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We study an empirical eigenfunction-based algorithm for ranking with a data dependent hypothesis space. The space is spanned
by certain empirical eigenfunctions which we select by using a truncated parameter. We establish the representer theorem and
convergence analysis of the algorithm. In particular, we show that under a mild condition, the algorithm produces a satisfactory
convergence rate as well as sparse representations with respect to the empirical eigenfunctions.

1. Introduction
Motivated by various applications including problems related
to information retrieval, user-preferencemodeling, and com-
putational biology, the problem of ranking has recently
gained much attention in machine learning (see, e.g., [1–
4]). This paper proposes a kernel-based ranking algorithm
to search a ranking function in a data dependent hypothesis
space. The space is spanned by certain empirical eigenfunc-
tions which we select by using a truncated parameter. The
notion of empirical eigenfunctions, first studied for learning
algorithms in [5], has been used to develop classification
and regression algorithms which are shown to have strong
learning ability [6, 7]. We will use such an idea to develop
learning algorithms for ranking.

1.1. The Ranking Problem. The problem of ranking is distinct
fromboth classification and regression. In ranking, one learns
a real-valued function that assigns scores to instances, but the
scores themselves do not matter; instead, what is important is
the relative ranking of instances induced by those scores.

Formally, the problem of ranking may be modeled in the
framework of statistical learning theory (see, e.g., [8] formore
details). Assume 𝜌 is a Borel probability measure on 𝑍 =

𝑋 × 𝑌, where𝑋 is a compact metric space (input or instance

space) and 𝑌 = [0,𝑀] (output space) for some 𝑀 > 0.
Let 𝜌
𝑋
be its marginal distribution on 𝑋 and let 𝜌(⋅ | 𝑥)

be the conditional distribution on 𝑌 at given 𝑥. The learner
is given a set of samples z = {𝑧

𝑖
}
𝑚

𝑖=1
= {(𝑥

𝑖
, 𝑦
𝑖
)}
𝑚

𝑖=1
∈ 𝑍
𝑚

drawn independently and identically according to 𝜌 and the
goal is to find a function 𝑓z : 𝑋 → R that ranks future
instances with larger labels higher than those with smaller
labels. In other words, 𝑥 is to be ranked as preferred over
𝑥
󸀠 if 𝑓z(𝑥) > 𝑓z(𝑥

󸀠
) and lower than 𝑥󸀠 if 𝑓z(𝑥) < 𝑓z(𝑥

󸀠
)

(𝑓z(𝑥) = 𝑓z(𝑥
󸀠
) indicates that there is no difference in ranking

preference between the two instances). In this setting, the
penalty of a ranking function 𝑓 on a pair of instances (𝑥, 𝑥󸀠)
with corresponding labels𝑦 and𝑦󸀠 can be taken to be the least
squares ranking loss:

L (𝑓, (𝑥, 𝑦) , (𝑥
󸀠
, 𝑦
󸀠
)) = ((𝑦 − 𝑦

󸀠
) − (𝑓 (𝑥) − 𝑓 (𝑥

󸀠
)))
2

,

(1)

and, as a result, the quality of 𝑓 can be measured by its
expected ranking error:

E(𝑓)=∫
𝑍

∫
𝑍

(𝑦 − 𝑦
󸀠
− (𝑓 (𝑥) − 𝑓 (𝑥

󸀠
)))
2

d𝜌(𝑥, 𝑦) d𝜌(𝑥󸀠, 𝑦󸀠).

