that the

following conditions hold:

(a) 0 ̸=𝐴
0
⊆ 𝑔𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(b) the quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak 𝑃-property of
the first kind;

(c) for all 𝑥, 𝑦 ∈ 𝐴
0
such that 𝑑(𝑔𝑦, 𝑇𝑥) = Δ

𝐴𝐵
, one has

that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀
𝑔
(𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑔𝑦, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑥, 𝑇𝑦) − Δ
𝐴𝐵

,

𝑑 (𝑔𝑥, 𝑇𝑥) − Δ
𝐴𝐵

, 𝑑 (𝑔𝑦, 𝑇𝑦) − Δ
𝐴𝐵

) ;

(86)

(d) if {𝑧
𝑛
} ⊆ 𝐴

0
is a sequence such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is

Cauchy, then {𝑧
𝑛
} also is Cauchy;

(e) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴
0
×𝐴
0
such that 𝑑(𝑔𝑥

1
, 𝑇𝑥
0
) =

Δ
𝐴𝐵
;

(f) 𝑔 is a continuous mapping;
(g) 𝑇 is a continuous mapping;
(h) 𝜑 ∈ Ψ and 𝜃 ∈ Ω

󸀠.

Then there exists a convergent sequence {𝑥
𝑛
}
𝑛≥0

⊆ 𝐴
0

verifying

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
∀𝑛 ≥ 0, (87)

whose limit is a 𝑔-best proximity point of 𝑇. Actually, every
sequence {𝑥

𝑛
}
𝑛≥0

⊆ 𝐴
0
verifying (18) and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1

converges to a 𝑔-best proximity point of 𝑇.

If 𝐴 = 𝐵, the notion of 𝑔-best proximity point is
equivalent to the concept of coincidence point. In this case,
the pair (𝐴, 𝐴) has the 𝑃-property.

Corollary 34. Let 𝐴 be a closed subset of a complete metric
space (𝑋, 𝑑). Let 𝑇, 𝑔 : 𝐴 → 𝐴, 𝜑 : [0,∞) → [0,∞), 𝜃 :

[0,∞)
4

→ [0,∞), and𝛼 : 𝑋×𝑋 → [0,∞) be fivemappings.
Assume that the following conditions hold:

(a) 0 ̸=𝐴
0
⊆ 𝑔𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐴

0
;

(c) 𝑇 is a (𝛼, 𝑔)-proximal admissible (𝜑, 𝜃, 𝛼, 𝑔)-
contraction;

(d) if {𝑧
𝑛
} ⊆ 𝐴

0
is a sequence such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is

Cauchy, then {𝑧
𝑛
} also is Cauchy;

(e) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴

0
× 𝐴
0
such that 𝑔𝑥

1
= 𝑇𝑥
0

and 𝛼(𝑔𝑥
0
, 𝑔𝑥
1
) ≥ 1;

(f) 𝑔 is a continuous mapping;
(g) 𝑇 is a continuous mapping;
(h) 𝜑 ∈ Ψ and 𝜃 ∈ Ω

󸀠.

Then there exists a convergent sequence {𝑥
𝑛
}
𝑛≥0

⊆ 𝐴
0

verifying

𝑔𝑥
𝑛+1

= 𝑇𝑥
𝑛

∀𝑛 ≥ 0, (88)

whose limit is a coincidence point of 𝑇 and 𝑔. Actually, every
sequence {𝑥

𝑛
}
𝑛≥0

⊆ 𝐴
0
verifying (88) and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1

converges to a coincidence point of 𝑇 and 𝑔.

As we have just seen, combining the previous results,
including the possibility of changing (h) by (h󸀠), we could
deduce a lot of different independent corollaries, for instance,
the following well-known ones. Using 𝐴 = 𝐵 = 𝑋, 𝑔 as the
identity mapping on𝑋, 𝜑(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0 and 𝛼(𝑥, 𝑦) = 1

for all 𝑥, 𝑦 ∈ 𝑋, we deduce the following property.

Corollary 35 (Banach contractive mapping principle). Every
contractivemapping froma completemetric space into itself has
a unique fixed point.

The following results are also particular cases of our main
result.



Abstract and Applied Analysis 13

Corollary 36 (Ran and Reurings [14]). Let (𝑋, ≼) be an
ordered set endowed with a metric 𝑑 and let 𝑇 : 𝑋 → 𝑋 be a
given mapping. Suppose that the following conditions hold.

(a) (𝑋, 𝑑) is complete.
(b) 𝑇 is nondecreasing (with respect to ≼≼).
(c) 𝑇 is continuous.
(d) There exists 𝑥

0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
.

(e) There exists a constant 𝑘 ∈ (0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤

𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≽ 𝑦.

Then 𝑇 has a fixed point. Moreover, if for all (𝑥, 𝑦) ∈ 𝑋
2

there exists 𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, one obtains
uniqueness of the fixed point.

