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Considering the influence caused by joint angle, nonlinear damping, and nonlinear rigidity, the nonlinear torsional vibration
dynamical modeling of the multi-DOF rolling mill’s main drive system is established. To analyze the coupled equations by analytic
method, the equations are decoupled by transforming them into principal coordinates. The amplitude-frequency characteristic
equations are obtained by multiscale method. Furthermore, numerical example based on the 1780 rolling mill’s main drive system
of some Steel Co. is given to illustrate the effects of the resonance on the response of the system.The relationship between amplitude
and frequency varies according to the parameters changes of nonlinear stiffness, nonlinear friction damping, torque disturbance,
and joint angle. During the rolling process, the limited joint angles range is obtained and the variation rules of the joint angle caused
by the nonlinear damping, nonlinear stiffness, and the disturbance torque are gained. The results present that the rolling mill can
work more stably with the joint angle at a range from 2∘ to 8∘ by controlling the value of parameters. The research results provide a
theoretical basis and reference for analyzing torsional vibration of rolling mill’s transmission system caused by joint angle.

1. Introduction

In recent years, there has been a spurt of interest in the
area of modeling and control of complex dynamic systems
due to its challenging features and many applications [1–
3]. Rolling mill’s main drive system is a complex dynamic
system, which is the key and core equipment in iron and steel
industry. As the continuous increasing of the rolling speed
and strength, torsional vibration phenomenon in rollingmills
becomes very common and complicated. The phenomenon
severely affects rolling efficiency and product quality. The
torsional vibration of rolling mill’s main drive systems has
been investigated during the past. The self-excited vibration
of hot strip mill was studied, and the variation of the
rolling torque caused by rolling speed was obtained [4]. A
method for calculating the steady-state response of the self-
excited vibrationwas presented, and the relationship between
the system parameters and the self-excited vibration was
analyzed [5]. A universal nonlinear mathematical model for

the main drive train of a rolling mill was established [6]. The
nonlinear torsional vibration characteristic of the hot strip
mill’s main drive system was examined, and the dynamic
model analysis showed that the torsional vibration presented
as the movement of the unstable limit cycle [7].The existence
and uniqueness of the limit cycle of the torsional vibration
differential equations on rolling mill’s main drive system
were discussed, and the self-excited vibration of the statistical
properties by simplifying the rolling mill’s main drive system
to a single degree of freedom system was analyzed [8]. The
torsional vibration problem of lathe spindle system with
unbalanced workpiece was studied [9]. Torsional vibration
analysis about axis of the rolls on the transfer function of
variable-speed rolling mill motor with shaft systems was
studied [10].The nonlinear torsional vibration characteristics
caused by the strip rolling mill’s drive trains with angular and
radial backlash were investigated, and the torsional vibration
fault feature caused by backlashwas analyzed under static and
dynamic rolling load [11].
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However, during rolling process, the variation of the joint
angle is inevitable during regulating motor speed and rolling
strip because of the structural complexity of rolling mill’s
main drive system. Therefore, it is necessary to study the
torsional vibration caused by the presence of the joint shaft
in the main drive system of rolling mill.

The paper proceeds as follows. The dynamical model of
rolling mill’s multi-DOF main drive system is established in
Section 2. In Section 3, the amplitude-frequency character-
istic equation is obtained by multiscale method. Simulation
results to illustrate the results are presented in Section 4.
Conclusions are provided in Section 5.

2. Dynamical Model of Rolling Mill’s
Multi-DOF Main Drive System

Considering the influence of the joint angle, as shown in
Figure 1, themain drive system of rollingmill can be regarded
as an 𝑛-DOF system.This rotational system with a joint angle
of 𝛼 is driven at the angular frequency 𝜔 of the motor in the
rolling mill. The quantities 𝜓

𝑛−1
and 𝜓

𝑛
represent the input

and the output rotation angles of the joint shaft, respectively,
while 𝜃

𝑛−1
and 𝜃

𝑛
symbolize the input and output rotation

angles of the system. The moment of inertia in the rolling
mill is expressed as 𝐽

𝑛
. The joint shaft has been considered

to embody torsional stiffness 𝑘
𝑛−1

, nonlinear stiffness 𝐾NL,
linear damping 𝑐

𝑛−1
, and nonlinear damping 𝐶NL.

The well-known kinematic relationship between the
angular displacements of the input and output shaft converg-
ing on the joint angle is determined [12]:

tan𝜓
𝑖
= tan 𝜃

𝑖
⋅ cos𝛼, 𝑖 = 1, 2, (1)

where the angles of joint shaft of rolling mill are between 2∘
and 8∘.

