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The fractional Riccati expansion method is used to solve fractional differential equations with variable coefficients. To illustrate
the effectiveness of the method, the moving boundary space-time fractional Burger’s equation is studied. The obtained solutions
include generalized trigonometric and hyperbolic function solutions. Among these solutions, some are found for the first time.The
linear and periodic moving boundaries for the kink solution of the Burger’s equation are presented graphically and discussed.

1. Introduction

In recent years, fractional differential equations (FDEs) have
become one of the most exciting and extremely active areas
of research because of their potential applications in physics
and engineering. These include electromagnetic, fluid flow,
dynamical process in self-similar and porous structures,
electrical networks, probability and statistics control theory
of dynamical systems, chemical physics, optics, acoustic,
viscoelasticity, electrochemistry, and material science [1–9].

There are different kinds of fractional integration and dif-
ferentiation operators.Themost famous one is the Riemann-
Liouville definition [10–12], which has been used in various
fields of science and engineering successfully, but this defini-
tion leads to the result that constant function differentiation
is not zero. Caputo put definitions which give zero value
for fractional differentiation of constant function, but these
definitions require that the function should be smooth and
differentiable [10–12]. Recently, Jumarie derived definitions
for the fractional integral and derivative called modified
Riemann-Liouville [13–15], which are suitable for continuous
and nondifferentiable functions and give differentiation of

a constant function equal to zero. The modified Riemann-
Liouville fractional definitions are used effectively in many
different problems [16–20].

In the literature, there are many effective methods to
treat FDEs such as the Adomian decomposition method,
the variational iteration method, the homotopy perturba-
tion method, the differential transform method, the finite
difference method, the finite element method, the expo-
nential function method [21], the fractional subequation
method [22], the (𝐺

󸀠/𝐺)-expansion method [23, 24], and
the first integral method [25]. Based on Jumarie’s modi-
fied Riemann-Liouville derivative and the fractional Riccati
equation 𝐷

𝛼

𝑥
𝐹(𝑥) = 𝜎 + 𝐹(𝑥)

2, Zhang and Zhang in [26]
introduced the subequation method for solving nonlinear
time fractional biological population model and (4 + 1)-
dimensional space-time fractional Fokas equation. Guo et al.
in [27] improved the subequation method; they obtained the
analytical solutions of the space-time fractional Whitham-
Broer-Kaup and generalized Hirota-Satsuma coupled KdV
equations by introducing a new general ansätz. Recently, by
extending the fractional Riccati equation in [26] to the more
general form𝐷

𝛼

𝑥
𝐹(𝑥) = 𝐴 + 𝐵𝐹(𝑥)
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[28] presented the fractional Riccati expansion method to
obtain exact solutions of the space-time fractional Korteweg-
de Vries equation, the spacetime fractional RLW equation,
the space-time fractional Boussinesq equation, and the space-
time fractional Klein-Gordon equation. In addition, Li et
al. in [29] extended fractional Riccati expansion method for
solving the time fractional Burger’s equation and the space-
time fractional Cahn-Hilliard equation.

The moving boundary problem is a nonlinear initial-
boundary value problem that requires extra boundary con-
ditions to determine the motion of the boundary [30, 31].
Moving boundary problems arise in applications that involve
time varying geometries. They have numerous applications
in areas of physics, engineering, and biology. For exam-
ple, coating flows, viscous sintering in industrial processes,
melting and solidification problems, heat flow and diffusion
with phase change, the formation of earth’s crust according
to plate tectonics theory, and the phenomenon of oxygen
diffusion from blood into oxygen consuming tissue give
rise to a moving boundary [32–36]. Generally, the solu-
tion differs according to the boundary conditions, coordi-
nate dimensions, and the method of solution. Numerous
numerical methods have been considered for solving this
problem; examples include front-tracking, the front-fixing,
the domain-fixing, finite-difference, finite-element, moving
grid, phase field, and a fully implicit ghost-cell immersed
boundary [37–45]. Atkinson [46] studied time fractional
diffusion for the motion of planar boundaries as well as
cylindrical and spherical ones, the solution obtained for slow
growth by the method of matched asymptotic expansion.
Yin and Xu [47] used two-parameter regular perturbation
technique and Fourier-Laplace transform method in finding
analytical solution given in terms of the Wright function for
a problem of a drug released from a polymeric matrix that
can be dissolved into a solvent. Kushwaha and Kumar [48]
approximated the solution of a model governed by space-
time fractional derivative for a moving boundary problem
which occurs in fluviodeltaic sedimentation process on earth
surface. Few researchers investigated some exact analytical
solutions using the similarity transformation method and
matched asymptotic expansion method. Also, the analytical
and numerical solutions of the fractional single phasemoving
boundary problem were obtained by Li et al. [49].

