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In this work, several fixed point theorems of set-valued monotone mappings and set-valued Caristi-type mappings are proved in
partially orderedHausdorff topological spaces, which indeed extend and improvemany recent results in the setting ofmetric spaces.

1. Introductions

In 1976, Caristi [1] proved Caristi’s fixed point theorem [1,
2], which has been the subject of intensive research in the
past decades, and has found many applications in nonlinear
analysis. Recall that this general fixed point theorem states
that each mapping 𝑇 : 𝑋 → 𝑋 has a fixed point provided
that (𝑋, 𝑑) is a complete metric space and there exists a lower
semicontinuous and bounded below function 𝜑 : 𝑋 →

R such that 𝑑(𝑥, 𝑇𝑥) ≤ 𝜑(𝑥) − 𝜑(𝑇𝑥) for each 𝑥 ∈ 𝑋.
Kirk [2] gave an elegant proof of primitive Caristi’s result by
investigating the existence of maximal elements of a partially
orderedmetric space (𝑋, ⪯), where⪯ is a partial order defined
by

𝑥 ⪯ 𝑦 ⇐⇒ 𝑑 (𝑥, 𝑦) ≤ 𝜑 (𝑦) − 𝜑 (𝑥) , ∀𝑥, 𝑦 ∈ 𝑋. (1)

Since then, Kirk’s method has been widely used in the
generalizations of primitive Caristi’s result and the study of
fixed point theorems of monotone mappings with respect
to a partial order introduced by a functional and many
satisfactory fixed point results have been obtained in metric
spaces (see [3–10]).

The purpose of this paper is to generalize the results of
[3–10] to general topological spaces. Under suitable assump-
tions, we proved several fixed point theorems of set-valued
monotonemappings and set-valuedCaristi-typemappings in
partially ordered Hausdorff topological spaces, which indeed

extend and improve many recent results in the setting of
metric spaces.

2. Main Results

Let 𝑋 be a Hausdorff topological space and let ⪯ be a partial
order on 𝑋. For each 𝑥 ∈ 𝑋, let [𝑥, +∞) = {𝑧 ∈ 𝑋 : 𝑥 ⪯ 𝑧}

and let (−∞, 𝑥] = {𝑧 ∈ 𝑋 : 𝑧 ⪯ 𝑥}.
Let 𝐷 be a nonempty subset of 𝑋 and 𝑇 : 𝑋 → 2

𝑋,
where 2𝑋 denote the family of all nonempty subset of 𝑋. 𝑇
is increasing on 𝐷, if for each 𝑥, 𝑦 ∈ 𝐷 with 𝑥 ⪯ 𝑦 and each
𝑢 ∈ 𝑇𝑥, there exists V ∈ 𝑇𝑦 such that 𝑢 ⪯ V; 𝑇 is quasi-
increasing on 𝐷, if for each 𝑥, 𝑦 ∈ 𝐷 with 𝑥 ⪯ 𝑦 and each
V ∈ 𝑇𝑦, there exists 𝑢 ∈ 𝑇𝑥 such that 𝑢 ⪯ V. 𝑇 has compact
value on 𝐷, if 𝑇𝑥 is compact for each 𝑥 ∈ 𝐷. 𝑇 is a Caristi-
type mapping, if for each 𝑥 ∈ 𝑋, there exists 𝑦 ∈ 𝑇𝑥 such that
𝑥 ⪯ 𝑦.

