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The bifurcation of a nongeneric homoclinic orbit (i.e., the orbit comes from the equilibrium along the unstable manifold instead
of the center manifold) connecting a nonhyperbolic equilibrium is investigated, and the nonhyperbolic equilibrium undergoes a
pitchfork bifurcation. The existence (resp., nonexistence) of a homoclinic orbit and an 1-periodic orbit are established when the
pitchfork bifurcation does not happen, while as the nonhyperbolic equilibrium undergoes a pitchfork bifurcation, we obtain the
sufficient conditions for the existence of homoclinic orbit and two or three heteroclinic orbits, and so forth. Moreover, we explore
the difference between the bifurcation of the nongeneric homoclinic orbit and the generic one.

1. Introduction

It is well known that the nonhyperbolic equilibrium is
unstable and always undergoes a saddle-node (resp., trans-
critical or pitchfork) bifurcation. So the bifurcation problems
of homoclinic or heteroclinic orbits with nonhyperbolic
equilibria are more difficult and challenging. And few of the
papers take into account the homoclinic or heteroclinic orbits
with nonhyperbolic equilibria. Zhu [1] gave the sufficient
conditions for the existence of nongeneric heteroclinic orbits
accompanied with saddle-node bifurcation by extending
exponential trichotomy. Klaus and Knobloch [2] discussed
the bifurcation of homoclinic orbit to a saddle-center in
reversible system. Liu et al. [3] considered the bifurcations
of homoclinic orbit with a nonhyperbolic equilibrium for a
high dimensional system; they achieved the persistence of
homoclinic orbit and the bifurcation of periodic orbit for
the system accompanied by a pitchfork bifurcation. In 2012,
we discussed the bifurcations of generic heteroclinic loop
accompanied by pitchfork bifurcation [4]. For other works
about bifurcations of the homoclinic or heteroclinic orbits
with nonhyperbolic equilibria, the readers may see [5–8] and
references therein.

Inspired by the above works, we deal with the nongeneric
homoclinic bifurcation accompanied by a pitchfork bifurca-
tion in a 4-dimensional system. By extending the method
established in [7], we give the sufficient conditions for the

existence of a generic (resp., a nongeneric homoclinic) orbit
and a periodic orbit when pitchfork bifurcation does not
happen, while the nonhyperbolic equilibrium undergoes a
pitchfork bifurcation, we achieve the existence of homo-
clinic orbits connecting the bifurcated equilibrium and three
heteroclinic orbits, where we may know the difference of
bifurcations between the nongeneric homoclinic orbit and
the generic one.

The rest of the paper is organized as follows. In Section 2,
we present some hypotheses and give the normal form for
the system considered in this paper. The Poincaré map and
successor function are achieved in Section 3. Finally, the
existence and nonexistence of homoclinic, heteroclinic, and
periodic orbits are given in Section 4.

2. Hypotheses and Normal Form

Consider the following 𝐶𝑟 (𝑟 ≥ 3) system:

𝑤̇ = 𝐻 (𝑤, 𝜆, 𝜇) , (1)

and its unperturbed system

𝑤̇ = 𝐹 (𝑤) , (2)

where 𝑤 ∈ R4, 𝜆 ∈ R, 𝜇 ∈ R𝑙(𝑙 ≥ 3), and 0 ≤ 𝜆, |𝜇| ≪ 1,
𝐺(𝑤, 0, 0) = 𝐹(𝑤), 𝐻(𝑂, 0, 𝜇) = 0; namely, the origin is an
equilibrium of system (2).
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Assume system (2) has a homoclinic orbit Γ connecting
the origin with 𝛾(±∞) = 𝑂; denote Γ = {𝑤 = 𝛾(𝑡) : 𝑡 ∈ R}.
Moreover, the linearization 𝐷𝐹(𝑂) has four real eigenvalues
0, 𝜆
1
, −𝜌
1
, and −𝜌

2
satisfying −𝜌

2
< −𝜌
1
< 0 < 𝜆

1
. Obviously,

the nonhyperbolic equilibrium 𝑂 has a 2-dimensional stable
manifold𝑊𝑠, an 1- dimensional center manifold𝑊𝑐, and 1-
dimensional unstable manifold𝑊𝑢.

The following hypotheses will be needed in the whole
paper:

(H
1
) dim(𝑇

𝛾(𝑡)
𝑊
𝑐𝑢

⋂𝑇
𝛾(𝑡)
𝑊
𝑠

) = dim(𝑇
𝛾(𝑡)
𝑊
𝑢

⋂

𝑇
𝛾(𝑡)
𝑊
𝑠

) = 1, which means that the homoclinic orbit
is nongeneric, and the orbit is generic if it comes from
the origin along the center manifold; the bifurcation
for generic homoclinic orbit one may see [3]:

(H
2
)

lim
𝑡→+∞

𝑇
𝛾(𝑡)
𝑊
𝑐𝑢

= 𝑇
𝑂
𝑊
𝑢

+ 𝑒
+

,

lim
𝑡→−∞

𝑇
𝛾(𝑡)
𝑊
𝑠

= 𝑇
𝑂
𝑊
𝑠𝑠

+ 𝑒
−

,

(3)

where 𝑊𝑠𝑠 denotes the strong stable manifold of 𝑂,
𝑒
±

= lim
𝑡→∓∞

= ̇𝛾(𝑡) /| ̇𝛾(𝑡)|.

