
Research Article
Formalization of Function Matrix Theory in HOL

Zhiping Shi,1,2 Zhenke Liu,1 Yong Guan,1 Shiwei Ye,3 Jie Zhang,4 and Hongxing Wei5

1 Beijing Key Laboratory of Electronic System Reliability Technology, Capital Normal University, Beijing 100048, China
2Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
3 College of Information Science and Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
4College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
5 School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Correspondence should be addressed to Zhiping Shi; shizhiping@gmail.com

Received 12 January 2014; Accepted 22 April 2014; Published 24 July 2014

Academic Editor: Guiming Luo

Copyright © 2014 Zhiping Shi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Function matrices, in which elements are functions rather than numbers, are widely used in model analysis of dynamic systems
such as control systems and robotics. In safety-critical applications, the dynamic systems are required to be analyzed formally and
accurately to ensure their correctness and safeness. Higher-order logic (HOL) theorem proving is a promise technique tomatch the
requirement. This paper proposes a higher-order logic formalization of the function vector and the function matrix theories using
theHOL theoremprover, including data types, operations, and their properties, and further presents formalization of the differential
and integral of function vectors and function matrices. The formalization is implemented as a library in the HOL system. A case
study, a formal analysis of differential of quadratic functions, is presented to show the usefulness of the proposed formalization.

1. Introduction

Being operators of linear space transformation,matrices have
extended their applications in many science fields such as
physics, mechanics, optics, the probability theory, and many
engineering fields such as computer graphics, signal pro-
cessing, and robotics. In the applications, dynamic system
modeling requests function matrices, in which elements are
functions rather than constants.

Traditionally, function matrix computations are dealt
with by numerical analysis algorithms or computer algebra
algorithms, yet the absolute precision in the real number field
can never be reached because of round-off error, approximate
algorithms to address large-scale issues, and so on. On the
other hand, analysis of function matrix based models has
been carried out with paper and pencil, as is quite tedious and
error-prone. A tiny error or inaccuracy, however, may result
in failure or even loss of lives in highly sensitive and safety-
critical engineering applications. Mechanical theorem prov-
ing, on the contrary, is capable of performing precise and
scalable analysis.

Mechanical theorem proving has been considered a
promising and powerful method of formal proofs in pure
mathematics or system analysis and verification [1–5]. Sys-
tems or any proof goals need to be modeled formally before
they are verified by theorem provers, and theorem provers
work based on logic theorem libraries of mathematics. It is
indispensable to formalize functionmatrix theory before for-
mal verifying the systems based on the theory. Real matrices
have been formalized in many theorem provers. Nakamura
et al. [6] presented the formalization of the matrix theory in
Mizar in 2006.The COQ system initiated to provide matrices
in recent years [7]. Harrison presented the formalization of
Euclidean space in the HOL Light system in 2005 [8]. In Isa-
belle/HOL [9], some basic matrix theory has been formalized
[10, 11]. We have developed the basic matrix theory in HOL
theoremprover [12]. However, no formalized functionmatrix
theory has yet been reported in literatures.

HOL is one of the most popular theorem provers and has
a lot of successful applications.Thenewest version of theHOL
is named HOL4. This paper introduces the formalization of
the functionmatrix theory in HOL4, including formalization

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 201214, 10 pages
http://dx.doi.org/10.1155/2014/201214

http://dx.doi.org/10.1155/2014/201214

2 Journal of Applied Mathematics

of definitions and properties of function vectors and function
matrices as well as their arithmetic operations and differ-
ential. This work is jointly based on the realTheory library,
limTheory library, and fcpTheory library in HOL4.

The formalization of the function vector is proposed in
Section 2, while the formalization of the function matrix
occupied Section 3. Section 4 proposes formal definitions
and properties of differential and integral of function matri-
ces (vectors). As a case study, formal proof of differential of
quadratic functions is shown in Section 5 to demonstrate the
usefulness of the formalized theory. Finally, the paper draws
the conclusion in Section 6.

2. Formalization of Function Vectors

Formal definitions and properties of function vectors and
their operations are proposed in this section.

A vector with functions of a variable 𝑥 as elements is
called a function vector, denoted by

𝛼 (𝑥) = (𝛼
1
(𝑥) , . . . , 𝛼

𝑖
(𝑥) , . . . , 𝛼

𝑛
(𝑥)) . (1)

The difference between a function vector and a real vector
is that the elements of the function vector are functions
although a real number could also be seen as a constant
function. In HOL4, “𝛼 -> 𝛽” donates a function type with
domain 𝛼 and range 𝛽. In this paper the elements of a func-
tion vector are real functions, and the data type of functions
is denoted by “real -> real.”

In HOL4, the library fcpTheory provides an operator
“∗∗” to construct multidimensional data types. So, the func-
tion vector data type is defined by

Hol type: (real -> real) ∗ ∗ 'n,
where “'n” is a type variable denoting the dimension of
function vectors, and the actual dimension can be retrieved
by the function dimindex (:'n).

According to the data type definition above, for a function
vector k of this type, the element V

𝑖
at position 𝑖 is denoted

by “v %% i” or “v ' i” in HOL4. Based on the definition, the
arithmetic operations and their properties of function vectors
are formalized below.

Based on the type definition, we present the formal
definitions of the arithmetic operations of function vectors
and the formal definitions of some special function vectors,
such as the base vectors and the zero vectors in HOL4. In
this paper, fk, fk1, and fk2 denote function vectors, 𝑓 and
𝑔 real functions, and 𝑘 and 𝑙 real numbers. To simplify the
definitions of arithmetic operations, two mapping functions
are given in Definitions 1 and 2, which expose their elements
to operations of function vectors.

Definition 1 (fvector map def). |- !f fv. fvector map f fv =
FCP i. (\x. f (fv ' i x)).

Definition 2 (fvector map2 def). |- !f fv1 fv2. fvector map2

f fv1 fv2 = FCP i. (\x. f (fv1 ' i x) (fv2 ' i x)).

Definition 1 is a unary operation and Definition 2 is a
binary operation on function vectors. Based on the two defi-
nitions, the arithmetic operations of function vectors could

be defined concisely. “∼”, “+,” and “-” are overloaded for
negative, addition, and subtraction of function vectors.

Definition 3 (fvector neg def). |- $∼= fvector map numeric

negate.

Definition 4 (fvector add def). |- $ + = fvector map2 $+.

Definition 5 (fvector sub def). |- $ - = fvector map2 $-.

Two function vectors can do inner product operation,
calculated as the following formula:

V (𝑥) 𝑢 (𝑥) =
𝑛

∑

𝑖=0

V
𝑖
(𝑥) 𝑢
𝑖
(𝑥) . (2)

In HOL4, “∗∗” is used to represent the inner product opera-
tor.