Let ⪯
1
be the inverse partial order of ⪯. It is clear that 𝑇 :

𝑋 → 2
𝑋 is increasing on 𝐷 with respect to ⪯

1
if 𝑇 is quasi-

increasing on𝐷 with respect to ⪯.
In this paper, we make the following assumptions:

(𝐴
1
) for each totally ordered set 𝑁 ⊂ 𝑋, there exists a
sequence {𝑥

𝑛
} ⊂ 𝑁 such that for each 𝑥 ∈ 𝑁 with

𝑥 ̸= sup𝑁, there exists some 𝑥
𝑛0

∈ {𝑥
𝑛
} such that

𝑥 ⪯ 𝑥
𝑛0
;

(𝐴
2
) for each totally ordered set 𝑁 ⊂ 𝑋, there exists a
sequence {𝑥

𝑛
} ⊂ 𝑁 such that for each 𝑥 ∈ 𝑋 with
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𝑥 ̸= inf 𝑁, there exists some 𝑥
𝑛0

∈ {𝑥
𝑛
} such that

𝑥
𝑛0
⪯ 𝑥;

(𝐴
3
) for each increasing sequence {𝑥

𝑛
} ⊂ 𝑋, there exists a

subsequence {𝑥
𝑛𝑘
} ⊂ {𝑥

𝑛
} and some 𝑥 ∈ 𝑋 such that

𝑥
𝑛𝑘
→ 𝑥;

(𝐴
4
) for each decreasing sequence {𝑥

𝑛
} ⊂ 𝑋, there exists a

subsequence {𝑥
𝑛𝑘
} ⊂ {𝑥

𝑛
} and some 𝑥 ∈ 𝑋 such that

𝑥
𝑛𝑘
→ 𝑥;

(𝐴
5
) for each {𝑥

𝑛
}, {𝑦
𝑛
} ⊂ 𝑋 with 𝑥

𝑛
⪯ 𝑦
𝑛
for each 𝑛, if

there exists some 𝑥, 𝑦 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑥 and

𝑦
𝑛
→ 𝑦, then 𝑥 ⪯ 𝑦;

(𝐴
6
) for each sequence {𝑥

𝑛
} ⊂ 𝑋 with 𝑦 ⪯ 𝑥

𝑛
for some

𝑦 ∈ 𝑋 and each 𝑛, if there exists 𝑥 ∈ 𝑋 such that
𝑥
𝑛
→ 𝑥, then 𝑦 ⪯ 𝑥;

(𝐴
7
) there exists a functional 𝜑 : 𝑋 → R such that

𝜑 (𝑦) < 𝜑 (𝑥) , ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ⪯ 𝑦, 𝑥 ̸= 𝑦. (2)

Theorem 1. Let 𝑋 be a Hausdorff topological space, let ⪯ be a
partial order on 𝑋, and let 𝑇 : 𝑋 → 2

𝑋. Assume that (𝐴
1
),

(𝐴
3
), and (𝐴

5
) are satisfied. If there exists 𝑥

0
∈ 𝑋 such that

𝑇𝑥
0
∩ [𝑥
0
, +∞) ̸=Ø, 𝑇 is increasing and has compact value on

[𝑥
0
, +∞).Then𝑇 has amaximal fixed point in 𝑥∗ ∈ [𝑥

0
, +∞);

that is, let 𝑥 be a fixed point of 𝑇 in [𝑥
0
, +∞) such that 𝑥∗ ⪯ 𝑥,

and then 𝑥 = 𝑥∗.

Proof. Let

𝑄 = {𝑥 ∈ [𝑥
0
, +∞) : 𝑇𝑥 ∩ [𝑥, +∞) ̸=Ø} . (3)

Clearly,𝑄 is nonempty since 𝑥
0
∈ 𝑄. We divide the proof into

four steps.

Step 1. We show that (𝐴
3
) holds on 𝑄. Let {𝑥

𝑛
} ⊂ 𝑄 be

an arbitrary increasing sequence. By (𝐴
3
), there exists a

subsequence {𝑥
𝑛𝑘
} ⊂ {𝑥

𝑛
} and some 𝑥 ∈ 𝑋 such that

𝑥
𝑛𝑘
󳨀→ 𝑥. (4)