(H
3
) Let 𝑥-axis be the tangent space of the center

manifold at 𝑂, and let 𝜃(𝑥, 𝜆, 𝜇) be the vector field
defined on the center manifold and satisfies

𝜃 (0, 𝜆, 𝜇)= 0,
𝜕𝜃

𝜕𝑥
(0, 0, 0)= 0,

𝜕
2

𝜃

𝜕𝑥2
(0, 𝜆, 𝜇)= 0,

𝜕
3

𝜃

𝜕𝑥3
(0, 0, 0) > 0,

𝜕
2

𝜃

𝜕𝑥𝜕𝜆
(0, 0, 0) < 0,

𝜕
2

𝜃

𝜕𝑥𝜕𝜇
(0, 0, 0) = 0. (4)

According to Wiggins [9], under the above assumption,
the origin is a pitchfork bifurcation point, and 𝜆 is the param-
eter controlling the pitchfork bifurcation; that is to say, under
small perturbation when 𝜆 > 0 the origin is perturbed into
three hyperbolic saddles 𝑂0, 𝑂+, 𝑂− (one may see Figure 1).
Denote 𝑂0 = 𝑂 = (0, 0, 0, 0)󸀠, 𝑂+ = 𝑂0 + (√𝜆

𝑝
, 0, 0, 0)

󸀠, and

𝑂
−

= 𝑂
0

+ (−√𝜆
𝑝
, 0, 0, 0)

󸀠, where 𝜆
𝑝
= 𝜃
0
𝜆 +𝑂(𝜆

2

) +𝑂(𝜆𝜇),
𝜃
0
= −(𝜕

2

𝜃/𝜕𝑥𝜕𝜆)(0, 0, 0)/(𝜕
3

𝜃/𝜕𝑥
3

)(0, 0, 0). In the whole
paper, the sign “󸀠” denotes the transpose of the vector. It is
easy to see that dim(𝑊𝑢

𝑂
+) = dim(𝑊𝑢

𝑂
−) = 3, dim(𝑊𝑠

𝑂
+) =

dim(𝑊𝑠
𝑂
−) = 1, dim(𝑊𝑠

𝑂
0) = dim(𝑊𝑢

𝑂
0) = 2.

According to the invariance of the manifolds, we may
introduce a scale transformation and straighten the local
manifolds of 𝑊𝑐,𝑊𝑢,𝑊𝑠𝑠,𝑊𝑠; then system (2) has the
following expression in the small neighborhood 𝑈 of the
origin:

𝑥̇ = − 𝜆
𝑝
𝑥 + 𝑥
3

+ 𝜇ℎ (𝑥, 𝑦
1
, 𝑢, 𝑦
2
) + ℎ.𝑜.𝑡.,

̇𝑦
1
= [−𝜌

1
(𝛼) + . . .] 𝑦

1
+ 𝑂 (𝑦

2
) [𝑂 (𝑥) + 𝑂 (𝑢)] ,

𝑢̇ = [𝜆
1
(𝛼) + . . .] 𝑢,

̇𝑦
2
= [−𝜌

2
(𝛼) + . . .] 𝑦

2
+ 𝑂 (𝑦

1
) [𝑂 (𝑥) + 𝑂 (𝑦

1
) + 𝑂 (𝑢)] ,

(5)

where 𝛼 = (𝜆, 𝜇), 𝜆
1
(0) = 𝜆

1
, 𝜌
𝑖
(0) = 𝜌

𝑖
, for 𝑖 = 1, 2.

u
x

O+

O0

O−
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Figure 1: The orbits near nonhyperbolic equilibrium.

Due to the normal form (5) and (H
1
), we may choose 𝑇

(𝑇 ≫ 1) such that 𝛾(−𝑇) = (0, 0, 𝛿, 0)󸀠, 𝛾(𝑇) = (0, 𝛿, 0, 𝛿
𝑦
)
󸀠,

where 𝛿 > 0 is small enough such that {(𝑥, 𝑦
1
, 𝑢, 𝑦
2
) :

|𝑥|, |𝑦
1
|, |𝑢|, |𝑦

2
| < 2𝛿} ⊂ 𝑈. Obviously, |𝛿

𝑦
| = 𝑜(𝛿).

Take into account the linear variational system:

𝑈̇ = 𝐴𝑈, (6)

and its adjoint system

Φ̇ = −𝐴
󸀠

Φ, (7)

where 𝐴 = 𝐷𝐹(𝛾(𝑡)) and 𝐴󸀠 is the transpose of 𝐴.
We introduce the following lemma; it is very significant

in this paper.