Definition 6 (fvector dot def). |- !fv1 fv2. fv1 ∗∗ fv2 =
(\x. sum (0, dimindex (:'n)) (\i. fv1 ' i x ∗ fv2 ' i x)).

A function vector can be multiplied by a scalar. Here, we
formalize the operations multiplying function vectors by real
numbers and real functions on left and on right, respectively.

Definition 7 (fvector mul lk def). |- !k fv. k ∗∗ fv = FCP i.
(\x. k ∗ fv ' i x).

Definition 8 (fvector mul rk def). |- !fv k. fv ∗∗ k = FCP i.
(\x. fv ' i x ∗ k).

Definition 9 (fvector mul lkx def). |- !kx fv. kx∗∗ fv= FCP i.
(\x. kx x ∗ fv ' i x).

Definition 10 (fvector mul rkx def).

|- !fv kx. fv∗∗ kx= FCP i.(\x. fv ' i x ∗ kx x),

where kx denotes a real function contrasting k for a real
number.

We present the definitions of the zero vectors and the
basis vectors, and the elements of these function vectors are
the constant functions 0 and 1, respectively.

Definition 11 (fvector 0 def). |- fvector 0 = FCP i. (\x. 0).

Definition 12 (fvector basis def). |- !k. fvector basis k= FCP i.
if i = k then (\x. 1) else (\x. 0).

It is useful to compute the value of a function vector at a
certain 𝑥, as is defined by Definition 13.

Definition 13 (compute fvector def). |- !fv x. compute fvector

fv x = FCP i. fv ' i x.

On the basis of the definitions formalized above, we
formalize a number of the operations’ properties and all the
properties are proven to be HOL4 theorems. Most of the
properties are of linearity and direct-viewing. We list parts
of the properties in Table 1.

Journal of Applied Mathematics 3

Table 1: Part operations’ properties of function vectors.

Property name Formalization
FVECTOR NEG |- !fv. ∼fv = −1 ∗∗ fv

FVECTOR ADD MUL LK |- !fv1 fv2 k. k ∗∗ (fv1 + fv2) = k ∗∗ fv1 + k ∗∗ fv2

FVECTOR ADD RDISTRIB |- !fv1 fv2 fv3. (fv1 + fv2) ∗∗ fv3 = (\x. (fv1 ∗∗ fv3) x + (fv2 ∗∗ fv3) x)
FVECTOR ADD ASSOC |- !fv1 fv2 fv3. fv1 + fv2 + fv3 = fv1 + (fv2 + fv3)
FVECTOR SUB LZERO |- !fv. fvector 0 − fv = ∼fv

FVECTOR DOT FBASIS |- !fv k x. k < dimindex (:'n) ==> (fv ∗∗ fvector basis k = fv ' k)

FVECTOR DOT FCP
|- ($FCP fv1 ∗∗ fv2 = (\x. sum (0,dimindex (:'n)) (\i. fv1 i x ∗ fv2 ' i x)))∧

(fv2 ∗∗ $FCP fv1 = (\x. sum (0,dimindex (:'n)) (\i. fv2 ' i x ∗ fv1 i x)))
FVECTOR ADD INDEX |- !fv1 fv2 i. i < dimindex (:'n) ==> ((fv1 + fv2) ' i = (\x. fv1 ' i x + fv2 ' i x))
FVECTOR SUB INDEX |- !fv1 fv2 i. i < dimindex (:'n) ==> ((fv1 − fv2) ' i = (\x. fv1 ' i x − fv2 ' i x))
FVECTOR NEG NEG |- !fv. ∼∼fv = fv

FVECTOR ADD MUL LKX |- !fv1 fv2 kx. kx ∗∗ (fv1 + fv2) = kx ∗∗ fv1 + kx ∗∗ fv2

FVECTOR ADD MUL RKX |- !fv1 fv2 kx. (fv1 + fv2) ∗∗ kx = fv1 ∗∗ kx + fv2 ∗∗ kx

FVECTOR MUL LRADD |- !fv k l. (k + l) ∗∗ fv = k ∗∗ fv + l ∗∗ fv

FVECTOR MUL RRADD |- !fv k l. fv ∗∗ (k + l) = fv ∗∗ k + fv ∗∗ l

FVECTOR MUL LFADD |- !fv f g. (\x. f x + g x) ∗∗ fv = f ∗∗ fv + g ∗∗ fv

FVECTOR ADD RDISTRIB |- !fv1 fv2 fv3. (fv1 + fv2) ∗∗ fv3 = (\x. (fv1 ∗∗ fv3) x + (fv2 ∗∗ fv3) x)
FVECTOR SUB LDISTRIB |- !fv1 fv2 fv3. fv1 ∗∗ (fv2 − fv3) = (\x. (fv1 ∗∗ fv2) x − (fv1 ∗∗ fv3) x)
FVECTOR SUB RDISTRIB |- !fv1 fv2 fv3. (fv1 − fv2) ∗∗ fv3 = (\x. (fv1 ∗∗ fv3) x − (fv2 ∗∗ fv3) x)
FVECTOR DOT LMUL K |- !fv1 fv2 k. (\x. k ∗ (fv1 ∗∗ fv2) x) = (k ∗∗ fv1) ∗∗ fv2

FVECTOR DOT LMUL KX |- !fv1 fv2 k. (\x. k x ∗ (fv1 ∗∗ fv2) x) = (k ∗∗ fv1) ∗∗ fv2

FVECTOR MUL LK ASSOC |- !fv k l. k ∗∗ l ∗∗ fv = (k ∗ l) ∗∗ fv

FVECTOR MUL LKX ASSOC |- !fv f g. f ∗∗ g ∗∗ fv = (\x. f x ∗ g x) ∗∗ fv

FVECTOR DOT COMM |- !fv1 fv2. fv1 ∗∗ fv2 = fv2 ∗∗ fv1

FVECTOR EQ |- !fv1 fv2. (fv1 = fv2) <=> (fv1 − fv2 = fvector 0)
FVECTOR EQ2 |- !fv1 fv2. (fv1 = fv2) <=> !i. i < dimindex (:'n) ==> (fv1 ' i = fv2 ' i)
FVECTOR ADD LID |- !fv. fvector 0 + fv = fv

FVECTOR ADD RID |- !fv. fv + fvector 0 = fv

FVECTOR ADD NEG |- !fv. fv + ∼fv = fvector 0

FVECTOR ADD NEG2 |- !fv1 fv2. fv1 + ∼fv2 = fv1 − fv2

FVECTOR SUB ADD |- !fv1 fv2. fv1 − fv2 + fv2 = fv1

FVECTOR MUL L1 |- !fv. 1 ∗∗ fv = fv

FVECTOR LNEG UNIQ |- !fv1 fv2. (fv1 + fv2 = fvector 0) <=> (fv1 = ∼fv2)
FVECTOR RNEG UNIQ |- !fv1 fv2. (fv1 + fv2 = fvector 0) <=> (fv2 = ∼fv1)
FVECTOR MULK COMM |- !fv k. fv ∗∗ k = k ∗∗ fv