Let 𝑛
𝑘
→ ∞ in (4), and then by (𝐴

5
)we have 𝑥

0
⪯ 𝑥; that is,

𝑥 ∈ [𝑥
0
, +∞) since 𝑥

0
⪯ 𝑥
𝑛𝑘
for each 𝑛

𝑘
. For arbitrary given

𝑛
𝑘0
, we have 𝑥

𝑛𝑘0
⪯ 𝑥
𝑛𝑘
and hence 𝑥

𝑛𝑘0
⪯ 𝑥 by (𝐴

5
). Moreover

the arbitrary property of 𝑛
𝑘0
forces the following:

𝑥
𝑛𝑘
⪯ 𝑥, ∀𝑛

𝑘
. (5)

Since 𝑥
𝑛𝑘
∈ 𝑄, there exists 𝑦

𝑛𝑘
∈ 𝑇𝑥
𝑛𝑘
such that

𝑥
𝑛𝑘
⪯ 𝑦
𝑛𝑘
, ∀𝑛

𝑘
. (6)

By (5), 𝑥 ∈ [𝑥
0
, +∞) and the increasing property of 𝑇 on

[𝑥
0
, +∞), there exists 𝑧

𝑛𝑘
∈ 𝑇𝑥 such that 𝑦

𝑛𝑘
⪯ 𝑧
𝑛𝑘
for each

𝑛
𝑘
. This together with (6) implies that

𝑥
𝑛𝑘
⪯ 𝑧
𝑛𝑘
, ∀𝑛

𝑘
. (7)

Since 𝑇 has compact value on [𝑥
0
,∞), then 𝑇𝑥 is compact

and so there exists a subsequence {𝑧
𝑛𝑘𝑖
} ⊂ {𝑧

𝑛𝑘
} and 𝑧 ∈ 𝑇𝑥

such that

𝑧
𝑛𝑘𝑖

󳨀→ 𝑧. (8)

Note that 𝑥
𝑛𝑘𝑖

⪯ 𝑧
𝑛𝑘𝑖

for each 𝑛
𝑘𝑖
, and then by (4), (8), and

(𝐴
5
), we have 𝑥 ⪯ 𝑧. This implies that 𝑧 ∈ 𝑇𝑥 ∩ [𝑥, +∞) ̸=Ø

and so 𝑥 ∈ 𝑄 since 𝑥 ∈ [𝑥
0
, +∞). Hence (𝐴

3
) holds on 𝑄.

Step 2. We show that each increasing sequence {𝑢
𝑛
} ⊂ 𝑄 has

an upper bound in 𝑄. Since (𝐴
3
) holds on 𝑄 by Step 1, there

exists a subsequence {𝑢
𝑛𝑘
} ⊂ {𝑢

𝑛
} and some 𝑢 ∈ 𝑄 such that

𝑢
𝑛𝑘
󳨀→ 𝑢. (9)

Note that for arbitrary given 𝑛, 𝑢
𝑛
⪯ 𝑢
𝑛𝑘
for all 𝑛

𝑘
≥ 𝑛, and

then by (9) and (𝐴
5
) we have 𝑢

𝑛
⪯ 𝑢. Moreover the arbitrary

property of 𝑛 forces 𝑢
𝑛
⪯ 𝑢 for each 𝑛; that is, 𝑢 is an upper

bound of {𝑥
𝑛
}.

Step 3. We show that each totally ordered set {𝑥
𝛼
}
𝛼∈Γ

⊂ 𝑄 has
an upper bound in 𝑄, where Γ is a directed set.

If there exists 𝑥 ∈ {𝑥
𝛼
} such that 𝑥 = sup

𝛼∈Γ
𝑥
𝛼
, then 𝑥

is an upper bound of {𝑥
𝛼
}
𝛼∈Γ

and hence the proof is finished.
Thus we may assume that 𝑥 ̸= sup

𝛼∈Γ
𝑥
𝛼
for each 𝑥 ∈ {𝑥

𝛼
}. By

(𝐴
1
), there is a sequence {𝑥

𝛼𝑛
} ⊂ {𝑥

𝛼
} such that there exists

𝑥
𝛼𝑛0

∈ {𝑥
𝛼𝑛
} such that

𝑥 ⪯ 𝑥
𝛼𝑛0
. (10)