Then the relationships between motor and input of the
joint shaft and roller and output of the joint shaft are

𝑑𝜓
𝑛−1

𝑑𝜃
𝑛−1

=

𝜓̇
𝑛−1

̇
𝜃
𝑛−1

=

cos𝛼
1 − sin2𝛼sin2𝜃

𝑛−1

= 𝜆
𝑛−1
(𝜃
𝑛−1
) ,

𝑑𝜓
𝑛

𝑑𝜃
𝑛

=

𝜓̇
𝑛

̇
𝜃
𝑛

=

cos𝛼
1 − sin2𝛼sin2𝜃

𝑛

= 𝜆
𝑛
(𝜃
𝑛
) ,

(2)

where ̇
𝜃
𝑛−1

, ̇
𝜃
𝑛
denote the angular velocity of the joint shaft

and the roller, respectively. 𝑀
𝑛−1,𝑛

is the elastic restoring
torque of joint shaft acting on the roller:

𝑀
𝑛−1,𝑛

= 𝐾 ⋅ 𝜆
𝑛
(𝜃
𝑛
) (𝜓
𝑛
− 𝜓
𝑛−1
) = 𝐾𝑇 (𝜃

𝑛
, 𝑡) . (3)

From (2) and (3), an equation of relative angle can be obtained
as follows:

𝑇 (Δ𝜃, 𝑡) =

cos𝛼
1 − sin2𝛼 ⋅ sin2 (𝜔𝑡 − Δ𝜃)

⋅ tan−1 cos𝛼 [tan (𝜔𝑡 − Δ𝜃) − tan𝜔𝑡]
1 + cos2𝛼 ⋅ tan (𝜔𝑡 − Δ𝜃) ⋅ tan𝜔𝑡

.

(4)

Due to the fact that the relative angle Δ𝜃 is small enough,
we can suppose tanΔ𝜃 ≈ Δ𝜃, tan(𝜓

𝑛
−𝜓
𝑛−1
) ≈ 𝜓
𝑛
−𝜓
𝑛−1

, and
1 − sin2𝛼sin2(𝜔𝑡 − Δ𝜃) ≈ 1 − sin2𝛼sin2𝜔𝑡.
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Figure 1: Model of multi-DOF main drive system with joint shaft.

Then (4) can be rewritten as

𝑇 (Δ𝜃, 𝑡) = 𝜆
2

1

(𝜔𝑡) Δ𝜃

= [1 − sin2𝛼 cos 2𝜔𝑡

+ sin4𝛼(1
8

−

1

2

cos 2𝜔𝑡 + 3
8

cos 4𝜔𝑡)

+O (𝜀2) ] Δ𝜃.

(5)

For the typical rolling stand modeling shown in Figure 1,
its matrix equation of motion is expressed as

J ̈𝜃 + C ̇
𝜃 + K𝜃 = F, (6)

where F is the external excitation vector and can be expressed
as

F =
[

[

[

[

[

[

[

𝑀 cos𝜔𝑡
0

.

.

.

−𝑘
𝑛−1
𝑇
𝑛−1,𝑛

− 𝐾NL(𝜃𝑛−1 − 𝜃𝑛)
3

− 𝐶NL(𝜃𝑛−1 − 𝜃𝑛)
3

−𝑘
𝑛−1
𝑇
𝑛,𝑛−1

− 𝐾NL(𝜃𝑛 − 𝜃𝑛−1)
3

− 𝐶NL(𝜃𝑛 − 𝜃𝑛−1)
3

]

]

]

]

]

]

]

.

(7)

It is hard to solve the equations because C and K are not
diagonal matrix. So we decouple (6) into a simple equation in
principal coordinates