(2)
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Let 𝐿2
𝜌𝑋

be the space of square integrable functions on
𝑋 with respect to the measure d𝜌

𝑋
. Let G be the collection

of target functions which are defined to be the functions
minimizing the error E(𝑓) over 𝐿2

𝜌𝑋
; that is, G = {𝑓 ∈ 𝐿2

𝜌𝑋
:

𝑓 = argmin
𝑓∈𝐿
2

𝜌𝑋

E(𝑓)}. It is apparent from (2) that the error
of any ranking function of the form𝑓+ 𝑐 is the same as that of
𝑓, where 𝑐 ∈ R is some constant. Therefore, unlike the target
function in classification or regression, the target function in
ranking is not unique in general. It is easy to show that the
regression function of 𝜌 defined by

𝑓
𝜌 (𝑥) = ∫

𝑌

𝑦d𝜌 (𝑦 | 𝑥) , 𝑥 ∈ 𝑋 (3)

is a minimizer of the error (2), which indicates that any
function of the form 𝑓

𝜌
+ 𝑐 is also a target function. On the

other hand, any target function in 𝐿2
𝜌𝑋

must has the form
𝑓
𝜌
+ 𝑐, which can be checked from Lemma 11 in [9]. Thus we

conclude that the collection G consists exactly of functions
that have the form 𝑓

𝜌
(𝑥) + 𝑐 with 𝑐 ∈ R being an arbitrary

constant; that is,G = {𝑓 ∈ 𝐿2
𝜌𝑋
: 𝑓 = 𝑓

𝜌
(𝑥) + 𝑐, 𝑐 ∈ R}.

1.2. The Mercer Kernel and Empirical Eigenpair. Our algo-
rithm is based on a Mercer kernel and we need to introduce
some notions related to kernels (see [10, 11] for more details).
Recall that a Mercer kernel is defined to be a symmetric
continuous function 𝐾 : 𝑋 × 𝑋 → R such that, for any
finite subset {𝑥

𝑖
}
𝑙

𝑖=1
of 𝑋, the 𝑙 × 𝑙 matrix (𝐾(𝑥

𝑖
, 𝑥
𝑗
))
𝑙

𝑖,𝑗=1
is

positive semidefinite. The reproducing kernel Hilbert space
H
𝐾
associated with a Mercer kernel 𝐾 is the Hilbert space

completed by the span of {𝐾
𝑥
= 𝐾(⋅, 𝑥) : 𝑥 ∈ 𝑋} under

the norm ‖ ⋅ ‖
𝐾
induced by the inner product ⟨⋅, ⋅⟩

𝐾
satisfying

⟨𝐾
𝑥
, 𝐾
𝑥
󸀠⟩
𝐾
= 𝐾(𝑥, 𝑥

󸀠
). The reproducing property in H

𝐾

takes the form 𝑓(𝑥) = ⟨𝑓,𝐾
𝑥
⟩
𝐾
for all 𝑥 ∈ 𝑋, 𝑓 ∈H

𝐾
, which

indicates that
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ ≤ 𝜅

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐾, ∀𝑓 ∈H

𝐾
, (4)

where 𝜅 = √sup
𝑥∈𝑋
|𝐾(𝑥, 𝑥)|.

Let 𝐾 be a Mercer kernel. The integral operator 𝐿
𝐾
:

H
𝐾
→ H

𝐾
given by

𝐿
𝐾
𝑓 = ∫

𝑋

∫
𝑋

𝑓 (𝑥) (𝐾𝑥 − 𝐾𝑥󸀠) d𝜌𝑋 (𝑥) d𝜌𝑋 (𝑥
󸀠
) (5)

is introduced in [12] to analyze the following regularized
ranking algorithm:

𝑓
z
𝛾
= arg min

𝑓∈H𝐾

{

{

{

1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
− (𝑓 (𝑥

𝑖
) − 𝑓 (𝑥

𝑗
)))
2

+ 𝛾
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐾

}

}

}

.