Proof. Consider 𝐴 = 𝐵 = 𝑋. Therefore 𝐴
0
= 𝐵
0
= 𝑋. Let 𝑔

be the identity mapping on 𝑋. By Remark 16, the quadruple
(𝑋,𝑋, 𝑇, 𝑔) has the 𝑃-property. Let define 𝛼 : 𝑋 × 𝑋 →

[0,∞) by

𝛼 (𝑥, 𝑦) = {
1, if 𝑥 ≼ 𝑦,

0, otherwise.
(89)

As 𝑇 is ≼-nondecreasing, then 𝑇 is (𝛼, 𝑔)-proximal admissi-
ble:

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑥 ≼ 𝑦 󳨐⇒ 𝑇𝑥 ≼ 𝑇𝑦 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1.

(90)

Let 𝑥, 𝑦 ∈ 𝑋. If 𝛼(𝑥, 𝑦) = 0, then the contractivity condition
(10) is obvious. If 𝛼(𝑥, 𝑦) > 0, then 𝑥 ≼ 𝑦. In particular, using
item (e) to 𝑦 ≽ 𝑥 and 𝜑(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0, we have that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇x, 𝑇𝑦) = 𝑑 (𝑇𝑦, 𝑇𝑥) ≤ 𝑘𝑑 (𝑦, 𝑥) = 𝜑 (𝑑 (𝑥, 𝑦)) ,

(91)

so (10) also holds (choosing whatever 𝜃 ∈ Θ; for instance,
see Example 4). In any case, 𝑇 is a (𝑔, 𝛼)-proximal admissible
(𝜑, 𝜃, 𝛼, 𝑔)-contraction. Starting from 𝑥

0
∈ 𝑋 such that 𝑥

0
≼

𝑇𝑥
0
, let 𝑥

1
= 𝑇𝑥

0
. Then 𝑑(𝑔𝑥

1
, 𝑇𝑥
0
) = Δ

𝐴𝐵
= 0 and

𝛼(𝑥
0
, 𝑥
1
) ≥ 1. As 𝑔 and 𝑇 are continuous, all hypotheses of

Theorem 20 are satisfied.Then 𝑇 has a fixed point. Moreover,
Theorem 27 guarantees that it is unique.

Nieto and Rodŕıguez-López [15] slightly modified the
hypothesis of the previous result obtaining the following
theorem.

Corollary 37 (Nieto and Rodŕıguez-López [15]). Let (𝑋, ≼)

be an ordered set endowed with a metric 𝑑 and let 𝑇 : 𝑋 → 𝑋

be a givenmapping. Suppose that the following conditions hold.

(a) (𝑋, 𝑑) is complete.
(b) 𝑇 is nondecreasing (with respect to ≼).
(c) If a nondecreasing sequence {𝑥

𝑚
} in 𝑋 converges to a

some point 𝑥 ∈ 𝑋, then 𝑥
𝑚

≼ 𝑥 for all𝑚.
(d) There exists 𝑥

0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
.

(e) There exists a constant 𝑘 ∈ (0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤

𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≽ 𝑦.

Then 𝑇 has a fixed point. Moreover, if for all (𝑥, 𝑦) ∈ 𝑋
2

there exists 𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, one obtains
uniqueness of the fixed point.

Proof. We can follow point by point the proof of the previous
result, but usingTheorem 23 rather thanTheorem 20.

From these results, it is also possible to prove many other
fixed point results (see, for instance, [36]).

Themain differences between our results andTheorem 11
are the following ones. (1) Theorem 11 can only ensure the
existence of fixed points; however, we study the existence
and uniqueness of coincidence points, involving a mapping
𝑔. (2) Our results use more general test functions in the
contractivity condition, and our results guarantee existence
and uniqueness of coincidence points under different con-
tractivity conditions.

Example 38. Let𝑋 = R be providedwith its Euclideanmetric
𝑑 and consider 𝐴 = 𝐵 = 𝑋 and 𝑇, 𝑔 : 𝑋 → 𝑋 are defined by
𝑇𝑥 = (𝑥/2) + 1 and 𝑔𝑥 = 2𝑥 for all 𝑥 ∈ 𝑋. Let 𝛼 : 𝑋 × 𝑋 →

[0,∞) be the mapping given by.

𝛼 (𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦,

0, otherwise.
(92)

Notice that𝐴
0
= 𝐵
0
= 𝑋. If we take 𝑥

0
= −2 and 𝑥

1
= 0, then

all hypotheses ofTheorem 20 are satisfied using 𝜑(𝑡) = 𝑡/2 for
all 𝑡 ≥ 0. Therefore, 𝑇 and 𝑔 have a coincidence point, which
is 𝑥 = 2/3. However,Theorem 11 cannot be applied because it
only guarantees the existence of a fixed point of 𝐹 (which, in
this case, is 𝑥 = 2).
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