𝐽
𝑝𝑖

̈
𝜃
𝑝𝑖
+ 𝐶
𝑝𝑖

̇
𝜃
𝑝𝑖
+ 𝐾
𝑝𝑖
𝜃
𝑝𝑖
=

𝑛

∑

𝑗=1

𝐹
𝑗
𝜙
𝑗𝑖
, (8)

where 𝜙 is the regular modal vector, 𝐹
𝑝𝑖
= ∑
𝑛

𝑗=1

𝐹
𝑗
𝜙
𝑗𝑖
, 𝐾
𝑝𝑖
=

𝐽
𝑝𝑖
𝑃
2

𝑖

, 𝐽
𝑝𝑖
= ∑
𝑛

𝑗=1

𝐽
𝑗
𝜙
2

𝑗𝑖

, and 𝐶
𝑝𝑖
= 2𝜁
𝑖
𝑃
𝑖
𝐽
𝑝𝑖
, while 𝜁

𝑖
is the

modal ratio of damping.
Substituting 𝜃

𝑛
= 𝜙
𝑛𝑖
𝜃
𝑝𝑖
into (8), we can obtain

𝐽
𝑝𝑖

̈
𝜃
𝑝𝑖
+ 𝐶
𝑝𝑖

̇
𝜃
𝑝𝑖

+ {𝐾
𝑝𝑖
+ 𝐾
𝑛−1
[1 − sin2𝛼 cos 2𝜔𝑡

+ sin4𝛼(1
8

−

1

2

cos 2𝜔𝑡 + 3
8

cos 4𝜔𝑡)]

× (𝜑
𝑛,𝑖
− 𝜑
𝑛−1,𝑖

)
2

} 𝜃
𝑝𝑖
+ 𝐾NL(𝜑𝑛,𝑖 − 𝜑𝑛−1,𝑖)

4

𝜃
3

𝑝𝑖

+ 𝐶NL(𝜑𝑛,𝑖 − 𝜑𝑛−1,𝑖)
4

̇
𝜃
3

𝑝𝑖

= 𝑀𝜑
1,𝑖
cos𝜔𝑡.

(9)

Thus the equations are decoupled.
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Suppose 𝑥 = 𝜃
𝑝𝑖
; (9) can be expressed as

𝑥̈ + 𝑎
1
𝑥̇ + 𝜔
2

0

𝑥 + 𝑎
2

× [ − sin2𝛼 cos 2𝜔𝑡

+ sin4𝛼(1
8

−

1

2

cos 2𝜔𝑡 + 3
8

cos 4𝜔𝑡)] 𝑥

+ 𝑎
3
𝑥
3

+ 𝑎
4
𝑥̇
3

= 𝑀
1
cos𝜔𝑡,

(10)

where 𝑎
1
= 𝐶
𝑝𝑖
/𝐽
𝑝𝑖
, 𝑎
2
= 𝑘
𝑛−1
(𝜙
𝑛,𝑖
− 𝜙
𝑛−1,𝑖

)
2

/𝐽
𝑝𝑖
, 𝑎
3
=

𝐾NL(𝜙𝑛,𝑖 − 𝜙𝑛−1,𝑖)
4

/𝐽
𝑝𝑖
, 𝑎
4
= 𝐶NL(𝜙𝑛,𝑖 − 𝜙𝑛−1,𝑖)

4

/𝐽
𝑝𝑖
, 𝜔
0
=

√(𝐾
𝑝𝑖
+ 𝐾NL(𝜙𝑛,𝑖 − 𝜙𝑛−1,𝑖)

2

)/𝐽
𝑝𝑖
, and𝑀

1
= 𝑀𝜙

1𝑖
/𝐽
𝑝𝑖
.

3. Amplitude-Frequency Equation

A perturbation parameter 𝜀 is embedded to analyze (12) by
using the multiple-scales method. So the equation can be
expressed as

𝑥̈ + 𝜔
2

0

𝑥

= −𝜀 {𝑎
1
𝑥̇ + 𝑎
2

× [ − sin2𝛼 cos 2𝜔𝑡

+ sin4𝛼(1
8

−

1

2

cos 2𝜔𝑡 + 3
8

cos 4𝜔𝑡)] 𝑥

+ 𝑎
3
𝑥
3

+ 𝑎
4
𝑥̇
3

+𝑀
1
cos𝜔𝑡} .

(11)

Attention is paid to the fundamental resonance, since the
motor’s angular frequency is close to the first natural freq-
uency of the system. The frequency can be written as 𝜔 =

𝜔
0
+ 𝜀𝜎, where 𝜎 is the detuning parameter, which represents

the proximity between 𝜔 and 𝜔
0
.

Considering the case of the first approximation, we
assume an expansion of the form

𝑥 (𝑡) = 𝑥
0
(𝑇
0
, 𝑇
1
) + 𝜀𝑥

1
(𝑇
0
, 𝑇
1
) , (12)

where the created time scales 𝑇
0
= 𝑡 and 𝑇

1
= 𝜀𝑡.