(6)

This operator is compact, positive, and self-adjoint. In par-
ticular, it has at most countably many nonzero eigenvalues

and all of these eigenvalues are nonnegative. Let us arrange
these eigenvalues {𝜆

𝑖
} (withmultiplicities) as a nonincreasing

sequence tending to 0 and take an associated sequence of
eigenfunctions {𝜙

𝑖
} to be an orthonormal basis ofH

𝐾
. In the

remainder of this paper, we will use a general assumption that

𝑓
𝜌
= 𝐿
𝑟

𝐾
(𝑔
𝜌
) for some 𝑟 > 0 and 𝑔

𝜌
∈H
𝐾
, (7)

where the power 𝐿𝑟
𝐾
of 𝐿
𝐾
is defined in terms of {𝜆

𝑖
} and {𝜙

𝑖
}

by

𝐿
𝑟

𝐾
(

∞

∑

𝑖=1

𝑐
𝑖
𝜙
𝑖
) =

∞

∑

𝑖=1

𝜆
𝑟

𝑖
𝑐
𝑖
𝜙
𝑖
. (8)

The assumption (7) is equivalent to 𝑓
𝜌
= ∑
∞

𝑖=1
𝜆
𝑟

𝑖
𝑑
𝑖
𝜙
𝑖
, where

{𝑑
𝑖
} are the Fourier coefficients of 𝑔

𝜌
with respect to {𝜙

𝑖
}; that

is, 𝑔
𝜌
= ∑
∞

𝑖=1
𝑑
𝑖
𝜙
𝑖
. Note from (8) that the exponent 𝑟measures

the decay of the coefficients {𝜆𝑟
𝑖
𝑑
𝑖
} of 𝑓
𝜌
with respect to the

orthonormal basis {𝜙
𝑖
} of H

𝐾
. Thus it can be regarded as a

measurement for the regularity of the regression function 𝑓
𝜌
.

Let x = {𝑥
𝑖
}
𝑚

𝑖=1
be the unlabeled part of the samples

z = {(𝑥
𝑖
, 𝑦
𝑖
)}
𝑚

𝑖=1
. An empirical version of the operator 𝐿

𝐾
with

respect to x is given by

𝐿
x
𝐾
(𝑓) =

1

𝑚 (𝑚 − 1)

𝑚

∑

𝑖,𝑗=1

𝑓 (𝑥
𝑖
) (𝐾
𝑥𝑖
− 𝐾
𝑥𝑗
) , 𝑓 ∈H

𝐾
.

(9)

The operator 𝐿x
𝐾
: H
𝐾

→ H
𝐾

is self-adjoint and
positive with rank at most 𝑚. We denote its eigensystem
to be {(𝜆x

𝑖
, 𝜙

x
𝑖
)}, where the eigenvalues {𝜆x

𝑖
} are arranged in

nonincreasing order with 𝜆x
𝑖
= 0 whenever 𝑖 > 𝑚 and

the corresponding eigenfunctions {𝜙x
𝑖
} form an orthonormal

basis of H
𝐾
. It can be proved that Ex(𝐿

x
𝐾
) = 𝐿

𝐾
, which

means that the eigenfunctions {𝜙
𝑖
} can be approximated by

the empirical eigenfunctions {𝜙x
𝑖
}. This fact indicates that the

first𝑚 eigenfunctions are reasonably promising for ranking.

1.3.The Computation of Empirical Eigenpair. Before proceed-
ing further, we need to show how the empirical eigenpairs
{(𝜆

x
𝑖
, 𝜙

x
𝑖
)} can be found explicitly. The main difficulty here is

that the kernel of 𝐿
𝐾
is not symmetric even though it is a

self-adjoint operator onH
𝐾
, which makes the computations

of empirical eigenfunctions relatively difficult (We refer the
readers to [13] for some results on regression learning with
indefinite kernels.)

Denote the symmetric matrix (𝐾(𝑥
𝑖
, 𝑥
𝑗
))
𝑚

𝑖,𝑗=1
by K and

define A = (1/𝑚)(𝑚I − 11𝑇)K and B = (1/𝑚)A(𝑚I − 11𝑇),
where I is the 𝑚th-order unit matrix and 1 = (1, . . . , 1)𝑇 ∈
R𝑚. The proofs of Lemmas 1–5 can be found in [14].