Set

𝑢
𝑛
= max {𝑥

𝛼1
, 𝑥
𝛼2
, . . . , 𝑥

𝛼𝑛
} , ∀𝑛 ≥ 1. (11)

Note that {𝑥
𝛼
} is totally ordered, and then {𝑢

𝑛
} is well defined

and is an increasing sequence such that 𝑥
𝛼𝑛
⪯ 𝑢
𝑛
for all 𝑛. By

step 2, {𝑢
𝑛
} has an upper bound in𝑄; denote it by 𝑥. Moreover

by (10) and (11),

𝑥 ⪯ 𝑥
𝛼𝑛0

⪯ 𝑢
𝑛0
⪯ 𝑥, ∀𝑥 ∈ {𝑥

𝛼
} , (12)

which implies that 𝑥 is an upper bound of {𝑥
𝛼
}.

Step 4.We show that𝑇 has amaximal fixed point in [𝑥
0
, +∞).

By Zorn’s lemma, (𝑄, ⪯) has a maximal element 𝑥∗; that is,
for each 𝑥 ∈ 𝑄 with 𝑥

∗
⪯ 𝑥, we must have 𝑥 = 𝑥

∗.
Since 𝑥∗ ∈ 𝑄, there exists 𝑦∗ ∈ 𝑇𝑥

∗ such that 𝑥∗ ⪯ 𝑦
∗.

Moreover by the increasing property of 𝑇 on [𝑥
0
, +∞), there

exists 𝑧∗ ∈ 𝑇𝑦
∗ such that 𝑦∗ ⪯ 𝑧

∗. This indicates that
𝑧
∗
∈ 𝑇𝑦
∗
∩ [𝑦
∗
, +∞) ̸=Ø and hence 𝑦∗ ∈ 𝑄. Finally the

maximality of 𝑥∗ in 𝑄 implies that 𝑥∗ = 𝑦
∗
∈ 𝑇𝑥
∗; that is,

𝑥
∗ is a maximal fixed point of 𝑇 in [𝑥

0
, +∞). The proof is

complete.

Theorem 2. Let 𝑋 be a Hausdorff topological space, let ⪯ be
a partial order on 𝑋, and let 𝑇 : 𝑋 → 2

𝑋. Assume that
(𝐴
2
), (𝐴
4
), and (𝐴

5
) are satisfied. If there exists 𝑥

0
∈ 𝑋

such that 𝑇𝑥
0
∩ (−∞, 𝑥

0
] ̸=Ø, 𝑇 is quasi-increasing and has

compact value on (−∞, 𝑥
0
]. Then 𝑇 has a minimal fixed point

in 𝑥
∗
∈ (−∞, 𝑥

0
]; that is, let 𝑥 be a fixed point of𝑇 in (−∞, 𝑥

0
]

such that 𝑥 ⪯ 𝑥
∗
, and then 𝑥 = 𝑥

∗
.

Proof. Let ⪯
1
be the inverse partial order of ⪯. It is clear that

(𝐴
1
) and (𝐴

3
) are satisfied with respect to ⪯

1
by (𝐴

2
) and
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(𝐴
4
). Set [𝑥, +∞)

⪯1
= {𝑧 ∈ 𝑋 : 𝑥⪯

1
𝑧} and (−∞, 𝑥]

⪯1
=

{𝑧 ∈ 𝑋 : 𝑧⪯
1
𝑥}. Obviously, [𝑥, +∞)

⪯1
= (−∞, 𝑥],

(−∞, 𝑥]
⪯1

= [𝑥, +∞), 𝑇𝑥
0
∩ [𝑥
0
, +∞)

⪯1
̸=Ø, and 𝑇 is

increasing and has compact value on [𝑥
0
, +∞)