FVECTOR MULKX COMM |- !fv f. fv ∗∗ f = f ∗∗ fv

FVECTOR EXIST NEG |- !fv. ?fv'. fv + fv' = fvector 0

FVECTOR FVECTOR 0 DOT |- !fv. fvector 0 ∗∗ fv = (\x. 0)
COMPUTE FVEC MUL MATRIX |- !fv A x. compute fvector fv x ∗∗ A = compute fvector (fv ∗∗ A) x

COMPUTE VEC MUL FVEC |- !fv v x. v ∗∗ compute fvector fv x = (v ∗∗ fv) x

3. Function Matrices

Like defining function vectors, “∗∗” is used again to define
function matrices. A function matrix takes function vectors
with data type “(real -> real) ∗ ∗ 'n” as elements. So, the data
type of function matrices is formally defined using “∗ ∗”
twice as

Hol type: ((real -> real) ∗ ∗ 'n) ∗ ∗ 'm.

This defines a function matrix with dimindex (:'n) rows
and dimindex (:'m) columns. Similar to function vectors,
“A %% i %% j” or “A ' i ' j” refers to the element of the 𝑖th
row and 𝑗th column of the function matrix 𝐴.

Based on the type definition, we present formal defi-
nitions of the arithmetic operations of function matrices,
including negative, addition, subtraction, transposition and
multiplication by function matrices, function vectors, and

4 Journal of Applied Mathematics

scalars and functions. And the formal definitions of the
special function matrices, the identity matrices, and the zero
matrixes are presented. In addition, the function matrices’
inversion is formally defined. In this paper, fm, fm1, and fm2

symbolize functionmatrices, f and g functions, and k and l

real numbers. Two mapping functions are defined to make
formalizations of negative, addition, and subtraction concise,
like in the function vectors case.

Definition 14 (fmatrix map def). |- !f fm. fmatrix map f fm =
FCP i j. (\x. f (fm ' i ' j x)).

Definition 15 (fmatrix map2 def). |- !f fm1 fm2. fmatrix

map2 f fm1 fm2 = FCP i j. (\x. f (fm1 ' i ' j x)(fm2 ' i ' j x)).

Definition 16 (fmatrix neg def). |- fmatrix neg = fmatrix map

numeric negate.

Definition 17 (fmatrix add def). |- $+ = fmatrix map2 $+.

Definition 18 (fmatrix sub def). |- $- = fmatrix map2 $-.

Multiplication of function matrices is based on the mul-
tiplication of rows and columns of the function matrices.The
functions to retrieve a certain row or column of a function
matrix are formalized based on FCP.

Definition 19 (fun row def). |- !fm k. fun row fm k = FCP j.
fm ' k ' j.

Definition 20 (fun column def). |- !fm k. fun column fm k =
FCP i. fm ' i ' k.

Definition 21 (fmatrix prod def). |- !fm1 fm2. fm1 ∗∗ fm2 =
FCP i j. fun row fm1 i ∗∗ fun column fm2 j.

The function matrices can be multiplied with different
data types including function factors, real numbers, and real
functions. The formal definitions are as follows.

Definition 22 (fmatrix mul lk def). |- !k fm. k ∗∗ fm= FCP i j.
(\x. k ∗ fm ' i ' j x).

Definition 23 (fmatrix mul rk def). |- !fm k. fm ∗∗ k= FCP i j.
(\x. fm ' i ' j x ∗ k).

Definition 24 (fmatrix mul lkx def). |- !k fm. k ∗∗ fm =
FCP i j. (\x. k x ∗ fm ' i ' j x).

Definition 25 (fmatrix mul rkx def). |- !fmk. fm∗∗ k= FCP i j.
(\x. fm 'i ' j x ∗ k x).

Definition 26 (fvector fmatrix prod def). |- !fv fm. fv ∗∗ fm=
FCP i. fv ∗∗ fun column fm i.

Definition 27 (fmatrix fvector prod def). |- !fm fv. fm ∗∗ fv =
FCP i. fun row fm i ∗∗ fv.

As shown below, we present definitions of the identity
function matrix, the zero function matrix, transposed matri-
ces, and reversibility of function matrices.

Definition 28 (fmatrix 0 def). |- fmatrix 0 = FCP i j. (\x. 0).

Definition 29 (fmatrix E def). |- fmatrix E = FCP ij. if i =
j then (\x. 1) else (\x. 0).

Definition 30 (transp fmatrix def). |- !fm. transp fmatrix

fm = FCP i j. fm ' j ' i.

Definition 31 (fmatrix inv def). |- !fm. fmatrix inv fm <=>
?fm'. (fm ∗∗ fm' = fmatrix E)∧ (fm' ∗∗ fm = fmatrix E).

Computing values of function matrices on a certain 𝑥

produces real matrices, as is defined by Definition 32.

Definition 32 (compute fmatrix def). |- !fm x. compute fmatrix

fm x = FCP i j. fm ' i ' j x.

Function vectors and function matrices can operate with
real vectors and real matrices, which are special function
vectors and function matrices.

Based on the definitions above, we formalize many linear
properties, which are useful in proving new theorems.

Property 1 (TRANSP FMATRIX FCP). The relation between
the elements of a function matrix and its transpose is as
follows:

|- !fm. transp fmatrix (FCP i j. fm i j) = FCP i j. fm j i.

Property 2 (TRANSP TRANSP FMATRIX). Transposing a
function matrix twice changes nothing:

|- !fm. transp fmatrix (transp fmatrix fm) = fm.

Property 3 (FMATRIX PROD FVECTOR). For any func-
tion matrix and function vector, denoted by 𝐴(𝑥) and V(𝑥),
respectively, it is held that

𝐴 (𝑥) V (𝑥) = V (𝑥) 𝐴𝑇 (𝑥) (3)

|- !fm fv. fm ∗∗ fv = fv ∗∗ transp fmatrix fm.

Property 4 (FVECTOR PROD FMATRIX). Swapping the
positions of the function matrix and the function vector, it
is held that

V (𝑥) 𝐴 (𝑥) = 𝐴𝑇 (𝑥) V (𝑥) (4)

|- !fm fv. fv ∗∗ fm = transp fmatrix fm ∗∗ fv.

Property 5 (TRANSP FMATRIX PROD). For any function
matrix 𝐴(𝑥), it is held that

[𝐴
𝑇
(𝑥) 𝐴 (𝑥)]

𝑇

= 𝐴
𝑇
(𝑥) 𝐴 (𝑥) (5)

|- !fm. transp fmatrix (transp fmatrix fm ∗∗ fm) =
transp fmatrix fm ∗∗ fm.