Lemma 1. Let 𝑈(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), 𝑢
3
(𝑡), 𝑢
4
(𝑡)) be a fundam-

ental solution matrix of system (6), we can select 𝑢
1
(𝑡) ∈

(𝑇
𝛾(𝑡)
𝑊
𝑐𝑢

)
𝑐

⋂(𝑇
𝛾(𝑡)
𝑊
𝑠

)
𝑐, 𝑢
2
(𝑡) = ̇𝛾(𝑡)/| ̇𝛾(−𝑇)| ∈ 𝑇

𝛾(𝑡)

𝑊
𝑢

⋂𝑇
𝛾(𝑡)
𝑊
𝑠, 𝑢
3
(𝑡) ∈ 𝑇

𝛾(𝑡)
𝑊
𝑐𝑢

⋂(𝑇
𝛾(𝑡)
𝑊
𝑠

)
𝑐, 𝑢
4
(𝑡) ∈ (𝑇

𝛾(𝑡)

𝑊
𝑐𝑢

)
𝑐

⋂𝑇
𝛾(𝑡)
𝑊
𝑠 such that

𝑈 (−𝑇) = (

𝑢
11
0 1 𝑢

41

𝑢
12
0 0 𝑢

42

𝑢
13
1 0 𝑢

43

0 0 0 𝑢
44

),

𝑈 (𝑇) = (

1 0 𝑢
31
0

0 𝑢
22
𝑢
32
0

0 0 𝑢
33
0

𝑢
14
𝑢
24
𝑢
34
1

) ,

(8)

where 𝑢
12
̸= 0, 𝑢
𝑖𝑖
̸= 0 for 𝑖 = 2, 3, 4, and |𝑢

1𝑗
𝑢
−1

12
| ≪ 1 for 𝑗 =

1, 3, |𝑢
3𝑗
𝑢
−1

33
| ≪ 1 for 𝑗 = 1, 2, 4, and |𝑢

4𝑗
𝑢
−1

44
| ≪ 1 for 𝑗 =

1, 2, 3.

Proof. According to the hypotheses (H
1
) and (H

2
), one may

easily obtain the existence of the 𝑢
2
(𝑡), 𝑢
3
(𝑡), and 𝑢

4
(𝑡) with

the given expression at 𝑡 = ± 𝑇. Based on the condition (H
2
),

we take 𝑢
1
(𝑡) ∈ (𝑇

𝛾(𝑡)
𝑊
𝑐𝑢

)
𝑐

⋂(𝑇
𝛾(𝑡)
𝑊
𝑠

)
𝑐, satisfying

𝑢
1
(−𝑇) = (𝑢

11
, 𝑢
12
, 𝑢
13
, 𝑢
14
)
󸀠

, 𝑢
1
(𝑇) = (1, 0, 0, 0)

󸀠

.

(9)



Abstract and Applied Analysis 3

Let 𝑢
1
(𝑡) = 𝑢

1
(𝑡) + 𝑢

4
(𝑡)𝑢
14
, where 𝑢

14
= −𝑢
−1

44
𝑢
14
, so we have

𝑢
1
(𝑡) ∈ (𝑇

𝛾(𝑡)
𝑊
𝑐𝑢

)
𝑐

⋂(𝑇
𝛾(𝑡)
𝑊
𝑠

)
𝑐, satisfying

𝑢
1
(−𝑇) = (𝑢

11
, 𝑢
12
, 𝑢
13
, 0)
󸀠

, 𝑢
1
(𝑇) = (1, 0, 0, 𝑢

14
)
󸀠

,

(10)

where 𝑢
1𝑗
= 𝑢
1𝑗
− 𝑢
4𝑗
𝑢
−1

44
𝑢
14
, 𝑗 = 1, 2, 3, obviously 𝑢

12
̸= 0.

Noticing that the strong inclination property holds, it
then follows that 𝑢

33
̸= 0, 𝑢
44
̸= 0. By diag𝐴(𝑡) → diag(0, −𝜌

1
,

𝜆
1
, −𝜌
2
) as |𝑡| → ∞, one can easily know that |𝑢

1𝑗
𝑢
−1

12
| ≪ 1

for 𝑗 = 1, 3, |𝑢
3𝑗
𝑢
−1

33
| ≪ 1 for 𝑗 = 1, 2, 4, and |𝑢

4𝑗
𝑢
−1

44
| ≪ 1 for

𝑗 = 1, 2, 3.
The proof is then finished.

Let Φ(𝑡) = (𝜙
1
, 𝜙
2
, 𝜙
3
, 𝜙
4
) = (𝑈

−1

(𝑡))
󸀠; from the matrix

theory, we know thatΦ(𝑡) is the fundamental solutionmatrix
of (7).

Introduce the following local moving frame coordinates:

𝑒 (𝑡) = 𝛾 (𝑡) + 𝑈 (𝑡) 𝐿 (𝑡) , (11)

where 𝐿(𝑡) = (𝑙
1
(𝑡), 0, 𝑙

3
(𝑡), 𝑙
4
(𝑡))
󸀠. Define the cross sections:

𝑆
0
= {𝑤 = 𝑒 (𝑇) = (𝑥, 𝑦, 𝑢) :

󵄨󵄨󵄨󵄨𝑙𝑖
󵄨󵄨󵄨󵄨 < 𝛿} ⊂ 𝑈,

𝑆
1
= {𝑤 = 𝑒 (−𝑇) = (𝑥, 𝑦, 𝑢) :

󵄨󵄨󵄨󵄨𝑙𝑖
󵄨󵄨󵄨󵄨 < 𝛿} ⊂ 𝑈, 𝑖 = 1, 2.