Burger’s equation is a classical nonlinear differential
equation which was firstly introduced by Burger in 1948. It
is used as a model for many nonlinear physical phenomena
such as acoustics, continuous stochastic processes, dispersive
water waves, gas dynamics, heat conduction, longitudinal
elastic waves in an isotropic solid, number theory, shock
waves, and turbulence [50–55]. The space-time fractional
Burger’s equation, which is a transformed generalization of
the Burger’s equation, is defined as follows:

𝐷
𝛼

𝑡
𝑢 = 𝜎𝐷

2𝛼

𝑥
𝑢 + 2𝜇𝑢𝐷

𝛼

𝑥
𝑢, 0 < 𝛼 ≤ 1, (1)

where 𝑢 = 𝑢(𝑥, 𝑡),𝜎, 𝜇 are arbitrary constants and 𝛼 is the
fractional order derivative. The initial-boundary conditions
of (1) are

𝑢 (𝑥, 0) = ℎ (𝑥) , 𝑢 (𝑠 (𝑡) , 𝑡) = 𝑔 (𝑡) , (2)

where 𝑠(𝑡) ≤ 𝑥 < ∞, 𝑡 ≥ 0, ℎ(𝑥), 𝑠(𝑡), and 𝑔(𝑡) are given
functions of their arguments; also, 𝑔(𝑡) is continuous and
bounded. The function 𝑠(𝑡) is assumed to be smooth and it
describes the motion of the boundary. It is important to note
that when 𝛼 = 1 and themotion of the boundary is unknown,
one obtains a Stefan problem [56–58].The aim of the paper is
to find the analytic solution of the moving boundary space-
time Burger’s equation (1) via variable coefficient fractional
Riccati expansion method. To solve (1)-(2), a linear trans-
formation is used to convert a constant coefficient FDE with
moving boundary into a variable coefficient FDE with a fixed
boundary.

The rest of this paper is organized as follows: the
description of the fractional Riccati expansion method with
variable coefficients is presented in Section 2. In Section 3,
the solution of the moving boundary space-time Burger’s
equation is studied. In Section 4, discussion and conclusion
are presented.

2. Description of the Fractional
Riccati Expansion Method with
Variable Coefficients

In this section, we present the fractional Riccati expansion
method with variable coefficients to find exact analytical
solutions of nonlinear FDEs. The fractional derivatives are
described in sense of themodified Riemann-Liouville deriva-
tive defined by Jumarie [59–61] as

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

{{{{{{{{{{

{{{{{{{{{{

{

1

Γ (1 − 𝛼)
∫
𝑥

0

(𝑥 − 𝜉)
−𝛼−1

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉,

𝛼 < 0

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥
∫
𝑥

0

(𝑥 − 𝜉)
−𝛼

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉,

0 < 𝛼 < 1

[𝑓(𝛼−𝑛) (𝑥)]
(𝑛)

, 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1,

(3)

which has merits over the original one; for example, the 𝛼-
order derivative of a constant is zero. Some properties of the
Jumarie’s modified Riemann-Liouville derivative are

𝐷
𝛼

𝑥
𝑥
𝛾
=

Γ (𝛾 + 1)

Γ (𝛾 + 1 − 𝛼)
𝑥
𝛾−𝛼

, 𝛾 > 0,

𝐷
𝛼

𝑥
[𝑓 (𝑥) 𝑔 (𝑥)] = 𝑔 (𝑥)𝐷

𝛼

𝑥
𝑓 (𝑥) + 𝑓 (𝑥)𝐷

𝛼

𝑥
𝑔 (𝑥) ,

𝐷
𝛼

𝑥
𝑓 [𝑔 (𝑥)] = 𝑓

󸀠

𝑔
[𝑔 (𝑥)]𝐷

𝛼

𝑥
𝑔 (𝑥) = 𝐷

𝛼

𝑔
𝑓 [𝑔 (𝑥)] (𝑔

󸀠

𝑥
)
𝛼

.

(4)

The above properties play an important role in the frac-
tional Riccati expansion method with variable coefficients.