⪯1
. Applying

Theorem 1 on (𝑋, ⪯
1
), we find that 𝑇 has a maximal fixed

point 𝑥∗ ∈ [𝑥
0
, +∞)

⪯1
= (−∞, 𝑥

0
] corresponding to ⪯

1
. Let

𝑥 ∈ (−∞, 𝑥
0
] be a fixed point of 𝑇. If 𝑥 ⪯ 𝑥

∗, then 𝑥∗⪯
1
𝑥

and hence 𝑥 = 𝑥
∗ by the maximality of 𝑥∗ corresponding

to ⪯
1
; that is, 𝑥∗ is a minimal fixed point of 𝑇 in (−∞, 𝑥

0
]

corresponding to ⪯. The proof is complete.

Example 3. Let𝑋 = {0}∪ {1/𝑛 : 𝑛 = 1, 2, 3, . . .}with the usual
metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ for each 𝑥, 𝑦 ∈ 𝑋 and the usual
order 𝑥 ⪯ 𝑦 ⇔ 𝑥 ≤ 𝑦 for each 𝑥, 𝑦 ∈ 𝑋. It is easy to check
that (𝐴

1
)–(𝐴
5
) are satisfied.

Let 𝑇 : 𝑋 → 2
𝑋 be defined by

𝑇0 = 0, 𝑇1 = 𝑋,

𝑇
1

𝑛
=

1

𝑛 + 1
, 𝑛 ≥ 2.

(13)

Clearly,𝑇 is an increasingmapping and has compact value on
𝑋. Note that 0 ⪯ 𝑇0 and [0, +∞) = 𝑋; then by Theorem 1, 𝑇
has a maximal fixed point 𝑥 = 1.

Let 𝐾 : 𝑋 → 2
𝑋 be defined by

𝐾0 = 𝑋, 𝐾1 = 1,

𝐾
1

𝑛
=

1

𝑛 + 1
, 𝑛 ≥ 2.

(14)

Clearly, 𝐾 is a quasi-increasing mapping and has compact
value on 𝑋. Note that 𝐾1 ⪯ 1 and (−∞, 1] = 𝑋; then by
Theorem 2,𝐾 has a minimal fixed point 𝑥 = 0.

The following theorem extends primitive Caristi’s result
to Hausdorff topological spaces.

Theorem 4. Let 𝑋 be a Hausdorff topological space and let ⪯
be a partial order on𝑋. Assume that (𝐴

1
), (𝐴
3
), and (𝐴

6
) are

satisfied. Then each set-valued Caristi-type mapping 𝑇 : 𝑋 →

2
𝑋 has fixed point in 𝑋.

Proof. In analogy to Step 2 in the proof of Theorem 1, by
(𝐴
3
) and (𝐴

6
), we can prove that each increasing sequence

{𝑢
𝑛
} ⊂ 𝑋 has an upper bound in 𝑋. Thus following Step 3 in

the proof of Theorem 1, each totally ordered chain of 𝑋 has
an upper bound by (𝐴

1
). Moreover by Zorn’s lemma, (𝑋, ⪯)

has a maximal element; denote it by 𝑥∗. Note that there exists
some 𝑦∗ ∈ 𝑇𝑥

∗ such that 𝑥∗ ⪯ 𝑦
∗; then 𝑥

∗
= 𝑦
∗ by the

maximality of 𝑥∗ and hence 𝑥∗ is a fixed point of𝑇.The proof
is complete.

The following lemma shows that the conditions (𝐴
1
) and

(𝐴
2
) are not hard to be satisfied.

Lemma 5. Let𝑋 be a nonempty set and let⪯ be a partial order
on𝑋. If (𝐴

7
) is satisfied and𝜑 is bounded below (resp., bounded

above), then (𝐴
1
) (resp., (𝐴

2
)) is satisfied.

Proof. We only show (𝐴
1
) is satisfied, and the proof of the

other case is similar.