(12)

Notice that if 𝑞
0
∈ 𝑆
0
, 𝑞
1
∈ 𝑆
1
, then

𝑞
0
= (𝑥
0
, 𝑦
10
, 𝑢
0
, 𝑦
20
)
󸀠

= 𝛾 (𝑇) + 𝑈 (𝑇) 𝐿 (𝑇) ,

𝐿 (𝑇) = (𝑙
10
, 0, 𝑙
30
, 𝑙
40
)
󸀠

,

𝑞
1
= (𝑥
1
, 𝑦
11
, 𝑢
1
, 𝑦
21
)
󸀠

= 𝛾 (−𝑇) + 𝑈 (−𝑇) 𝐿 (−𝑇) ,

𝐿 (−𝑇) = (𝑙
11
, 0, 𝑙
31
, 𝑙
41
)
󸀠

.

(13)

We may easily obtain the new coordinates for 𝑞
0
and 𝑞

1
as

follows:

𝑙
10
= (𝑢
12
)
−1

𝑦
11
− 𝑢
42
(𝑢
12
𝑢
44
)
−1

𝑦
21
,

𝑙
30
= 𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑦
11

+ (𝑢
11
(𝑢
12
)
−1

𝑢
42
− 𝑢
41
) (𝑢
44
)
−1

𝑦
21
,

𝑙
40
= (𝑢
44
)
−1

𝑦
21
,

𝑦
10
≈ 𝛿;

𝑙
11
= 𝑥
0
− 𝑢
31
(𝑢
33
)
−1

𝑢
0
,

𝑙
31
= (𝑢
33
)
−1

𝑢
0
,

𝑙
41
= 𝑦
20
− 𝛿
𝑦
− 𝑢
14
𝑥
0

+ (𝑢
14
𝑢
31
− 𝑢
34
) (𝑢
33
)
−1

𝑢
0
,

𝑢
1
≈ 𝛿.

(14)

3. Poincaré Map and Successor Function

In this section, we establish the Poincaré map in the new
coordinate system and then derive the successor function.

(1) Establishment of the map 𝑃
1
: 𝑆
1
󳨃→ 𝑆
0
.

Putting 𝑒(𝑡) = 𝛾(𝑡) + 𝑈(𝑡)𝐿(𝑡) into system (1), we have

̇𝛾 (𝑡) + 𝑈̇ (𝑡) 𝐿 (𝑡) + 𝑈 (𝑡) 𝐿̇ (𝑡)

= 𝐻 (𝛾 (𝑡) + 𝑈 (𝑡) 𝐿 (𝑡) , 𝜆, 𝜇)

= 𝐻 (𝛾 (𝑡) , 0, 0) + 𝐻
𝛾
(𝛾 (𝑡) , 0, 0)𝑈 (𝑡) 𝐿 (𝑡)

+ 𝐻
𝜆
(𝛾 (𝑡) , 0, 0) 𝜆 + 𝐻

𝜇
(𝛾 (𝑡) , 0, 0) 𝜇 + ℎ.𝑜.𝑡.

= 𝐹 (𝛾 (𝑡)) + 𝐷𝐹 (𝛾 (𝑡)) 𝑈 (𝑡) 𝐿 (𝑡)

+ 𝐻
𝜆
(𝛾 (𝑡) , 0, 0) 𝜆 + 𝐻

𝜇
(𝛾 (𝑡) , 0, 0) 𝜇 + ℎ.𝑜.𝑡..

(15)

Since ̇𝛾(𝑡) = 𝐹(𝛾(𝑡)) and 𝑈̇(𝑡) = 𝐴𝑈(𝑡) = 𝐷𝐹(𝛾(𝑡))𝑈(𝑡), it
then follows that

𝐿̇ (𝑡) = 𝑈
−1

(𝑡) [𝐻
𝜆
(𝛾 (𝑡) , 0, 0) 𝜆 + 𝐻

𝜇
(𝛾 (𝑡) , 0, 0) 𝜇] + ℎ.𝑜.𝑡.

(16)

Integrating both sides of the above equation from −𝑇 to𝑇, we
arrive at

𝐿 (𝑇) = 𝐿 (−𝑇) + ∫

𝑇

−𝑇

𝑈
−1

(𝑡)𝐻
𝜆
(𝛾 (𝑡) , 0, 0) 𝜆 𝑑𝑡

+ ∫

𝑇

−𝑇

𝑈
−1

(𝑡)𝐻
𝜇
(𝛾 (𝑡) , 0, 0) 𝜇𝑑𝑡 + ℎ.𝑜.𝑡.

(17)

Noticing that (Φ(𝑡))󸀠 = 𝑈−1(𝑡), then we have the map 𝑃
1
:

𝑆
1
󳨃→ 𝑆
0
as follows:

𝑙
𝑖1
= 𝑙
𝑖0
+ 𝜆𝑀

𝑖𝜆
+ 𝜇𝑀

𝑖𝜇
+ ℎ.𝑜.𝑡., 𝑖 = 1, 3, 4, (18)

where

𝑀
𝑖𝜆
= ∫

𝑇

−𝑇

𝜙
󸀠

𝑖
𝐻
𝜆
(𝛾 (𝑡) , 0, 0) 𝑑𝑡 = ∫

∞

−∞

𝜙
󸀠

𝑖
𝐻
𝜆
(𝛾 (𝑡) , 0, 0) 𝑑𝑡,

𝑀
𝑖𝜇
= ∫

𝑇

−𝑇

𝜙
󸀠

𝑖
𝐻
𝜇
(𝛾 (𝑡) , 0, 0) 𝑑𝑡 = ∫

∞

−∞

𝜙
󸀠

𝑖
𝐻
𝜇
(𝛾 (𝑡) , 0, 0) 𝑑𝑡.