Consider a nonlinear FDE in two variables 𝑥 and 𝑡 to be

𝑃 (𝑢,𝐷
𝛼

𝑡
𝑢,𝐷
𝛼

𝑥
𝑢,𝐷
2𝛼

𝑡
𝑢,𝐷
2𝛼

𝑥
𝑢, . . .) = 0, 0 < 𝛼 ≤ 1, (5)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function, 𝐷𝛼
𝑡
𝑢 and 𝐷𝛼

𝑥
𝑢

are Jumarie’s modified Riemann-Liouville derivatives of 𝑢,
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and 𝑃 is a polynomial in 𝑢 and its various partial derivatives,
in which the highest order derivatives and nonlinear terms
are involved.

Suppose that𝑢(𝜉) can be expressed by a finite power series
of 𝐹(𝜉) as

𝑢 (𝜉) = 𝑎
0
(𝑡) +

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝐹
𝑖

(𝜉) , 𝑎
𝑛
(𝑡) ̸= 0, (6)

where 𝜉 = 𝑘𝑥 + 𝑓(𝑡), 𝑘 is arbitrary constant and
𝑓(𝑡), 𝑎

𝑖
(𝑡) (𝑖 = 0, 1, 2, . . . , 𝑛) are arbitrary functions of 𝑡

to be determined later, 𝑛 is a positive integer determined
by balancing the linear term of the highest order with the
nonlinear term in (5), and 𝐹 = 𝐹(𝜉) satisfies the following
fractional Riccati equation:

𝐷
𝛼

𝜉
𝐹 = 𝐴 + 𝐵𝐹

2
, 0 < 𝛼 ≤ 1, (7)

where 𝐴 and 𝐵 are constants. Using the Mittag-Leffler
function in one parameter 𝐸

𝛼
(𝑥) = ∑

∞

𝑘=0
(𝑥𝑘/Γ(1 + 𝑘𝛼)) (𝛼 >

0), we obtain the following solutions of (7).

Case 1. If 𝐴 = 1 and 𝐵 = 1, then 𝐹 = tan(𝜉, 𝛼).

Case 2. If 𝐴 = −1 and 𝐵 = −1, then 𝐹 = cot(𝜉, 𝛼).

Case 3. If 𝐴 = 1 and 𝐵 = −1, then 𝐹 = tanh(𝜉, 𝛼), 𝐹 =

coth(𝜉, 𝛼).

Case 4. If 𝐴 = 1/2 and 𝐵 = −1/2, then

𝐹 =
tanh (𝜉, 𝛼)

1 ± sech (𝜉, 𝛼)
, 𝐹 = coth (𝜉, 𝛼) ± csch (𝜉, 𝛼) . (8)

Case 5. If 𝐴 = 1/2 and 𝐵 = 1/2, then

𝐹 =
tan (𝜉, 𝛼)

1 ± sec (𝜉, 𝛼)
, 𝐹 = csc (𝜉, 𝛼) − cot (𝜉, 𝛼) ,

𝐹 = tan (𝜉, 𝛼) ± sec (𝜉, 𝛼) .
(9)

Case 6. If 𝐴 = −1/2 and 𝐵 = −1/2, then

𝐹 =
cot (𝜉, 𝛼)

1 ± csc (𝜉, 𝛼)
, 𝐹 = sec (𝜉, 𝛼) − tan (𝜉, 𝛼) ,

𝐹 = cot (𝜉, 𝛼) ± csc (𝜉, 𝛼) .
(10)

Case 7. If 𝐴 = 1 and 𝐵 = −4, then

𝐹 =
tanh (𝜉, 𝛼)

1 + tanh2 (𝜉, 𝛼)
. (11)

Case 8. If 𝐴 = 1and 𝐵 = 4, then

𝐹 =
tan (𝜉, 𝛼)

1 − tan2 (𝜉, 𝛼)
. (12)

Case 9. If 𝐴 = −1 and 𝐵 = −4, then

𝐹 =
cot (𝜉, 𝛼)

1 − cot2 (𝜉, 𝛼)
, (13)

where the generalized hyperbolic and trigonometric func-
tions are defined as

cosh (𝜉, 𝛼) =
𝐸
𝛼
(𝜉𝛼) + 𝐸

𝛼
(−𝜉𝛼)

2
,

sinh (𝜉, 𝛼) =
𝐸
𝛼
(𝜉
𝛼
) − 𝐸
𝛼
(−𝜉
𝛼
)

2
,

cos (𝜉, 𝛼) =
𝐸
𝛼
(𝑖𝜉𝛼) + 𝐸

𝛼
(−𝑖𝜉𝛼)