Lemma 1. Let (𝜆, V) be an eigenpair of B. If 𝜆 ̸= 0; then
(𝜆, (𝑚I − 11𝑇)V) is an eigenpair of A.

It is easy to see that B is a positive semidefinite matrix.
Denote its eigenvalues as 𝜆̃x

1
≥ ⋅ ⋅ ⋅ ≥ 𝜆̃

x
𝑡
x > 𝜆̃

x
𝑡
x
+1
= ⋅ ⋅ ⋅ =

𝜆̃
x
𝑚
= 0 with 𝑡x being the rank of B and the corresponding

orthonormal eigenvectors as Ṽ
1
, . . . , Ṽ

𝑡
x , Ṽ
𝑡
x
+1
, . . . , Ṽ

𝑚
.
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Lemma 2. Let {(𝜆̃x
𝑙
, Ṽ
𝑙
)}
𝑚

𝑙=1
be eigenpairs ofB.Then, for 1 ≤ 𝑙 ≤

𝑚, one has

𝐿
x
𝐾
(

𝑚

∑

𝑗=1

((𝑚I − 11𝑇) Ṽ
𝑙
)
𝑗
𝐾
𝑥𝑗
)

=
𝜆̃
x
𝑙

𝑚 − 1
(

𝑚

∑

𝑗=1

((𝑚I − 11𝑇) Ṽ
𝑙
)
𝑗
𝐾
𝑥𝑗
) .

(10)

Lemma 3. Let {(𝜆̃x
𝑙
, Ṽ
𝑙
)}
𝑚

𝑙=1
be eigenpairs of B. Then, for 1 ≤ 𝑝,

𝑞 ≤ 𝑚, one has

⟨

𝑚

∑

𝑗=1

((𝑚I − 11𝑇) Ṽ
𝑝
)
𝑗
𝐾
𝑥𝑗
,

𝑚

∑

𝑗=1

((𝑚I − 11𝑇) Ṽ
𝑞
)
𝑗
𝐾
𝑥𝑗
⟩

𝐾

= 𝑚
2
𝛿
𝑝,𝑞
𝜆̃
x
𝑞
.

(11)

It follows from Lemmas 2 and 3 that the numbers
{𝜆̃

x
𝑙
/(𝑚 − 1)}

𝑡
x

𝑙=1
are eigenvalues of the operator 𝐿x

𝐾
and the

functions {(𝑚√𝜆̃x
𝑙
)
−1
∑
𝑚

𝑗=1
((𝑚I − 11𝑇)Ṽ

𝑙
)
𝑗
𝐾
𝑥𝑗
}
𝑡
x

𝑙=1
are the cor-

responding orthonormal eigenfunctions. Moreover, we have
𝑑
x
≥ 𝑡

x, where 𝑑x denotes the rank of 𝐿x
𝐾
.

Lemma 4. Let {(𝜆x
𝑙
, 𝜙

x
𝑙
)}
𝑚

𝑙=1
be eigenpairs of 𝐿x

𝐾
. Then, for 1 ≤

𝑙 ≤ 𝑚, one has

B (𝑚I − 11𝑇) 𝜙x
𝑙

󵄨󵄨󵄨󵄨󵄨x = (𝑚 − 1) 𝜆
x
𝑙
(𝑚I − 11𝑇) 𝜙x

𝑙

󵄨󵄨󵄨󵄨󵄨x, (12)

where 𝜙x
𝑙
|x is the vector in R𝑚 obtained by restricting the

function 𝜙x
𝑙
onto the sampling points.

Lemma 5. Let {(𝜆x
𝑙
, 𝜙

x
𝑙
)}
𝑚

𝑙=1
be eigenpairs of 𝐿x

𝐾
. Then, for 1 ≤

𝑝, 𝑞 ≤ 𝑚, one has

⟨(𝑚I − 11𝑇) 𝜙x
𝑝

󵄨󵄨󵄨󵄨󵄨x
, (𝑚I − 11𝑇) 𝜙x

𝑞

󵄨󵄨󵄨󵄨󵄨x
⟩
𝑙
2
= 𝑚
2
(𝑚 − 1) 𝛿𝑝,𝑞𝜆

x
𝑝
.