(19)

(2) Establishment of the map 𝑃
0
: 𝑆
0
󳨃→ 𝑆
1
.

Let 𝜏 be the flying time from 𝑞
0
to 𝑞
1
, and set 𝑠 = 𝑒−𝜌𝜏

(where 𝜌 = min{𝜌
1
(𝛼), 𝜆

1
(𝛼)}); utilizing the approximate

solutions of system (5), it is easily to obtain the expression
of 𝑃
0
: 𝑆
0
󳨃→ 𝑆
1
:

𝑥
0
≈

𝑥
1

√ℎ (𝑠)

, 𝑦
11
≈ 𝑠
𝜌
1
(𝛼)/𝜌

𝑦
10
,

𝑢
0
≈ 𝑠
𝜆
1
(𝛼)/𝜌

𝑢
1
, 𝑦

21
≈ 𝑠
𝜌
2
(𝛼)/𝜌

𝑦
20
,

(20)

where

ℎ (𝑠) =
{

{

{

𝑠
2𝜆
𝑝
/𝜌

+ 𝜆
−1

𝑝
(𝑥
1
)
2

(1 − 𝑠
2𝜆
𝑝
/𝜌

) , 𝜆
𝑝
̸= 0,

1 − 2(𝜌)
−1

(𝑥
1
)
2 ln 𝑠, 𝜆

𝑝
= 0,

(21)

and the higher order terms are neglected.

Remark 2. Figure 1 tells us that 𝑥
0
≈ 𝑥
1
/√ℎ(𝑠) holds only

when 𝑥
0
≥ √𝜆

𝑝
, for 𝑥

0
∈ [−√𝜆

𝑝
, √𝜆
𝑝
), the orbits near 𝑂

will go into 𝑂0, and we may set 𝑠 = 0 in this case. While for
𝑥
0
< −√𝜆

𝑝
, the orbits near 𝑂 will keep away from 𝑂−.
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(3) Establishment of the map 𝑃 : 𝑆
0
󳨃→ 𝑆
0
.

Composing themaps𝑃
0
and𝑃
1
, then𝑃 = 𝑃

1
∘𝑃
0
: 𝑆
0
󳨃→ 𝑆
0

can be expressed as

𝑙
11
= (𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿 − 𝑢
42
(𝑢
12
𝑢
44
)
−1

𝑠
𝜌
2
/𝜌

𝑦
20

+ 𝜆𝑀
1𝜆
+ 𝜇𝑀

1𝜇
+ ℎ.𝑜.𝑡.,

𝑙
31
= 𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿

+ [𝑢
11
(𝑢
12
)
−1

𝑢
42
− 𝑢
41
] (𝑢
44
)
−1

𝑠
𝜌
2
/𝜌

𝑦
20

+ 𝜆𝑀
3𝜆
+ 𝜇𝑀

3𝜇
+ ℎ.𝑜.𝑡.,

𝑙
41
= (𝑢
44
)
−1

𝑠
𝜌
2
/𝜌

𝑦
20
+ 𝜆𝑀

4𝜆
+ 𝜇𝑀

4𝜇
+ ℎ.𝑜.𝑡..

(22)

(4) Establishment of the successor function.

The successor function is given by 𝐺(𝑠, 𝑥
1
, 𝑦
20
) = (𝑃 −

𝐼)(𝑙
10
, 𝑙
30
, 𝑙
40
):

𝐺
1
= (𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿 − 𝑥
0
+ 𝑢
31
(𝑢
33
)
−1

𝑠
𝜆
1
/𝜌

𝛿

+ 𝜆𝑀
1𝜆
+ 𝜇𝑀

1𝜇
+ ℎ.𝑜.𝑡.,

𝐺
3
= 𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿 − (𝑢
33
)
−1

𝑠
𝜆
1
/𝜌

𝛿

+ 𝜆𝑀
3𝜆
+ 𝜇𝑀

3𝜇
+ ℎ.𝑜.𝑡.,

𝐺
4
= [(𝑢
44
)
−1

𝑠
𝜌
2
/𝜌

− 1] 𝑦
20
+ 𝛿
𝑦

+ 𝑢
14
𝑥
0
− (𝑢
14
𝑢
31
− 𝑢
34
) (𝑢
33
)
−1

𝑠
𝜌
1
/𝜌

𝛿

+ 𝜆𝑀
4𝜆
+ 𝜇𝑀

4𝜇
+ ℎ.𝑜.𝑡.,

(23)

where 𝑥
0
is defined as (20).

4. The Main Results

We will discuss the homoclinic bifurcation accompanied by
pitchfork bifurcation using the successor function achieved
in Section 3.