2
,

sin (𝜉, 𝛼) =
𝐸
𝛼
(𝑖𝜉𝛼) − 𝐸

𝛼
(−𝑖𝜉𝛼)

2𝑖
,

tanh (𝜉, 𝛼) = sinh (𝜉, 𝛼)
cosh (𝜉, 𝛼)

, tan (𝜉, 𝛼) = sin (𝜉, 𝛼)
cos (𝜉, 𝛼)

.

coth (𝜉, 𝛼) = 1

tanh (𝜉, 𝛼)
, sech (𝜉, 𝛼) = 1

cosh (𝜉, 𝛼)
,

cot (𝜉, 𝛼) = 1

tan (𝜉, 𝛼)
, sec (𝜉, 𝛼) = 1

cos (𝜉, 𝛼)
,

csch (𝜉, 𝛼) = 1

sinh (𝜉, 𝛼)
, csc (𝜉, 𝛼) = 1

sin (𝜉, 𝛼)
.

(14)

Determining the integer 𝑛 and substituting (6) with (7)
into (5) and collecting all terms with the same order of 𝐹(𝜉),
then setting each coefficient of 𝐹(𝜉) to zero yields a system of
overdetermined nonlinear fractional equations for𝑓(𝑡), 𝑎

𝑖
(𝑡),

and 𝑘. Solving this system for𝑓(𝑡), 𝑎
𝑖
(𝑡), and 𝑘, we get explicit

expressions for 𝑎
𝑖
(𝑡) and 𝜉. Using the solutions of (7) into (6),

we obtain exact solutions of FDE (5).

Remark 1. It can be easily found that if 𝑎
𝑖
(𝑡) are constants and

𝜉 is linear function of 𝑥 and 𝑡, then (6) becomes the same as
(6) constructed in [28]. Therefore, we may get more general
exact solutions of the FDE (5).

3. Solution of Space-Time Fractional
Burger’s Equation

To solve the space-time fractional Burger’s equation (1) with
moving boundary (2), firstly, we apply the following transfor-
mation to (1):

𝑢 (𝑥, 𝑡) = 𝑈 (𝑦, 𝑡) , 𝑥 = 𝑦 + 𝑠 (𝑡) . (15)

This transformation maps equation (1) into the following
forced space-time Burger’s equation:

𝐷
𝛼

𝑡
𝑈 − 𝜎𝐷

2𝛼

𝑦
𝑈 − 2𝜇𝑈𝐷

𝛼

𝑦
𝑈 = (𝑠

󸀠

(𝑡))
𝛼

𝐷
𝛼

𝑦
𝑈, (16)

with initial-boundary conditions

𝑈(𝑦, 0) = ℎ (𝑦) , 𝑈 (0, 𝑡) = 𝑔 (𝑡) , (17)

where 𝑠󸀠(𝑡) = 𝑑𝑠/𝑑𝑡 and 𝑠(0) = 0, which implies the
compatibility condition𝑔(0) = 𝑢(0, 0).Themoving boundary
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problem (1)-(2) of the fractional space-time Burger’s equation
is transformed into a fixed boundary problem with forced
nonlinear fractional differential equation (16) in the quarter
plane 𝑦 ≥ 0, 𝑡 ≥ 0 with boundary condition (17). In order to
solve (16) by the fractional Riccati expansion method, we use
the following transformation:

𝑈(𝑦, 𝑡) = 𝑈 (𝜉) , 𝜉 = 𝑘𝑦 + 𝑓 (𝑡) . (18)

In particular, when𝑓(𝑡) = 𝜔𝑡 then 𝜉 represents a travelling
wave with velocity 𝜔. By applying (18) into (16), we obtain the
following nonlinear fractional ordinary differential equation:

(𝑓
󸀠
)
𝛼

𝐷
𝛼

𝜉
𝑈 − 𝜎𝑘

2𝛼
𝐷
2𝛼

𝜉
𝑈 − 𝜇𝑘

𝛼
𝑈𝐷
𝛼

𝜉
𝑈 = (𝑠

󸀠

(𝑡))
𝛼

𝑘
𝛼
𝐷
𝛼

𝜉
𝑈,

(19)

where 𝑓󸀠 = 𝑑𝑓/𝑑𝑡. Balancing 𝐷2𝛼
𝜉
𝑢 with 𝑢𝐷𝛼

𝜉
𝑢 gives 𝑛 = 1.