Substituting (12) into (11) and equating the coefficients of
the same power of 𝜀 on both sides of the equations, we can
obtain

𝐷
2

0

𝑥
0
+ 𝜔
2

0

𝑥
0
= 0, (13)

𝐷
2

0

𝑥
1
+ 𝜔
2

0

𝑥
1

= −2𝐷
0
𝐷
1
𝑥
0
− 𝑎
1
𝐷
0
𝑥
0

+ 𝑎
2
[sin2𝛼 cos 2𝜔𝑇

0

− sin4𝛼(1
8

−

1

2

cos 2𝜔𝑇
0

+

3

8

cos 4𝜔𝑇
0
)] 𝑥
0

− 𝑎
3
𝑥
3

0

− 𝑎
4
(𝐷
0
𝑥
0
)
3

+𝑀
1
cos (𝜔𝑡) ,

(14)

where𝐷
𝑛
= 𝜕/𝜕𝑇

𝑛
, 𝑛 = 0, 1, . . ..

The general solution of (13) can be written in the form

𝑥
0
= 𝐴 (𝑇

1
) 𝑒
𝑖𝜔0𝑇0

+ 𝐴 (𝑇
1
) 𝑒
−𝑖𝜔0𝑇0

, (15)

where 𝐴(𝑇
1
) and 𝐴(𝑇

1
) are the mutual conjugate terms;

substituting (15) and 𝜔 = 𝜔
0
+ 𝜀𝜎 into (14), we can obtain

𝐷
2

0

𝑥
1
+ 𝜔
2

0

𝑥
1

= [−2𝑖𝜔
0
𝐷
1
𝐴 − 𝑎
1
𝑖𝜔
0
𝐴 +

1

2

𝑎
2
sin2𝛼𝐴𝑒𝑖2𝜎𝑇0

−

1

8

𝑎
2
sin4𝛼𝐴 + 1

4

𝑎
2
sin4𝛼𝐴𝑒𝑖2𝜎𝑇0

− 3𝑎
3
𝐴
2

𝐴 − 3𝑖𝑎
4
𝜔
3

0

𝐴
2

𝐴 +

1

2

𝑀
1
𝑒
𝑖𝜎𝑇0
] 𝑒
𝑖𝜔0𝑇0

+ [

1

2

𝑎
2
sin2𝛼𝐴𝑒𝑖2𝜎𝑇0 + 1

4

𝑎
2
sin4𝛼𝐴𝑒𝑖2𝜎𝑇0

− 𝑎
3
𝐴
3

+ 𝑖𝑎
4
𝜔
3

0

𝐴
3

] 𝑒
𝑖3𝜔0𝑇0

−

3

16

𝑎
2
sin4𝛼𝐴𝑒𝑖4𝜎𝑇0𝑒𝑖5𝜔0𝑇0 + cc,

(16)

where cc denotes the complex conjugate of the preceding
terms.

Removing the secular terms of (16), we can obtain

2𝑖𝜔
0
𝐷
1
𝐴 = −𝑎

1
𝑖𝜔
0
𝐴 +

1

2

𝑎
2
sin2𝛼𝐴𝑒𝑖2𝜎𝑇0

−

1

8

𝑎
2
sin4𝛼𝐴 + 1

4

𝑎
2
sin4𝛼𝐴𝑒𝑖2𝜎𝑇0

− 3𝑎
3
𝐴
2

𝐴 − 3𝑖𝑎
4
𝜔
3

0

𝐴
2

𝐴 +

1

2

𝑀
1
𝑒
𝑖𝜎𝑇0
.

(17)

Function 𝐴 is derived from (𝑑𝐴/𝑑𝑇
1
) = (𝐷

0
+ 𝜀𝐷
1
)𝐴,

where𝐷
0
𝐴 = 0, so𝐷

1
𝐴 can be obtained by (17); then

𝑑𝐴

𝑑𝑇
1

=

−𝑖

2

{−𝑎
1
𝑖𝐴 + (

1

2

𝑎
2

𝜔
0

sin2𝛼 + 1
4

𝑎
2

𝜔
0

sin4𝛼)

⋅ 𝐴𝑒
𝑖2𝜎𝑇0

1

8

𝑎
2

𝜔
0

sin4𝛼𝐴 −
3𝑎
3
𝐴
2

𝐴

𝜔
0

− 3𝑖𝑎
4
𝜔
2

0

𝐴
2

𝐴 +

1

2𝜔
0

𝑀
1
𝑒
𝑖𝜎𝑇0
} .