Journal of Applied Mathematics 5

Property 6 (TRANSP FMATRIX COLUMN). The rows of
a function matrix equal the corresponding columns of its
transpose:

|- !fm i.i < dimindex (:'m) ==> (fun column (transp
fmatrix fm) i = fun row fm i).

Property 7 (TRANSP FMATRIX ROW). The columns of a
function matrix equal the corresponding rows of its trans-
pose:

|- !fm i.i < dimindex (:'n) ==> (fun row (transp fmatrix

fm) i = fun column fm i).

Now, we present a special property (Property 8). A function
matrix, denoted by 𝐴(𝑥), can be formed by column function
vectors, written as

𝐴 (𝑥) = [V
1
(𝑥) , . . . , V

𝑖
(𝑥) , . . . , V

𝑛
(𝑥)] . (6)

So, multiplying a function matrix by its transpose can be
calculated as

𝐴
𝑇
(𝑥) 𝐴 (𝑥) = [V

𝑖
(𝑥) V
𝑗
(𝑥)]
𝑛×𝑛
. (7)

The property is formalized in Property 8.

Property 8 (FMATRIX ROW PROD). |- !fm. transp fmatrix

fm ∗∗ fm = FCP i j. fun column fm i ∗∗ fun column fm j.

Property 9 (FMATRIX VECTOR DOT PROD FMATRIX).
For multiplication of a functionmatrix and a function vector,
it is held that

𝐴 (𝑥) V (𝑥) 𝐴 (𝑥) = V (𝑥) 𝐴𝑇 (𝑥) 𝐴 (𝑥) (8)

|- !fm v. (fm ∗∗ v) ∗∗ fm = v ∗∗ transp fmatrix fm

∗∗fm.

Property 9 could be derived by Property 3.

Property 10 (COMPUTE FVEC MUL MATRIX). A func-
tion vector multiplies a real matrix:

|- !fv A x. compute fvector fv x ∗∗ A = compute

fvector (fv ∗∗ A) x.

Property 11 (COMPUTE VEC MUL FVEC). A real vector
multiplies a function vector

|- !fv v x. v ∗∗ compute fvector fv x = (v ∗∗ fv) x.

Other properties are listed in Table 2.
In practice, function matrices (and vectors) often operate

with real matrices (and vectors), and formalizations of the
operations are presented as follows.

Definition 33 (vec mul fvector def). |- !v fv. v ∗∗ fv =
(\x. sum (0,dimindex (:'n)) (\i. v 'i ∗ fv 'i x)).

Definition 34 (fvector mul vec def). |- !fv v. fv ∗∗ v =
(\x. sum (0,dimindex (:'n)) (\i. fv 'i x ∗ v 'i)).

Definition 35 (vec mul fmatrix def). |- !v fm. v ∗∗ fm =
FCP i. v ∗∗ fun column fm i.

Definition 36 (fmatrix mul vec def). |- !fm v. fm ∗∗ v =
FCP i. fun row fm i ∗∗ v.

Definition 37 (matrix mul fvector def). |- !A fv. A ∗∗ fv =
FCP i. row A i ∗∗ fv.

Definition 38 (fvector mul matrix def). |- !fv A. fv ∗∗ A =
FCP i. fv ∗∗ column A i.

Definition 39 (matrix mul fmatrix def). |- !A fm. A ∗∗ fm =
FCP i j. row A i ∗∗ fun column fm j.

Definition 40 (fmatrix mul matrix def). |- !fm A. fm ∗∗ A =
FCP i j. fun row fm i ∗∗ column A j.

4. Formalization of Differential and
Integral of Function Matrices

A function vector or function matrix is differentiable or inte-
grable supposing all its elements are differentiable or inte-
grable.This section presents the formalizations of differential
and integral of function vectors and function matrices based
on that of real functions.

A function vector, denoted by V(𝑥) = (𝑎
𝑖
(𝑥))
𝑛
, is derivable

at 𝑥 = 𝑥
0
if all its elements 𝑎

𝑖
(𝑥) (𝑖 = 1, 2, . . . , 𝑛) are derivable

at 𝑥 = 𝑥
0
, and the derivative can be written as

V󸀠 (𝑥) =
𝑑V (𝑥)
𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥0

= lim
Δ𝑥→0

V (𝑥
0
+ Δ𝑥) − V (𝑥

0
)

Δ𝑥

= (𝑎
󸀠

1
(𝑥) 𝑎

󸀠

2
(𝑥) ⋅ ⋅ ⋅ 𝑎

󸀠

𝑛
(𝑥)) .

(9)

A function vector, denoted by V(𝑥) = (𝑎
𝑖
(𝑥))
𝑛
, is integrable in

[𝑡
0
, 𝑡
1
] if all its elements 𝑎

𝑖
(𝑥) (𝑖 = 1, 2, . . . , 𝑛) are integrable

in [𝑡
0
, 𝑡
1
], and the integral can be written as

∫

𝑡1

𝑡0

V (𝑥) 𝑑𝑡 = (∫
𝑡1

𝑡0

𝑎
𝑖
(𝑥)𝑑𝑡)

𝑛

. (10)

According to the mathematics descriptions, we formally
define the differential and integral of function vectors based
on that of real functions. The differential and integral of a
real function are denoted by “diffl” and “integral” [12], respec-
tively, in HOL4.

Definition 41 (fvector diffl). For anyone function vector fk, it
is the case that the differential of fk at 𝑥 is the real vector k if
and only if the differential of members of fk at 𝑥 equals the
corresponding members of k at 𝑥. In HOL4, it is said that

|- !fv v x. (fv fvector diffl v) x <=> !i. i < dimindex

(:'n) ==> (fv ' i diffl v ' i) x.

Definition 42 (fvector integral). Calculating the integral of a
function vector fk in [𝑎, 𝑏] is equal to calculating the integral
of all members of fk in [𝑎, 𝑏]. In HOL4, it is said that

|- !a b fv. fvector integral (a,b) fv = FCP i. integral
(a,b) (fv ' i).

6 Journal of Applied Mathematics

Table 2: Properties of operations of function matrices.