Therefore, the solution of (16) is expressed as

𝑈 = 𝑎
0
(𝑡) + 𝑎

1
(𝑡) 𝐹 (𝜉) . (20)

Substituting (20) into (19) using (7) and setting the
coefficients of 𝐹(𝜉) to zero, we get

(𝑓
󸀠
)
𝛼

= 𝑘
𝛼
[(𝑠
󸀠
)
𝛼

+ 2𝜇𝑎
0
] , 𝑎

1
= −

𝜎𝑘𝛼𝐵

𝜇
, (21)

where 𝑎
0
and 𝑘 are arbitrary constants. Therefore, general

formula of the solution of the forced space-time fractional
Burger’s equation (16) is

𝑈(𝑦, 𝑡) = 𝑎
0
−
𝜎𝑘𝛼𝐵

𝜇
𝐹 (𝑘𝑦 + 𝑓 (𝑡)) ,

(𝑓
󸀠
)
𝛼

= 𝑘
𝛼
[(𝑠
󸀠
)
𝛼

+ 2𝜇𝑎
0
] .

(22)

From the solutions of (7), by choosing the special values
of 𝐴, 𝐵, and the corresponding function 𝐹(𝜉), we get the
following solutions of (16):

𝑈
1
(𝑦, 𝑡) = 𝑎

0
−
𝜎𝑘𝛼

𝜇
tan (𝑘𝑦 + 𝑓 (𝑡) , 𝛼) ,

(𝑓
󸀠
)
𝛼

= 𝑘
𝛼
[(𝑠
󸀠
)
𝛼

+ 2𝜇𝑎
0
] ,

𝑈
2
(𝑦, 𝑡) = 𝑎

0
+
𝜎𝑘𝛼

𝜇
tanh (𝑘𝑦 + 𝑓 (𝑡) , 𝛼) ,

(𝑓
󸀠
)
𝛼

= 𝑘
𝛼
[(𝑠
󸀠
)
𝛼

+ 2𝜇𝑎
0
] ,

𝑈
3
(𝑦, 𝑡) = 𝑎

0
+
𝜎𝑘𝛼

2𝜇
[

tanh (𝑘𝑦 + 𝑓 (𝑡) , 𝛼)

1 ± sech (𝑘𝑦 + 𝑓 (𝑡) , 𝛼)
] ,

(𝑓
󸀠
)
𝛼

= 𝑘
𝛼
[(𝑠
󸀠
)
𝛼

+ 2𝜇𝑎
0
] .

(23)

The remaining solutions can be obtained in a similar
manner.When 𝛼 = 1, we obtain the following forced Burger’s
equation (see [56–58]):

𝑈
𝑡
− 𝜎𝑈
𝑦𝑦

− 2𝜇𝑈𝑈
𝑦
= 𝑠
󸀠

(𝑡) 𝑈
𝑦
. (24)

Thus, the solutions (23) are reduced to the solutions of
(24), which are given by

𝑈
1fbur = 𝑎

0
−
𝜎𝑘

𝜇
tan (𝑘 (𝑦 + 𝑠 (𝑡) + 2𝜇𝑎

0
𝑡)) , (25)

𝑈
2fbur = 𝑎

0
+
𝜎𝑘

𝜇
tanh (𝑘 (𝑦 + 𝑠 (𝑡) + 2𝜇𝑎

0
𝑡)) , (26)

𝑈
3fbur = 𝑎

0
+
𝜎𝑘

2𝜇
[

tanh (𝑘 (𝑦 + 𝑠 (𝑡) + 2𝜇𝑎
0
𝑡))

1 ± sech (𝑘 (𝑦 + 𝑠 (𝑡) + 2𝜇𝑎
0
𝑡))

] . (27)

Meanwhile, from solutions (25)–(27), we see that the
velocity of the wave is related to the moving boundary func-
tion 𝑠(𝑡). To the best of our knowledge some of the obtained
solutions appear for the first time concerning this problem.
In order to understand the evolution of the solutions (25)–
(27), the main soliton features of them are investigated by
using direct computer simulationswith the accuracy 10−9.We
discuss the effect of the moving boundary condition in some
special cases, such as linear and periodic moving boundary
to the kink soliton solution (26).