(18)
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Letting 𝐴 = (1/2)𝑎𝑒
𝑖𝜃 in (18), where 𝑎 and 𝜃 are real

functions, and 𝛾 = 𝜎𝑇
0
− 𝜃. Separating real parts and

imaginary parts, we get

̇𝑎 = −

1

2

𝑎
1
𝑎 + (

1

4

𝑎
2

𝜔
0

𝑎sin2𝛼 + 1
8

𝑎
2

𝜔
0

𝑎sin4𝛼) sin 2𝛾

−

3

2

𝑎
4
𝜔
2

0

𝑎
3

+

1

4𝜔
0

𝑀
1
sin 𝛾,

𝑎 ̇𝛾 = 𝜎𝑎 + (

1

4

𝑎
2

𝜔
0

𝑎sin2𝛼 + 1
8

𝑎
2

𝜔
0

𝑎sin4𝛼) cos 2𝛾

−

3

8𝜔
0

𝑎
3

𝑎
3
−

1

16

𝑎
2

𝜔
0

𝑎sin4𝛼 + 1

4𝜔
0

𝑀
1
cos 𝛾.

(19)

Steady state motions occur at ̇𝑎 = ̇𝛾 = 0, so (19) can be given
as

(

1

4

𝑎
2

𝜔
0

sin2𝛼 + 1
8

𝑎
2

𝜔
0

sin4𝛼) 𝑎 sin 2𝛾 + 1

4𝜔
0

𝑀
1
sin 𝛾

=

1

2

𝑎
1
𝑎 +

3

2

𝑎
4
𝜔
2

0

𝑎
3

,

(

1

4

𝑎
2

𝜔
0

sin2𝛼 + 1
8

𝑎
2

𝜔
0

sin4𝛼) 𝑎 cos 2𝛾 + 1

4𝜔
0

𝑀
1
cos 𝛾

= −𝑎𝜎 +

3

8𝜔
0

𝑎
3

𝑎
3
+

1

16

𝑎
2

𝜔
0

𝑎sin4𝛼.

(20)

The 𝛾 is eliminated by (20), the amplitude-frequency response
equation can be given as

8𝑁

𝑀
2

1

(𝑃
2

𝑎
2

+ 𝑄
2

𝑎
2

− 𝑁
2

𝑎
2

−

1

16

𝑀
2

1

𝜔
2

0

)

2

+

1

2

(𝑃
2

𝑎 + 𝑄
2

𝑎 − 𝑁
2

𝑎 −

1

16𝑎

𝑀
2

1

𝜔
2

0

) − 𝑁 − 𝑄 = 0,

(21)

where 𝑁 = (𝑎
2
/4𝜔
0
)sin2𝛼 + (𝑎

2
/8𝜔
0
)sin4𝛼, 𝑃 = (1/2)𝑎

1
+

(3/2)𝑎
4
𝜔
2

0

𝑎
2, and𝑄 = −𝜎+(3/8𝜔

0
)𝑎
2

𝑎
3
+(1/16)(𝑎

2
/𝜔
0
)sin4𝛼.

4. Numerical Example and Discussion

The numerical simulation based on the main drive system
of stand F7 of 1780 rolling mill of some Steel Co. sim-
plifies the practical model into a 4-DOF torsional system.
Here are the parameters of the main drive system: 𝐽

1
=

8080.081 kg⋅m2, 𝐽
2
= 324.7148 kg⋅m2, 𝐽

3
= 266.1488 kg⋅m2,

𝐽
4
= 4885.4 kg⋅m2, 𝐾

1
= 1.2632× 108Nm/rad, 𝐾

1
= 1.0884×

108Nm/rad, 𝐾
1
= 2.786× 108Nm/rad, and 𝜁

𝑖
= 0.02.

Figure 2 shows the relationship between amplitude and
frequency responses of the different joint angles which are
3∘, 5∘, and 8∘, respectively. 𝜎 is the detuning parameter. It
can be seen that there is a slight reduction of resonance
peak amplitudes which reflects the joint angles decrease. A
similar phenomenon is observed for the resonance curves
by shifting the backbone curve to the right side with the
frequency increase. These facts reveal the vibration response,
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Figure 2: Amplitude-frequency characteristic curve.

which relates to the change of the joint angle of themain drive
system and affects the behavior of resonances.