Property name Formalization

COMPUTE FMATRIX MUL EQ
|- !fm1 fm2 x. compute fmatrix fm1 x ∗∗ compute fmatrix fm2 x =
compute fmatrix (fm1 ∗∗ fm2) x

FMATRIX ADD INDEX
|- !fm1 fm2 i j. i < dimindex (:'m) ∧ j < dimindex (:'n) ==>

((fm1 + fm2) ' i ' j = (\x. fm1 ' i ' j x + fm2 ' i ' j x))

FMATRIX SUB INDEX
|- !fm1 fm2 i j. i < dimindex (:'m) ∧ j < dimindex (:'n) ==>

((fm1 − fm2) ' i ' j = (\x. fm1 ' i ' j x – fm2 ' i ' j x))

FMATRIX ROW ADD
|- !fm1 fm2 i. i < dimindex (:'m) ==>

(fun row fm1 i + fun row fm2 i = fun row (fm1 + fm2) i)

FMATRIX COLUMN ADD
|- !fm1 fm2 i. i < dimindex (:'n) ==>

(fun column fm1 i + fun column fm2 i = fun column (fm1 + fm2)
i)

FMATRIX ROW SUB
|- !fm1 fm2 i. i < dimindex (:'m) ==>
(fun row fm1 i − fun row fm2 i = fun row (fm1 − fm2) i)

FMATRIX COLUMN SUB
|- !fm1 fm2 i. i < dimindex (:'n) ==>
(fun column fm1 i − fun column fm2 i = fun column (fm1 − fm2) i)

FMATRIX NEG |- !fm. ∼fm = −1 ∗∗ fm

FMATRIX NEG NEG |- !fm. ∼∼fm = fm

FMATRIX MUL K EQ |- !fm k. fm ∗∗ k = k ∗∗ fm

FMATRIX MUL KX EQ |- !fm f. fm ∗∗ f = f ∗∗ fm

FMATRIX ADD COMM |- !fm1 fm1. fm1 + fm2 = fm2 + fm1

FMATRIX ADD ASSOC |- !fm1 fm2 fm3. fm1 + (fm2 + fm3) = fm1 + fm2 + fm3

FMATRIX ADD MUL LK |- !fm1 fm2 k. k ∗∗ (fm1 + fm2) = k ∗∗ fm1 + k ∗∗ fm2

FMATRIX ADD MUL RK |- !fm1 fm2 k. (fm1 + fm2) ∗∗ k = fm1 ∗∗ k + fm2 ∗∗ k

FMATRIX ADD MUL LKX |- !fm1 fm2 kx. kx ∗∗ (fm1 + fm2) = kx ∗∗ fm1 + kx ∗∗ fm2

FMATRIX ADD MUL RKX |- !fm1 fm2 kx. (fm1 + fm2) ∗∗ kx = fm1 ∗∗ kx + fm2 ∗∗ kx

FMATRIX ADD MUL LFVEC |- !fm1 fm2 fv. fv ∗∗ (fm1 + fm2) = fv ∗∗ fm1 + fv ∗∗ fm2

FMATRIX ADD MUL RFVEC |- !fm1 fm2 fv. (fm1 + fm2) ∗∗ fv = fm1 ∗∗ fv + fm2 ∗∗ fv

FMATRIX SUB MUL LFVEC |- !fm1 fm2 fv. fv ∗∗ (fm1 − fm2) = fv ∗∗ fm1 − fv ∗∗ fm2

FMATRIX SUB MUL RFVEC |- !fm1 fm2 fv. (fm1 − fm2) ∗∗ fv = fm1 ∗∗ fv − fm2 ∗∗ fv

FMATRIX MUL LRADD |- !fm k l. (k + l) ∗∗ fm = k ∗∗ fm + l ∗∗ fm

FMATRIX MUL RRADD |- !fm k l. fm ∗∗ (k + l) = fm ∗∗ k + fm ∗∗ l

FMATRIX MUL LFADD |- !fm f g. (\x. f x + g x) ∗∗ fm = f ∗∗ fm + g ∗∗ fm

FMATRIX MUL RFADD |- !fm f g. fm ∗∗ (\x. f x + g x) = fm ∗∗ f + fm ∗∗ g

FMATRIX MUL RFVADD |- !fm fv1 fv2. fm ∗∗ (fv1 + fv2) = fm ∗∗ fv1 + fm ∗∗ fv2

FMATRIX MUL LFVADD |- !fm fv1 fv2. (fv1 + fv2) ∗∗ fm = fv1 ∗∗ fm + fv2 ∗∗ fm

FMATRIX ADD LDISTRIB |- !fm1 fm2 fm3. fm1 ∗∗ (fm2 + fm3) = fm1 ∗∗ fm2 + fm1 ∗∗ fm3

FMATRIX ADD RDISTRIB |- !fm1 fm2 fm3. (fm1 + fm2) ∗∗ fm3 = fm1 ∗∗ fm3 + fm2 ∗∗ fm3

FMATRIX MUL LMUL K |- !fm1 fm2 k. k ∗∗ fm1 ∗∗ fm2 = (k ∗∗ fm1) ∗∗ fm2

FMATRIX MUL RMUL K |- !fm1 fm2 k. k ∗∗ fm1 ∗∗ fm2 = fm1 ∗∗ k ∗∗ fm2

FMATRIX MUL NEG |- !fm1 fm2. ∼fm1 ∗∗ fm2 = fm1 ∗∗ ∼fm2

FMATRIX NEG PROD |- !fm1 fm2. ∼fm1 ∗∗ fm2 = ∼(fm1 ∗∗ fm2)
FMATRIX MUL LMUL KX |- !fm1 fm2 kx. kx ∗∗ fm1 ∗∗ fm2 = (kx ∗∗ fm1) ∗∗ fm2

FMATRIX MUL LK ASSOC |- !fm k l. k ∗∗ l ∗∗ fm = (k ∗ l) ∗∗ fm

FMATRIX MUL LKX ASSOC |- !fm f g. f ∗∗ g ∗∗ fm = (\x. f x ∗ g x) ∗∗ fm

FMATRIX ADD LID |- !fm. fmatrix 0 + fm = fm

FMATRIX ADD RID |- !fm. fm + fmatrix 0 = fm

FMATRIX ADD NEG |- !fm. fm + ∼fm = fmatrix 0

FMATRIX ADD NEG2 |- !fm1 fm2. fm1 + ∼fm2 = fm1 − fm2

FMATRIX SUB ADD |- !fm1 fm2. fm1 − fm2 + fm2 = fm1

FMATRIX SUB LZERO |- !fm. fmatrix 0 − fm = ∼fm

Journal of Applied Mathematics 7

Table 2: Continued.