Firstly, we study the features of the solution (26) for linear
moving boundary. In order to do that we choose

𝑠 (𝑡) = V𝑡. (28)

Taking 𝜎 = 𝜇 = −1, 𝑎
0
= 𝑘 = 1, then, from (17) and (26),

the initial-boundary condition is given by

𝑔 (𝑡) = 1 + tanh ((V − 2) 𝑡) , ℎ (𝑦) = 1 + tanh (𝑦) . (29)

Note that in the static case when V → 0, solution (26)
becomes kink solution with velocity 2𝜇𝑎

0
. Figure 1 shows

the solution (26) of the forced Burger’s equation (24) in the
moving frame of reference for a linear moving boundary
(28), with V = 100, −100, 0.001, −0.001. The kink behavior
appears clearly when the absolute value of V is sufficiently
small as shown in Figures 1(c) and 1(d). The velocity of the
boundary in the moving frame moves in a concave shape
as shown in Figure 1(a), whilst moves in a convex shape as
shown in Figure 1(b) in the 𝑡-direction. Also, the velocity of
the boundary in themoving frame is shown as a convex shape
in the 𝑡-direction in Figures 1(c) and 1(d).

In the special case of a linear moving boundary, the
solution of the Burger’s equation can be found directly from
(24) via a change of dependent variable. In fact, if 𝑠(𝑡) = V𝑡,
then (24) becomes

𝑈
𝑡
− 𝜎𝑈
𝑦𝑦

− 2𝜇𝑈𝑈
𝑦
= V𝑈
𝑦
. (30)

By taking the dependent variable to be

𝑤 (𝑦, 𝑡) = 𝑈 (𝑦, 𝑡) +
V
2𝜇

, (31)

then (30) becomes the Burger’s equation

𝑤
𝑡
= 𝜎𝑤
𝑦𝑦

+ 2𝜇𝑤𝑤
𝑦
, (32)
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Figure 1: Evolutional behavior of 𝑈
2
describes kink soliton solution with linear moving boundary 𝑠(𝑡) = V𝑡 and 𝜎 = 𝜇 = −1, 𝑎

0
= 𝑘 = 1: (a)

V = 100; (b) V = −100; (c) V = 0.001; (d) V = −0.001.

with the initial-boundary conditions

𝑤 (𝑦, 0) = ℎ (𝑦) +
V
2𝜇

, 𝑤 (0, 𝑡) = 𝑔 (𝑡) +
V
2𝜇

. (33)

Secondly, we discuss the features of the kink soliton
solution (26) for the periodic moving boundary. Now let us
choose

𝑠 (𝑡) = 10 sin (V𝑡) . (34)

The initial-boundary conditions have the form

𝑔 (𝑡) = 1 + tanh (10 sin (V𝑡) − 2𝑡) ,

ℎ (𝑦) = 1 + tanh (𝑦) .
(35)

Figure 2 presents the surface plot of solution (26) for the
forced Burger’s equation (24)with periodicmoving boundary
(34) for V = 1 and V = 10. Because of the periodic property of

the moving boundary 𝑠(𝑡), the kink-type soliton propagation
of the solution (26) shows the periodic property.

When 𝑠(𝑡) = 10 sin(V𝑡), (24) becomes

𝑈
𝑡
− 𝜎𝑈
𝑦𝑦

− 2𝜇𝑈𝑈
𝑦
= 10V cos (V𝑡) 𝑈

𝑦
. (36)

Considering the transformation

𝑤 (𝑦, 𝑡) = 𝑈 (𝑦, 𝑡) +
5V
𝜇

cos (V𝑡) , (37)

then (36) is converted into the Burger’s equation

𝑤
𝑡
= 𝜎𝑤
𝑦𝑦

+ 2𝜇𝑤𝑤
𝑦
, (38)
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Figure 2: Evolutional behavior of 𝑈
2
describes kink soliton solution with periodic moving boundary 𝑠(𝑡) = 10 sin(V𝑡): (a) V = 1; (b) density

plot of (a); (c) V = 10; (d) density plot of (c).

with the initial-boundary conditions

𝑤 (𝑦, 0) = ℎ (𝑦) +
5V
𝜇
, 𝑤 (0, 𝑡) = 𝑔 (𝑡) +

5V
𝜇

cos (V𝑡) .

(39)

4. Conclusions

In this paper, the fractional Riccati expansion method with
variable coefficients has been successfully applied to the
forced space-time fractional Burger’s equation. A number
of new analytical solutions have been obtained. Figures 1

and 2 show the solutions of the forced Burger’s equation
with linear and periodic moving boundaries at 𝛼 = 1.
The variable coefficient fractional Riccati expansion method
can be applied to other nonlinear FDEs with variable
coefficients.
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