(13)

By using Lemmas 4 and 5, we come to a conclusion
that the numbers {(𝑚 − 1)𝜆

x
𝑙
}
𝑑
x

𝑙=1
are eigenvalues of the

matrixB, the vectors {(𝑚√(𝑚 − 1)𝜆x𝑝)
−1
(𝑚I−11𝑇)𝜙x

𝑙
|x}
𝑑
x

𝑙=1
are

corresponding orthonormal eigenvectors, and 𝑑x ≤ 𝑡x.
Based on the above arguments, we are now confident that

the following theorem can be proved, which yields a method
for computing the empirical eigenpairs {(𝜆x

𝑖
, 𝜙

x
𝑖
)}
𝑑
x

𝑙=1
explicitly.

Theorem 6. The number of positive eigenvalues of 𝐿x
𝐾
is equal

to that of B. Moreover, the empirical eigenpairs {(𝜆x
𝑙
, 𝜙

x
𝑙
)}
𝑑
x

𝑙=1
of

𝐿
x
𝐾
can be computed by using the eigenpairs {(𝜆̃x

𝑙
, Ṽ
𝑙
)}
𝑑
x

𝑙=1
ofB as

follows:

𝜆
x
𝑙
=

𝜆̃
x
𝑙

𝑚 − 1
,

𝜙
x
𝑙
= (𝑚√𝜆̃x

𝑙
)

−1 𝑚

∑

𝑗=1

((𝑚I − 11𝑇) Ṽ
𝑙
)
𝑗
𝐾
𝑥𝑗
,

(14)

for 𝑙 = 1, . . . , 𝑑x with 𝑑x denoting the rank of 𝐿x
𝐾
.

1.4. The Ranking Algorithm. Prompted by the above analysis,
we propose a learning algorithm for ranking as follows. Let
𝜖 be a positive number (called a truncated parameter) and
letD
𝑚,𝜖

denote the set of empirical eigenfunctions such that
their corresponding eigenvalues are less than or equal to 𝜖;
that is,D

𝑚,𝜖
= {𝜙

x
𝑖
: 1 ≤ 𝑖 ≤ 𝑚, 𝜆

x
𝑖
≥ 𝜖}. Let 𝑠 be the number

of eigenfunctions inD
𝑚,𝜖

. Our ranking algorithm now takes
the form

𝑐
z
𝜖
= argmin

𝑐∈R𝑠

{

{

{

1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗

− (

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑖
)−

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑗
)))

2

}

}

}

,

(15)

and the output function is

𝑓
z
𝜖
=

𝑠

∑

𝑙=1

𝑐
z
𝜖,𝑙
𝜙
x
𝑙
. (16)

We are concerned in this paper with the representer
theorem, that is, the explicit solution to problem (15), and
the convergence analysis in theH

𝐾
-norm of the above algo-

rithm. Previous work on error analysis of ranking algorithms,
such as [3, 8], deals only with generalization properties of
the algorithms.Though convergence analysis of classification
and regression algorithms has been well studied (see, e.g.,
[15, 16]), little research has been conducted in establishing
similar results in the setting of ranking. Perhaps the first work
is that of Chen [12], who derives the convergence rate of
a regularized ranking algorithm by means of the technique
of operator approximation. Our results can be considered
as another attempt in this direction. It should be pointed
out that, for the sake of simplicity, rather than taking all
target functions into consideration, we will here restrict
ourselves to the regression function 𝑓

𝜌
. In other words, we

will consider the convergence bounds for ‖𝑓z
𝜖
− 𝑓
𝜌
‖
𝐾
, instead

of inf
𝑓∈G‖𝑓

z
𝜖
− 𝑓‖
𝐾
.