It is obvious that system (1) has a homoclinic orbit or
heteroclinic orbit (resp., periodic orbit) if and only if the
equation

(𝐺
1
, 𝐺
3
, 𝐺
4
) = 0 (24)

has a solution satisfying 𝑠 = 0 (resp., 𝑠 > 0).
According to the implicit function theorem,we know that

the equation 𝐺
4
= 0 has a unique solution 𝑦

20
= 𝑦(𝑠, 𝑥

1
) for

𝜆, 𝜇 sufficiently small, substituting it into (𝐺
1
, 𝐺
2
) = 0; then

we obtain

(𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿 − 𝑥
0
+ 𝑢
31
(𝑢
33
)
−1

𝑠
𝜆
1
/𝜌

𝛿

+ 𝜆𝑀
1𝜆
+ 𝜇𝑀

1𝜇
+ ℎ.𝑜.𝑡. = 0,

𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿 − (𝑢
33
)
−1

𝑠
𝜆
1
/𝜌

𝛿

+ 𝜆𝑀
3𝜆
+ 𝜇𝑀

3𝜇
+ ℎ.𝑜.𝑡. = 0.

(25)

Equation (25) is called the bifurcation equation.
Firstly, we consider homoclinic bifurcation with 𝜆 = 0;

that is, the pitchfork bifurcation does not happen. Based on

(20) and (21), we know that 𝑥
0
≈ 𝑥
1
/√1 − 2(𝜌)

−1

(𝑥
1
)
2 ln 𝑠 for

𝜆 = 0; (25) then becomes

(𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿 −
𝑥
1

√1 − 2(𝜌)
−1

(𝑥
1
)
2 ln 𝑠

+ 𝑢
31
(𝑢
33
)
−1

𝑠
𝜆
1
/𝜌

𝛿 + 𝜇𝑀
1𝜇
+ ℎ.𝑜.𝑡. = 0,

𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑠
𝜌
1
/𝜌

𝛿 − (𝑢
33
)
−1

𝑠
𝜆
1
/𝜌

𝛿 + 𝜇𝑀
3𝜇
+ ℎ.𝑜.𝑡. = 0.

(26)

Note that 𝜌 = min{𝜆
1
, 𝜌
1
}; if 𝜌
1
< 𝜆
1
(resp., 𝜌

1
> 𝜆
1
), then we

have 𝑠𝜌1/𝜌 = 𝑠 (resp., 𝑠𝜆1/𝜌 = 𝑠), and 𝑠𝜆1/𝜌 = 𝑜(𝑠) (resp., 𝑠𝜌1/𝜌 =
𝑜(𝑠)), omitting the higher order term of 𝑠; it then follows that
for 𝜌
1
< 𝜆
1
(for the case 𝜌

1
> 𝜆
1
, we may discuss similarly),

(26) turns to

(𝑢
12
)
−1

𝑠𝛿 −
𝑥
1

√1 − 2(𝜌)
−1

(𝑥
1
)
2 ln 𝑠

+ 𝜇𝑀
1𝜇
+ ℎ.𝑜.𝑡. = 0,

𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑠𝛿 + 𝜇𝑀
3𝜇
+ ℎ.𝑜.𝑡. = 0.

(27)

By way of the implicit function theorem, we know that if
rank(𝑀

1𝜇
,𝑀
3𝜇
) = 2, there exists a 𝐶𝑟−2 function 𝜇 =

𝜓(𝜇
∗

, 𝑠, 𝑥
1
) such that for 0 ≤ 𝑠 ≪ 1 (27) always holds. So

we may obtain the following result.

Theorem 3. Suppose the conditions (𝐻
1
)–(𝐻
3
) hold, 𝜆 = 0

and rank (𝑀
1𝜇
,𝑀
3𝜇
) = 2; then

(i) as 𝜇 ̸= 𝜓(𝜇
∗

, 𝑠, 𝑥
1
) for 0 < 𝑠 ≪ 1, 𝜇 small enough and

fixed |𝑥
1
| ≪ 1, system (1) has not any periodic orbit

near Γ;
(ii) as 𝜇 = 𝜓(𝜇∗, 𝑠, 𝑥

1
) for 0 < 𝑠 ≪ 1, 𝜇 small enough and

fixed |𝑥
1
| ≪ 1, system (1) has a unique periodic orbit

near Γ;
(iii) as 𝜇 = 𝜓(𝜇∗, 0, 𝑥

1
) for 𝜇 small enough and fixed |𝑥

1
| ≪

1, system (1) has a unique homoclinic orbit near Γ.

Remark 4. As we know that the homoclinic orbit is non-
generic, so the homoclinic orbit obtained in Theorem 3 (iii)
comes from 𝑂 along the unstable manifold, while the orbit
may come from the equilibrium 𝑂 along the weak unstable
manifold (see Figure 2(b)).

Next, we consider the case 𝜆 > 0; the origin undergoes
a pitchfork bifurcation in this case; namely, there are three
equilibria 𝑂+, 𝑂0, and 𝑂− bifurcated from the origin 𝑂.
And there always exist two straight segment orbits, one is
heteroclinic to 𝑂+ and 𝑂0 and the other is heteroclinic to 𝑂−
and𝑂0; their lengths are√𝜆

𝑝
, and we denote the heteroclinic

orbits by Γ∗ and Γ
∗
, respectively. On the other hand, based

on the definition of 𝑃
0
, we will consider the bifurcations with

three cases: for 𝑥
0
≥ √𝜆

𝑝
, 𝑥
0
∈ [−√𝜆

𝑝
, √𝜆
𝑝
) and 𝑥

0
<

−√𝜆
𝑝
.
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Figure 2: Homoclinic orbit with 𝑂.