Property name Formalization
FMATRIX MUL L1 |- !fm. 1 ∗∗ fm = fm

FMATRIX MULK COMM |- !fm k. fm ∗∗ k = k ∗∗ fm

FMATRIX MULKX COMM |- !fm kx. fm ∗∗ kx = kx ∗∗ fm

FVECTOR PROD FMATRIX |- !fm fv. fv ∗∗ fm = transp fmatrix fm ∗∗ fv

FMATRIX FVECTOR 0 PROD |- !fm. fvector 0 ∗∗ fm = fvector 0

FMATRIX ROW PROD
|- !fm. transp fmatrix fm ∗∗ fm =

FCP i j. fun column fm i ∗∗ fun column fm j

TRANSP FMATRIX COLUMN
|- !fm i. i < dimindex (:'m) ==>

(fun column (transp fmatrix fm) i = fun row fm i)
TRANSP FMATRIX FVECTOR PROD |- !fm fv. fm ∗∗ fv = fv ∗∗ transp fmatrix fm

TRANSP FMATRIX PROD
|- !fm. transp fmatrix (transp fmatrix fm ∗∗ fm) =

transp fmatrix fm ∗∗ fm

TRANSP FMATRIX ROW
|- !fm i. i < dimindex (:'n) ==>

(fun row (transp fmatrix fm) i = fun column fm i)

Again, the differentiability and integrability of function vec-
tors are formally defined based on those of real functions.The
differentiability and integrability of real functions are denoted
by “differentiable” and “integrable” respectively, in HOL4.

Definition 43 (fvector differentiable). For anyone function
vector fk, it is the case that fk is differentiable at 𝑥 if and only
if all the members of fk are differentiable at 𝑥. In HOL4, it is
said that

|- !a b fv. fvector differentiable fv x <=>

!a b i. a <= b ∧ i < dimindex (:'n) ==> (fv ' i)
differentiable x.

Definition 44 (fvector integrable). For anyone function vec-
tor fk, it is the case that fk is integrable in [𝑎, 𝑏] if and only if
all the members of fk are integrable in [𝑎, 𝑏]. In HOL4, it is
said that

|- !a b fv. fvector integrable (a,b) fv <=>

!a b i. a <= b ∧ i < dimindex (:'n) ==> integrable

(a,b) (fv ' i).

A function matrix, denoted by 𝐴(𝑥) = (𝑎
𝑖𝑗
(𝑥))
𝑚∗𝑛

, is
derivable at 𝑥 = 𝑥

0
if its all elements 𝑎

𝑖𝑗
(𝑥) (𝑖 = 1, 2, . . . , 𝑚;

𝑗 = 1, 2, . . . , 𝑛) are derivable at 𝑥 = 𝑥
0
, and the derivative can

be written as

𝐴
󸀠
(𝑥) =

𝑑𝐴 (𝑥)

𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥0

= lim
Δ𝑥→0

𝐴 (𝑥
0
+ Δ𝑥) − 𝐴 (𝑥

0
)

Δ𝑥

=

[

[

[

[

[

[

𝑎
󸀠

11
(𝑥
0
) 𝑎
󸀠

12
(𝑥
0
) ⋅ ⋅ ⋅ 𝑎

󸀠

1𝑛
(𝑥
0
)

𝑎
󸀠

21
(𝑥
0
) 𝑎
󸀠

22
(𝑥
0
) ⋅ ⋅ ⋅ 𝑎

󸀠

2𝑛
(𝑥
0
)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑎
󸀠

𝑚1
(𝑥
0
) 𝑎
󸀠

𝑚2
(𝑥
0
) ⋅ ⋅ ⋅ 𝑎

󸀠

𝑚𝑛
(𝑥
0
)

]

]

]

]

]

]

.

(11)

A function matrix, denoted by 𝐴(𝑥) = (𝑎
𝑖𝑗
(𝑥))
𝑚∗𝑛

, is inte-
grable in [𝑡

0
, 𝑡
1
] if all its elements 𝑎

𝑖𝑗
(𝑥) (𝑖 = 1, 2, . . . , 𝑚;

𝑗 = 1, 2, . . . , 𝑛) are integrable in [𝑡
0
, 𝑡
1
], and the integral can

be written as

∫

𝑡1

𝑡0

𝐴 (𝑡) 𝑑𝑡 = (∫

𝑡1

𝑡0

𝑎
𝑖𝑗
(𝑡)𝑑𝑡)

𝑚×𝑛

. (12)

Similar to function vectors, we formally define the differential
and integral of function matrices based on those of real
functions as follows.

Definition 45 (fmatrix diffl). For anyone functionmatrix𝑓𝑚,
it is the case that the differential of 𝑓𝑚 at 𝑥 is a matrix 𝐴 if
and only if the differentials of members of 𝑓𝑚 at 𝑥 equal the
corresponding members of 𝐴. In HOL4, it is said that

|- !fm A x. (fm fmatrix diffl A) x <=>

!i j. i < dimindex (:'m) ∧ j < dimindex (:'n) ==>
(fm 'i 'j diffl A 'i 'j) x.

Definition 46 (fmatrix integral). Calculating the integral of a
function matrix 𝑓𝑚 in [𝑎, 𝑏] is equal to calculating the inte-
gral of all members of 𝑓𝑚 in [𝑎, 𝑏]. In HOL4, it is said that

|- !a b fm. fmatrix integral (a,b) fm = FCP i j. integral
(a,b) (fm 'i 'j).

Definition 47 (fmatrix differentiable). For anyone function
matrix 𝑓𝑚, it is the case that 𝑓𝑚 is differentiable at 𝑥 if and
only if there exists a matrix 𝐴 which is the differential of 𝑓𝑚
at 𝑥. In HOL4, it is said that

|- !fm x. fm fmatrix differentiable x <=> ?A. (fm
fmatrix diffl A) x.

Definition 48 (fmatrix ingegrable). For anyone function
matrix 𝑓𝑚, it is the case that 𝑓𝑚 is integrable in [𝑎, 𝑏] if and

8 Journal of Applied Mathematics

only if all the elements of𝑓𝑚 are integrable in [𝑎, 𝑏]. InHOL4,
it is said that

|- !a b fm. fmatrix integrable (a,b) fm <=>

!a b i j. a <= b ∧ i < dimindex (:'m) ∧ j <

dimindex (:'n) ==>
integrable (a,b) (fm ' i ' j).

Based on the definitions above, we formalize and prove
many properties about differential and integral of function
matrices. Some of them are presented as follows.

Uniqueness is one of the most important properties for
differential. Differential of a function matrix is unique.

Property 12 (FMATRIX DIFF UNIQ). |- !fm A B x. (fm
fmatrix diffl A) x ∧ (fm fmatrix diffl B) x ==> (A = B).

Suppose𝐴(𝑥) = (𝑎
𝑖𝑗
(𝑥))
𝑚∗𝑛

, 𝐵(𝑥) = (𝑏
𝑖𝑗
(𝑥))
𝑚∗𝑛

are differ-
entiable. It is the case that

𝑑

𝑑𝑥

[𝐴 (𝑥) ± 𝐵 (𝑥)] =

𝑑𝐴 (𝑥)

𝑑𝑥

±

𝑑𝐵 (𝑥)

𝑑𝑥

. (13)

The property is formalized in HOL4 as follows.

Property 13 (DIFF FMATIRX ADD). |- !fm1 fm2 A B x.
(fm1 fmatrix diffl A) x ∧ (fm2 fmatrix diffl B) x

==>((fm1 + fm2) fmatrix diffl (A + B)) x.