A more comprehensive understanding on the effect of
𝑀 could be achieved by constructing the nonlinear fre-
quency response characteristics. Dynamic responses may be
quantified by applying the values from the calculation at
each excitation frequency. Figure 3 shows the amplitude-
frequency response curves in values in which𝑀 is 4.1635 ×
10
5Nm, 8.3269 × 105Nm, and 1.1776 × 106Nm and the joint

angle is 5∘. Since there is no spring in parallel with the external
excitation, both the displacement and resonance area may
grow up to a larger value under the influence of the increase
of the disturbance torque.

The effect of the nonlinear damping is clearly visible in
Figure 4. As 𝐶NL decreases, the resonance zone amplifies
and the peak amplitude increases. The backbone curves do
not bend or fold. A comparison of the resonance curves
with different nonlinear stiffness in Figure 5 shows diverse
changes. Unlike the case in Figure 4 where the peak ampli-
tude increases, the amplitudes almost keep a constant but the
backbone curves are evidently bended to the right side with
the value of 𝐾NL aggrandized. Both the nonlinear damping
and nonlinear stiffness play active roles in the resonance
regime, respectively.

Figure 6 shows the relationship between joint angles and
disturbance torque. Such a bended trend of the curve is
consistent with the amplitude gradually growing. Higher
amplitude of the resonance regime can be explained by the
fact that the larger joint angle under the same disturbance
receives more excitation.

When only interested in the relationship between ampli-
tude and the value of sin𝛼, it cannot be obtained unless the
value of the detuning parameter 𝜎 is known. Comparisons
disturbance torque, nonlinear damping, and nonlinear stiff-
ness are clearly shown in Figures 7, 8, and 9, respectively. All
the values of the detuning parameter here are defined to be 1.

As discussed before, the amplitude goes up with the
disturbance torque increasing under the lower value regime
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Figure 9: Amplitude-angle characteristic curve.

of sin𝛼. In Figure 7 sample results are shown. The amplitude
increases gradually when the value of sin𝛼 enlarges to 0.15,
which is named critical value here, and it runs up to a higher
value rapidly when the value of sin𝛼 exceeds 0.13 under
𝑀 = 3.399 × 10

5Nm. Note that this is higher than the one
previously discussed when𝑀 = 4.163 × 10

5Nm.The similar
response pattern, a declining effect followed, is observed.
Unlike the influence under the slighter disturbance torque
condition, the critical value becomes smaller. The critical
value is nearly 0.12 under𝑀 = 4.808×10

5Nm.The simulated
value of the joint angle is at most 8∘, under which the system
could vibrate at relative lower amplitude.

The same phenomenon can be seen in Figures 8 and 9
as it performs in Figure 7. But each condition has a differ-
ent critical value in different amplitude-angle characteristic
curve. The same jump phenomenon is expected in the larger
value of sin𝛼 regime that exhibits instability.The curves show
a drastic jump from the critical value due to a finite area in the
figures.

In Figure 8, the amplitudes are almost equal at a lower
value of sin𝛼 under different nonlinear damping. With the
increase of the value of sin𝛼, the relative smaller nonlinear
damping has the lower critical value. The critical value in
the vicinity is quite unstable as shown in Figure 8. The
variation is a little dissimilar to the performance in Figure 9.
The amplitudes are distinct at a lower value of sin𝛼 under
different nonlinear stiffness. The smaller critical value is
employed by the larger stiffness.

5. Conclusions

In this paper, the nonlinear torsional vibration dynamical
modeling of the multi-DOF rolling mill’s main drive system
under joint angle parametric excitation is established. The
influence of joint angle in the rolling mill’s main drive system
is taken into account and expressed by parametric stiffness.
Attention is paid to the fundamental resonance, since the
excitation frequency is close to the first natural frequency of
the system.

The multiscale method is used to evaluate the nonlinear
dynamic behavior of the torsional system by obtaining the
amplitude-frequency characteristic equation and amplitude-
frequency response equation. Numerical example of the
1780 rolling mill of some Steel Co. rolling mill’s main drive
system is given to illustrate the effects of the resonance on
the response of the system. The effects of the joint angle,
nonlinear damping, nonlinear stiffness, and the disturbance
torque on the amplitude of the system are discussed. The
limited joint angles range in the rolling process is obtained,
and the variation rules of the joint angle caused by the
nonlinear damping, nonlinear stiffness, and the disturbance
torque are given.

The results presented the rolling mill can work more
stably with the joint angle at a range from 2∘ to 8∘ by controll-
ing the value of parameters. Overall, our analysis matches the
practical parameters in a qualitative manner.
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