First, we discuss the homoclinic bifurcation for 𝑥
0
≥

√𝜆
𝑝
. Based on (20), (25) turns to

(𝑢
12
)
−1

𝑠𝛿 −
𝑥
1

√𝑠
2𝜆
𝑝
/𝜌
1 + 𝜆−1
𝑝
(𝑥
1
)
2

(1 − 𝑠
2𝜆
𝑝
/𝜌
1)

+ 𝜆𝑀
1𝜆
+ 𝜇𝑀

1𝜇
+ ℎ.𝑜.𝑡. = 0,

𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑠𝛿 + 𝜆𝑀
3𝜆
+ 𝜇𝑀

3𝜇
+ ℎ.𝑜.𝑡 = 0,

(28)

where we still consider the case 𝜌
1
< 𝜆
1
, we may discuss the

case for 𝜌
1
≥ 𝜆
1
similarly. Denote 𝑟 ≜ 𝑠2𝜆𝑝/𝜌1 ; then we get

𝑥
1

√𝑠
2𝜆
𝑝
/𝜌
1 + 𝜆−1
𝑝
(𝑥
1
)
2

(1 − 𝑠
2𝜆
𝑝
/𝜌
1)

=

√𝜆
𝑝

√1 + ((𝑥
1
)
−2

𝜆
𝑝
− 1) 𝑟

= √𝜆
𝑝
+
1

2
(1 − (𝑥

1
)
−2

𝜆
𝑝
) 𝑟 + ℎ.𝑜.𝑡..

(29)

Equation (28) is then becomes

(𝑢
12
)
−1

𝑟
𝜌
1
/2𝜆
𝑝𝛿 − √𝜆

𝑝
−
1

2
(1 − (𝑥

1
)
−2

𝜆
𝑝
) 𝑟

+ 𝜆𝑀
1𝜆
+ 𝜇𝑀

1𝜇
+ ℎ.𝑜.𝑡. = 0,

𝑥
1
− 𝑢
11
(𝑢
12
)
−1

𝑟
𝜌
1
/2𝜆
𝑝𝛿 + 𝜆𝑀

3𝜆
+ 𝜇𝑀

3𝜇
+ ℎ.𝑜.𝑡. = 0.

(30)

If𝑀
1𝜇

̸= 0,𝑀
3𝜇

̸= 0, (30) gives a solution 𝜇 = 𝜇(𝑟, 𝑥
1
, 𝜆)

by virtue of implicit function theorem. And for fixed |𝑥
1
| ≪

1 and the first equation of (30) we obtain 𝜇
∗

(𝑟, 𝜆) =

(1/𝑀
1𝜇
)[√𝜆
𝑝
+(1/2)(1−(𝑥

1
)
−2

𝜆
𝑝
)𝑟−𝜆𝑀

1𝜆
−(𝑢
12
)
−1

𝑟
𝜌
1
/2𝜆
𝑝𝛿]+

ℎ.𝑜.𝑡., differentiating 𝜇∗(𝑟, 𝜆) with respect to 𝑟, we achieve

𝜕𝜇
∗

(𝑟, 𝜆)

𝜕𝑟
≈

1

2𝑀
1𝜇

(1 − (𝑥
1
)
−2

𝜆
𝑝
) , (31)

notice that the 𝑥
0
≥ √𝜆

𝑝
, according to the relation of 𝑥

1
and

𝑥
0
in (20) and (21), we may see that 1 − (𝑥

1
)
−2

𝜆
𝑝
> 0; then

the above equations explore that (𝜕𝜇∗(𝑟, 𝜆))/𝑟 > 0 (resp.,
𝜕𝜇
∗

(𝑟, 𝜆)/𝑟 < 0) as𝑀
1𝜇
> 0 (resp.,𝑀

1𝜇
< 0), which implies

that 𝜇∗(𝑟, 𝜆) is monotonic with respect to 𝑟 when 𝑀
1𝜇

̸= 0.
Moreover,

𝜇
∗

(𝑟, 𝜆) 󳨀→ 𝜇
∗

(0, 𝜆) =
1

𝑀
1𝜇

[√𝜆
𝑝
− 𝜆𝑀

1𝜆
] + ℎ.𝑜.𝑡.

as 𝑟 󳨀→ 0.

(32)

Therefore, we achieve the following conclusion.

Theorem 5. Let the hypotheses (𝐻
1
)–(𝐻
3
) hold, 𝑀

1𝜇
̸= 0,

𝑀
3𝜇

̸= 0 and 0 < 𝜆 ≪ 1; then in addition to the heteroclinic
orbits Γ∗ and Γ

∗
,

(i) system (1) has a unique homoclinic orbit with 𝑂+ for
𝜇 = 𝜇

∗

(0, 𝜆) for fixed |𝑥
1
| ≪ 1;

(ii) there exists 𝜇
1
> 0 small enough such that when𝑀

1𝜇
>

0, 𝜇∗(0, 𝜆) < 𝜇 < 𝜇
1
, or𝑀

1𝜇
< 0, −𝜇

1
< 𝜇 < 𝜇

∗

(0, 𝜆)

system (1) has a unique 1-periodic orbit near Γ.