Property 14 (DIFF FMATIRX SUB). |- !fm1 fm2 A B x.
(fm1 fmatrix diffl A) x ∧ (fm2 fmatrix diffl B) x

==>((fm1 - fm2) fmatrix diffl (A - B)) x.

Similar to the differential of product of real functions, the
differential of inner product of function vectors is defined by

𝑑

𝑑𝑥

[V
1
(𝑥) V
2
(𝑥)] =

𝑑V
1
(𝑥)

𝑑𝑥

V
2
(𝑥) + V

1
(𝑥)

𝑑V
2
(𝑥)

𝑑𝑥

. (14)

In HOL4, it is formalized by Property DIFF FVECTOR
MUL.

Property 15 (DIFF FVECTOR MUL). |- !fv1 fv2 V1 V2 x.
(fv1 fvector diffl V1) x ∧ (fv2 fvector diffl V2)x ==>

((fv1 ∗∗ fv2) diffl (V1 ∗∗ compute fvector fv2 x +
V2 ∗∗ compute fvector fv1 x)) x.

The differential of the product of a function vector and a
matrix is defined by

𝑑

𝑑𝑥

[V (𝑥) 𝐴] =
𝑑V (𝑥)
𝑑𝑥

𝐴. (15)

Property 16 (DIFF FVEC MUL MATRIX). |- !A fv v. (fv
fvector diffl v)(x) ==> ((fv ∗∗ A) fvector diffl (v ∗∗ A))(x).

Let 𝑘(𝑥) be a real function of 𝑥,𝐴(𝑥) is a functionmatrix,
and both 𝑘(𝑥) and 𝐴(𝑥) are differentiable, and then

𝑑

𝑑𝑥

[𝑘 (𝑥)𝐴 (𝑥)] =

𝑑𝑘 (𝑥)

𝑑𝑥

𝐴 (𝑥) + 𝑘 (𝑥)

𝑑𝐴 (𝑥)

𝑑𝑥

. (16)

Specially, if 𝑘(𝑥) regresses to a constant 𝑘, then

𝑑

𝑑𝑥

[𝑘𝐴 (𝑥)] = 𝑘

𝑑𝐴 (𝑥)

𝑑𝑥

. (17)

In HOL4, the above properties are formalized as follows.

Property 17 (DIFF FMATIRX MUL KX). |- !fm A kx k x.
(fm fmatrix diffl A) x ∧ (kx diffl k) x ==>

((kx ∗∗ fm) fmatrix diffl (k ∗∗ compute fmatrix

fm x + A ∗∗ kx x)) x.

Property 18 (DIFF FMATIRX MUL K). |- !fm A k x. (fm
fmatrix diffl A) x ==> ((k∗∗ fm) fmatrix diffl (k ∗∗A)) x.

Suppose 𝐴(𝑥) and 𝐵(𝑥) are differentiable, and 𝐴(𝑥) and
𝐵(𝑥) are multipliable, and then

𝑑

𝑑𝑥

[𝐴 (𝑥) 𝐵 (𝑥)] =

𝑑𝐴 (𝑥)

𝑑𝑥

𝐵 (𝑥) + 𝐴 (𝑥)

𝑑𝐵 (𝑥)

𝑑𝑥

. (18)

Property 19 (DIFF FMATRIX MUL). |- !fm1 fm2 A B x.
(fm1 fmatrix diffl A) x ∧ (fm2 fmatrix diffl B) x ==>

((fm1 ∗∗ fm2) fmatrix diffl (compute fmatrix fm1 x

∗∗ B + A ∗∗ compute fmatrix fm2 x)) x.

Suppose𝐴(𝑥) is a function matrix, 𝑥 = 𝑓(𝑡) is a real function
of 𝑡, and 𝐴(𝑥) and 𝑓(𝑡) are differentiable, and then

𝑑

𝑑𝑥

𝐴 (𝑥) =

𝑑𝐴 (𝑥)

𝑑𝑥

𝑓
󸀠
(𝑡) = 𝑓

󸀠
(𝑡)

𝑑𝐴 (𝑥)

𝑑𝑥

. (19)

Property 20 (DIFF FMATRIX CHAIN). |- !fm g A m x.
(fm fmatrix diffl A) (g x) ∧ (g diffl m) x ==>

(fmatrix o fm g fmatrix diffl (A ∗∗ m)) x.

That 𝐴(𝑥) is a constant matrix is equivalent to that

𝑑𝐴 (𝑥)

𝑑𝑥

= 0. (20)

Property 21 (DIFF CONST MATRIX). |- !A x. (matrix to

fun A fmatrix diffl matrix 0) x.
If 𝐴(𝑥) and its inverse are differentiable, then

𝑑𝐴
−1
(𝑥)

𝑑𝑥

= −𝐴
−1
(𝑥)

𝑑𝐴 (𝑥)

𝑑𝑥

𝐴
−1
(𝑥) . (21)

Property 22 (FMATRIX 0 INTEGAL). If a function matrix
equals the zero functionmatrix, then the integral of the func-
tion matrix is the zero real matrix. In HOL4, it is formalized
by

|- !fm a b. a <= b ∧ (fm = fmatrix 0) ==> (fmatrix

integral (a,b) fm = matrix 0).

5. Case Study—Differential of
Quadratic Functions

For linear control systems, the mathematical models of
their performance indicators are quadratic functions of state

Journal of Applied Mathematics 9

val DIFF QUADRATIC = store thm(“DIFF QUADRATIC”,
“!(fv:'n fun vector) (v:'n vector) (A:('n,'n) matrix) (t:real).
(fv fvector diffl v)(t) ∧ (transp A = A) ==>
((fv ∗∗ A ∗∗ fv) diffl

(v ∗∗ A ∗∗ (compute fvector fv t) + (v ∗∗ A) ∗∗ (compute fvector fv t)))(t)”,
REPEAT GEN TAC THEN

RW TAC std ss [MATRIX VECTOR] THEN

‘!(fv:'n fun vector) (A:('n,'n) matrix).
(transp A = A) ==> (fv ∗∗ A ∗∗ fv = (fv ∗∗ A) ∗∗ fv)’
by REWRITE TAC [] THENL