Let {𝑥
𝛼
}
𝛼∈Γ

be a totally ordered set of 𝑋, where Γ is a
directed set, and set 𝑀 = {𝜑(𝑥

𝛼
) : 𝛼 ∈ Γ}. Note that 𝜑 is

bounded below; then inf𝑀 exists, and so there exists a subset
{𝛼
𝑛
} of Γ such that

lim
𝑛→∞

𝜑 (𝑥
𝛼𝑛
) = inf𝑀. (15)

Let 𝛽 ∈ Γ be an element such that 𝑥
𝛽

̸= sup
𝛼∈Γ

𝑥
𝛼
; then

𝜑(𝑥
𝛽
) ̸= inf𝑀 by (𝐴

7
). Suppose that 𝑥

𝛼𝑛
⪯ 𝑥
𝛽
for each 𝑛. By

(𝐴
7
), 𝜑(𝑥

𝛽
) ≤ 𝜑(𝑥

𝛼𝑛
) for each 𝑛, and consequently, we have

𝜑(𝑥
𝛽
) = inf𝑀 by (15). This is a contradiction, and so there

exists some 𝑛
0
such that

𝑥
𝛽
⪯ 𝑥
𝛼𝑛0
. (16)

This shows that (𝐴
1
) is satisfied. The proof is complete.

Remark 6. It follows from Lemma 5 that Theorems 1–4 are
still valid while (𝐴

1
) (resp., (𝐴

2
)) is replaced with (𝐴

7
)

provided that 𝜑 is bounded below (resp., bounded above).

3. Applications to Metric Spaces

In this section, we shall show that most of the fixed point
results in the setting of metric spaces of [3–10] could be
derived fromTheorems 1–4.

Let (𝑋, 𝑑) be ametric space and let ⪯ be a partial order on
𝑋. We list the conditions used in [3, 6, 9, 10] as follows:

(𝐴
8
) 𝜂 : R

+
→ R

+
is a continuous, nondecreasing, and

subadditive (i.e., 𝜂(𝑡 + 𝑠) ≤ 𝜂(𝑡) + 𝜂(𝑠) for each 𝑡, 𝑠 ∈
R
+
) function with 𝜂−1({0}) = {0};

(𝐴
9
) there exists a functional 𝜑 : 𝑋 → R and a function
𝜂 : R

+
→ R

+
with 𝜂

−1
({0}) = {0} such that

𝜂(𝑑(𝑥, 𝑦)) ≤ 𝜑(𝑥)−𝜑(𝑦) for each 𝑥, 𝑦 ∈ 𝑋with 𝑥 ⪯ 𝑦,
where ⪯ is a partialorder on𝑋;

(𝐴
10
) for each 𝑥 ∈ 𝑋, the order interval {𝑦 ∈ 𝑋 : 𝑥 ⪯ 𝑦} is
closed;

(𝐴
11
) for each 𝑥 ∈ 𝑋, the order interval {𝑦 ∈ 𝑋 : 𝑦 ⪯ 𝑥} is
closed;

(𝐴
12
) 𝜂 : R

+
→ R
+
is nondecreasing.

Remark 7. (i) It is easy to check that (𝐴
9
) ⇒ (𝐴

7
), (𝐴
10
) ⇒

(𝐴
6
), and (𝐴

10
) + (𝐴

11
) ⇒ (𝐴

5
).

(ii) Let ⪯ be a relation on𝑋 defined by

𝑥 ⪯ 𝑦 ⇐⇒ 𝜂 (𝑑 (𝑥, 𝑦)) ≤ 𝜑 (𝑥) − 𝜑 (𝑦) , ∀𝑥, 𝑦 ∈ 𝑋,

(17)

where 𝜂 : R
+
→ R

+
and 𝜑 : 𝑋 → R. It follows from [3,

Lemma 4.1] that ⪯ introduced by (17) is a partial order on 𝑋
provided that (𝐴

8
) is satisfied. Clearly, the partial order ⪯ on

𝑋 introduced by (17) is certainly a partial order such that (𝐴
9
)

is satisfied, and hence (𝐴
7
) is satisfied.