Next, we discuss the case 𝑥
0
∈ [−√𝜆

𝑝
, √𝜆
𝑝
), as we know

that the orbit will go into 𝑂0 (we denote 𝑠 = 0) in this
case. While for 𝑥

0
< −√𝜆

𝑝
the orbit will keep away from

𝑂
−. However, the orbit that comes from the equilibrium will

be decided by 𝑥
1
. If 𝑥
1
> √𝜆

𝑝
, then the orbit comes from

𝑂
+; if 0 < 𝑥

1
< √𝜆

𝑝
, then the orbit comes from 𝑂

0; for

−√𝜆
𝑝
< 𝑥
1
< 0, then the orbit comes from𝑂− (see Figure 1).

So we obtain the following result.

Theorem 6. Let the conditions (𝐻
1
)–(𝐻
3
) be true, and 0 <

𝜆 ≪ 1,𝑀1
𝑖𝜇
̸= 0, 𝑖 = 1, 3. Then in addition to the heteroclinic

orbits Γ∗ and Γ
∗
,

(i) there exists a region in the (𝜆, 𝜇) space:

Σ
1
(𝜇, 𝜆)

:= {(𝜆, 𝜇) : −√𝜆
𝑝
≤ 𝜆𝑀

1

1𝜆
+ 𝜇𝑀

1

1𝜇
+ ℎ.𝑜.𝑡. < √𝜆

𝑝
,

𝜆𝑀
3𝜆
+ 𝜇𝑀

3𝜇
+ℎ.𝑜.𝑡. > √𝜆

𝑝
, 0 <

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 , 𝜆 ≪ 1}

(33)

such that system (1) has a heteroclinic orbit with𝑂+ and
𝑂
0 as (𝜆, 𝜇) ∈ Σ

1
(𝜇, 𝜆); see Figures 3(a)–3(d);



6 Abstract and Applied Analysis

u

O+

O0

O−

y

x

Γ∗

Γ∗

(a)

u

O+

O0

O−

y

x

Γ∗

Γ∗

(b)

O+

O0

O−

y

x

Γ∗

Γ∗

(c)

O+

O0

O−

y

x

Γ∗

Γ∗

(d)

O+

O0

O−

y

u

x

Γ∗

Γ∗

(e)

O+

O0

O−

y

u

x

Γ∗

Γ∗

(f)

O+

O0

O−

y

u

x

Γ∗

Γ∗

(g)

O+

O0

O−

y

u

x

Γ∗

Γ∗

(h)

Figure 3: Homoclinic or heterclinic orbits accompanied by pitchfork bifurcation.

(ii) there exists a region in the (𝜆, 𝜇) space:

Σ
2
(𝜇, 𝜆)

:= {(𝜆, 𝜇) : −√𝜆
𝑝
≤ 𝜆𝑀

1

1𝜆
+ 𝜇𝑀

1

1𝜇
+ ℎ.𝑜.𝑡. < √𝜆

𝑝
,

0 < 𝜆𝑀
1

3𝜆
+ 𝜇𝑀

1

3𝜇
+ ℎ.𝑜.𝑡. < √𝜆

𝑝
, 0 <

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 , 𝜆 ≪ 1}

(34)

such that system (1) has a homoclinic orbit connecting
𝑂
0 as (𝜆, 𝜇) ∈ Σ

2
(𝜇, 𝜆); see Figures 3(e)-3(f);

(iii) there exists a region in the (𝜆, 𝜇) space:

Σ
3
(𝜇, 𝜆)

:= {(𝜆, 𝜇) : −√𝜆
𝑝
≤ 𝜆𝑀

1

1𝜆
+ 𝜇𝑀

1

1𝜇
+ ℎ.𝑜.𝑡. < √𝜆

𝑝
,

−√𝜆
𝑝
< 𝜆𝑀

1

3𝜆
+ 𝜇𝑀

1

3𝜇
+ ℎ.𝑜.𝑡. < 0, 0 <

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 , 𝜆 ≪ 1}

(35)

such that system (1) has a heteroclinic orbit connecting
𝑂
0 and 𝑂− as (𝜆, 𝜇) ∈ Σ

3
(𝜇, 𝜆); see Figures 3(g)-3(h);

(iv) there exists a region in the (𝜆, 𝜇) space:

Σ
4
(𝜇, 𝜆) := {(𝜆, 𝜇) : 𝜆𝑀

1

1𝜆
+ 𝜇𝑀

1

1𝜇
+ ℎ.𝑜.𝑡. < −√𝜆

𝑝
} (36)

such that system (1) has no other heteroclinic orbit and
no homoclinic orbit for (𝜆, 𝜇) ∈ Σ

4
(𝜇, 𝜆).

Remark 7. As we know from [3], the orbits in Figures 3(e)–
3(h) cannot be bifurcated from the generic homoclinic orbit,
which exactly reveals the difference between the bifurcation
of generic homoclinic orbit and the nongeneric one.
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