[SRW TAC [fcpLib.FCP ss] [fvector mul matrix def] THEN

SRW TAC [fcpLib.FCP ss] [fvector dot def] THEN

ABS TAC THEN

MATCH MP TAC SUM EQ THEN

SRW TAC [][] THEN

SRW TAC [fcpLib.FCP ss] [fvector mul vec def] THEN

SRW TAC [fcpLib.FCP ss] [matrix mul fvec def] THEN

SRW TAC [fcpLib.FCP ss] [vec mul fvector def] THEN

GEN REWR TAC RAND CONV [REAL MUL COMM] THEN

REWRITE TAC [GSYM SUM CMUL] THEN

MATCH MP TAC SUM EQ THEN

SRW TAC [][] THEN

DISJ2 TAC THEN

SRW TAC [fcpLib.FCP ss] [row def, column def] THEN

NTAC 3(POP ASSUM MP TAC) THEN

SRW TAC [fcpLib.FCP ss] [transp def] THEN

PROVE TAC [REAL MUL COMM],ALL TAC] THEN

‘!(fv:'n fun vector) (A:('n,'n) matrix) t:real.
(compute fvector fv t) ∗∗ A = compute fvector (fv ∗∗ A) t’
by REWRITE TAC [COMPUTE FVEC MUL MATRIX] THEN

‘!(fv:'n fun vector) (v:'n vector) t:real.
v ∗∗ (compute fvector fv t) = (v ∗∗ fv) t’
by REWRITE TAC [COMPUTE VEC MUL FVEC] THEN

‘!(fv:'n fun vector) (v:'n vector) (A:('n,'n) matrix) (t:real).
(fv fvector diffl v)(t) ==> ((fv ∗∗ A) fvector diffl (v ∗∗ A))(t)’
by REWRITE TAC [DIFF FVEC MUL MATRIX] THEN

PROVE TAC [DIFF FVECTOR MUL]);

Algorithm 1: Formal proof of the quadratic function differential.

and control variables, and the optimal control problem is
called the linear quadratic problem [13]. For example, the
differential of quadratic functions is involved in analyzing
asymptotic stability of the optimal closed-loop systems. In
this section, differential of quadratic functions is formalized.

Let 𝑥 = 𝑥(𝑡) ∈ 𝑅
𝑛 be a function vector, and 𝐴 = 𝐴

𝑇
∈

𝑅
𝑛×𝑛 a constant matrix, we formally analyze the differential

of the quadratic function 𝑥𝑇𝐴𝑥 with respect to 𝑡
∘
. Based on

the properties of differential of function vectors andmatrices,
we have

𝑑

𝑑𝑡

(𝑥
𝑇
𝐴𝑥) =

𝑑𝑥
𝑇

𝑑𝑡

𝐴𝑥 + 𝑥
𝑇 𝑑

𝑑𝑡

(𝐴𝑥)

=

𝑑𝑥
𝑇

𝑑𝑡

𝐴𝑥 + 𝑥
𝑇
(

𝑑𝐴

𝑑𝑡

𝑥 + 𝐴

𝑑𝑥

𝑑𝑡

)

=

𝑑𝑥
𝑇

𝑑𝑡

𝐴𝑥 + 𝑥
𝑇
𝐴

𝑑𝑥

𝑑𝑡

.

(22)

The formula is formally proved in HOL4 as shown in Algo-
rithm 1. Following the custom of our formalization, fk is
employed to denote function vector 𝑥 and real vector k to
denote the differential of fk at 𝑥. 𝑥𝑇𝐴𝑥 = (𝑥

𝑇
𝐴)𝑥 is proved

first to transform the original goal into the differential of
the inner product of two function vectors, which has been
proven in Property DIFF FVECTOR MUL. And the differ-
ential of 𝑥𝑇𝐴 could be dealt with by Property DIFF FVEC
MUL MATRIX.

6. Conclusion

Based on high order logic theorem prover HOL4, this paper
formalized the data type definitions and operation defini-
tions of function vectors and function matrices and proved
lots of operation properties. This paper also presented the
definitions of function matrix differential and integral and
their properties. All the formalization was implemented as a
library in the HOL4 system.The case study of formal proof of

10 Journal of Applied Mathematics

quadratic function illustrated the usefulness of the formalized
theory.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the International Coopera-
tion Program on Science and Technology (2010DFB10930,
2011DFG13000), the National Natural Science Foundation
of China (61070049, 61170304, 61104035, 61373034, and
61303014), the Natural Science Foundation of the City of Bei-
jing (4122017), the S&RKey Programof the BeijingMunicipal
Education Commission (KZ201210028036), and the Open
Project Program of State Key Laboratory of Computer archi-
tecture and the Open Project Program of Guangxi Key Labo-
ratory trusted software.

References

[1] C.Kern andM.R.Greenstreet, “Formal verification in hardware
design: a survey,” ACM Transactions on Design Automation of
Electronic Systems, vol. 4, no. 2, pp. 123–193, 1999.

[2] W. Wu and X. Gao, “Mathematics mechanization and applica-
tions after thirty years,” Frontiers of Computer Science in China,
vol. 1, no. 1, pp. 1–8, 2007.

[3] J. Liu and H. Lin, “Proof system for applied Pi calculus,” in
Theoretical Computer Science, vol. 323, pp. 229–243, Springer,
Berlin, Germany, 2010.

[4] Y. Li, W. N. N. Hung, and X. Song, “A novel formalization of
symbolic trajectory evaluation semantics in Isabelle/HOL,”The-
oretical Computer Science, vol. 412, no. 25, pp. 2746–2765, 2011.

[5] L. Chang, Z. Shi, T. Gu, and L. Zhao, “A family of dynamic
description logics for representing and reasoning about
actions,” Journal of Automated Reasoning, vol. 49, no. 1, pp.
1–52, 2010.

[6] Y. Nakamura, N. Tamura, and W. Chang, “A theory of matrices
of real elements,” Formalized Mathematics, vol. 14, no. 1, pp. 21–
28, 2006.

[7] I. Pasca, “Formally verified conditions for regularity of interval
matrices,” in Intelligent Computer Mathematics, vol. 6167 of
LectureNotes in Computer Science, pp. 219–233, Springer, Berlin,
Germany, 2010.

[8] J. Harrison, “A HOL theory of Euclidean space,” in Theorem
Proving in Higher Order Logics, vol. 3603 of Lecture Notes in
Computer Science, pp. 114–129, Springer, Berlin, Germany, 2005.

[9] T. Nipkow, L. C. Paulson, and M.Wenzel, Isabelle/HOL: a Proof
Assistant for Higher-Order Logic, vol. 2283 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, 2002.

[10] S. Obua, Flyspeck II: the basic linear programs [Ph.D. thesis],
Technische Universität München, Munich, Germany, 2008.

[11] S. Obua, “Proving bounds for real linear programs in Isabelle/
HOL,” in Theorem Proving in Higher Order Logics, vol. 3603
of Lecture Notes in Computer Science, pp. 227–244, Springer,
Berlin, Germany, 2005.

[12] Z. Shi, W. Gu, X. Li et al., “The gauge integral theory in HOL4,”
Journal of Applied Mathematics, vol. 2013, Article ID 160875, 7
pages, 2013.

[13] H. U. Shou-song, Principle of Automatic Control, Science Press,
Beijing, China, 2007.