Lemma 8. Let (𝑋, 𝑑) be a complete metric space and let ⪯ be a
partial order on 𝑋. Assume that (𝐴

9
) and (𝐴

12
) are satisfied.
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Then

(i) if 𝜑 is bounded below, then (𝐴
3
) is satisfied;

(ii) if 𝜑 is bounded above, then (𝐴
4
) is satisfied.

Proof. (i) Let {𝑥
𝑛
} ⊂ 𝑋 be an increasing sequence. It suffices

to show that {𝑥
𝑛
} is a Cauchy sequence. If otherwise, there

exists an increasing subsequence {𝑥
𝑛𝑖
} ⊂ {𝑥

𝑛
} and 𝛿 > 0 such

that

𝑑 (𝑥
𝑛𝑖
, 𝑥
𝑛𝑖+1
) ≥ 𝛿, ∀𝑖. (18)

Then by (𝐴
9
) and (𝐴

12
), we have

𝜑 (𝑥
𝑛𝑖
) − 𝜑 (𝑥

𝑛𝑖+1
) ≥ 𝜂 (𝛿) , ∀𝑖, (19)

which implies that {𝜑(𝑥
𝑛𝑖
)} is a decreasing sequence of reals

and hence convergent since 𝜑 is bounded below.Moreover by
(19), we have

𝜑 (𝑥
𝑛𝑖+1
) ≤ 𝜑 (𝑥

𝑛1
) − 𝑖𝜂 (𝛿) , ∀𝑖. (20)

Let 𝑖 → ∞, and by 𝜂−1({0}) = {0} we have lim
𝑖→∞

𝜑(𝑥
𝑛𝑖
) =

−∞, which is a contradiction. And consequently, {𝑥
𝑛
} is a

Cauchy sequence.
(ii) Let {𝑥

𝑛
} ⊂ 𝑋 be a decreasing sequence. It suffices to

show that {𝑥
𝑛
} is a Cauchy sequence. If otherwise, there exists

a decreasing subsequence {𝑥
𝑛𝑖
} ⊂ {𝑥

𝑛
} and 𝛿 > 0 such that

(18) is satisfied. Then by (𝐴
9
) and (𝐴

12
), we have

𝜑 (𝑥
𝑛𝑖+1
) − 𝜑 (𝑥

𝑛𝑖
) ≥ 𝜂 (𝛿) , ∀𝑖, (21)

which implies that {𝜑(𝑥
𝑛𝑖
)} is an increasing sequence of reals

and hence convergent since 𝜑 is bounded above.Moreover by
(21), we have

𝜑 (𝑥
𝑛𝑖+1
) ≥ 𝜑 (𝑥

𝑛1
) + 𝑖𝜂 (𝛿) , ∀𝑖. (22)

Let 𝑖 → ∞, and by 𝜂−1({0}) = {0} we have lim
𝑖→∞

𝜑(𝑥
𝛼𝑛𝑖
) =

+∞, which is a contradiction. And consequently, {𝑥
𝑛
} is a

Cauchy sequence. The proof is complete.

By Lemma 8, Remark 6 and (i) of Remark 7, we have the
following two corollaries.

Corollary 9. Let (𝑋, 𝑑) be a complete metric space, let ⪯
be a partial order on 𝑋, and let 𝑇 : 𝑋 → 2

𝑋. Assume
that (𝐴

9
)–(𝐴
12
) are satisfied, 𝜑 is a bounded below (resp.,

bounded above) functional, there exists 𝑥
0
∈ 𝑋 such that

𝑇𝑥
0
∩ [𝑥
0
, +∞) ̸=Ø (resp., 𝑇𝑥

0
∩ (−∞, 𝑥

0
] ̸=Ø), and 𝑇 is

increasing (resp., quasi-increasing) and has compact value on
[𝑥
0
, +∞) (resp., (−∞, 𝑥

0
]). Then 𝑇 has a maximal fixed point

𝑥
∗
∈ [𝑥
0
, +∞) (resp., a minimal fixed point 𝑥

∗
∈ (−∞, 𝑥

0
]).

Corollary 10 (see [6, Theorem 5]). Let (𝑋, 𝑑) be a complete
metric space, and let ⪯ be a partial order on 𝑋. Assume that
(𝐴
9
), (𝐴
10
), and (𝐴

12
) are satisfied and 𝜑 is a bounded below

functional. Then each set-valued Caristi-type mapping 𝑇 :

𝑋 → 2
𝑋 has fixed point in𝑋.

In analogy to the proof of [6, Lemma 1], we can prove the
following lemma by (i) of Remark 7.

Lemma 11. Let (𝑋, 𝑑) be a complete metric space and let ⪯ be a
relation on𝑋 introduced by (17). Assume that (𝐴

8
) is satisfied.

Then

(i) if 𝜑 is lower semicontinous on𝑋, then (𝐴
10
) is satisfied;

(ii) if 𝜑 is upper semicontinuous on 𝑋, then (𝐴
11
) is

satisfied;

(iii) if 𝜑 is continuous, then (𝐴
5
) is satisfied.

The following two corollaries directly follow from Corol-
laries 9 and 10, Lemma 11, and Remark 7.

Corollary 12. Let (𝑋, 𝑑) be a complete metric space, let ⪯ be a
relation on𝑋 introduced by (17), and let 𝑇 : 𝑋 → 2

𝑋. Assume
that (𝐴

8
) is satisfied, 𝜑 : 𝑋 → R is a continuous and bounded

below (resp., bounded above) functional, there exists 𝑥
0
∈ 𝑋

such that𝑇𝑥
0
∩[𝑥
0
, +∞) ̸=Ø (resp.,𝑇𝑥

0
∩(−∞, 𝑥

0
] ̸=Ø), and𝑇

is increasing (resp., quasi-increasing) and has compact value on
[𝑥
0
, +∞) (resp., (−∞, 𝑥

0
]). Then 𝑇 has a maximal fixed point

𝑥
∗
∈ [𝑥
0
, +∞) (resp., a minimal fixed point 𝑥

∗
∈ (−∞, 𝑥

0
]).

Corollary 13 (see [3, Theorem4.2]). Let (𝑋, 𝑑) be a complete
metric space and let 𝑇 : 𝑋 → 2

𝑋. Assume that (𝐴
8
) is

satisfied, 𝜑 : 𝑋 → R is a lower semicontinuous and bounded
below functional, and for each 𝑥 ∈ 𝑋, there exists 𝑦 ∈ 𝑇𝑥 such
that 𝜂(𝑑(𝑥, 𝑦)) ≤ 𝜑(𝑥) − 𝜑(𝑦). Then 𝑇 has fixed point in𝑋.

Remark 14. (i) Theorems 3 and 4 in [8] are special cases of
Corollary 12 with 𝜂(𝑡) = 𝑡.

(ii) Note that each single-valued mapping 𝑇 : 𝑋 → 𝑋

naturally has compact value on 𝑋. Then (i) of both
Theorems 1 and 2 in [10] immediately follows from
Corollary 9, and Theorem 2 in [9] is directly derived from
Corollary 12. Moreover, if 𝜂(𝑡) = 𝑡, then Corollary 12 is
reduced toTheorems 3 and 4 in [7].

Remark 15. It follows from Remark 2 in [6] that generalized
Caristi’s fixed point theorems obtained by Feng and Liu [3],
Khamsi [4], and Li [5] are equivalent to primitive Caristi’s
result [1] and all the relating results in [3–5] could be
obtained by Corollary 10; contrarily, Corollary 10 could not
be derived from the results of [3–5]. Therefore, Theorem 4
indeed improves the results in [3–6].
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