Notice that, compared with classification or regression
problems, the main difference in the formulation of rank-
ing problems is that its performance or loss is measured
on pairs of examples, rather than on individual examples.
This results in the double-index summation in algorithm
(15), which prevents us from directly applying the standard
Hoeffding inequality used to obtain convergence bounds for
classification and regression. We will tackle this problem by a
McDiarmid-Bernstein type probability inequality for vector-
valued random variables [17] as is done in [8, 12]. Finally,
we show that when the eigenvalues decay polynomially, the
algorithmproduces sparse representationswith respect to the
empirical eigenfunctions by choosing a suitable parameter 𝜖.

2. The Representer Theorem

In this section we provide the representer theorem for
algorithm (15). The key point in proving the representer
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theorem is an equality involving the empirical eigenfunctions
and eigenvalues.

Theorem 7. The solution to problem (15) is given by

𝑐
z
𝜖,𝑙
=

𝑆
z
𝑙

2𝑚 (𝑚 − 1) 𝜆
x
𝑙

, 1 ≤ 𝑙 ≤ 𝑠, (17)

where 𝑆z
𝑙
= ∑
𝑚

𝑖,𝑗=1
(𝑦
𝑖
− 𝑦
𝑗
)(𝜙

x
𝑙
(𝑥
𝑖
) − 𝜙

x
𝑙
(𝑥
𝑗
)).

Proof. The empirical error part takes the form

1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
− (

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑖
) −

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑗
)))

2

=
1

𝑚2

𝑚

∑

𝑖,𝑗=1

(

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑖
) −

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑗
))

2

−
2

𝑚2

𝑠

∑

𝑙=1

𝑐
𝑙
𝑆
z
𝑙
+
1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
)
2

=
2

𝑚2

𝑠

∑

𝑝,𝑞=1

𝑐
𝑝
𝑐
𝑞

𝑚

∑

𝑖,𝑗=1

𝜙
x
𝑝
(𝑥
𝑖
) (𝜙

x
𝑞
(𝑥
𝑖
) − 𝜙

x
𝑞
(𝑥
𝑗
))

−
2

𝑚2

𝑠

∑

𝑙=1

𝑐
𝑙
𝑆
z
𝑙
+
1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
)
2

.

(18)

A routine computation gives rise to

𝑚

∑

𝑖,𝑗=1

𝜙
x
𝑝
(𝑥
𝑖
) (𝜙

x
𝑞
(𝑥
𝑖
) − 𝜙

x
𝑞
(𝑥
𝑗
)) = 𝑚 (𝑚 − 1) 𝛿𝑝,𝑞𝜆

x
𝑝
. (19)

By using (19), one can carry on with the above equality chain
as follows:

1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
− (

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑖
) −

𝑠

∑

𝑙=1

𝑐
𝑙
𝜙
x
𝑙
(𝑥
𝑗
)))

2

=
2 (𝑚 − 1)

𝑚

𝑠

∑

𝑝,𝑞=1

𝑐
𝑝
𝑐
𝑞
𝛿
𝑝,𝑞
𝜆
x
𝑝

−
2

𝑚2

𝑠

∑

𝑙=1

𝑐
𝑙
𝑆
z
𝑙
+
1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
)
2

=
2 (𝑚 − 1)

𝑚

𝑠

∑

𝑙=1

𝑐
2

𝑙
𝜆
x
𝑙
−
2

𝑚2

𝑠

∑

𝑙=1

𝑐
𝑙
𝑆
z
𝑙

+
1

𝑚2

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
)
2

.

(20)

Hence we have an equivalent form of (15) as

𝑐
z
𝜖
= argmin

𝑐∈R𝑠

𝑠

∑

𝑙=1

{𝑐
2

𝑙
−

1

𝑚 (𝑚 − 1)

𝑆
z
𝑙

𝜆x
𝑙

𝑐
𝑙
} . (21)

The component 𝑐z
𝜖,𝑙

can be found by solving the following
optimization problem:

𝑐
z
𝜖,𝑙
= argmin

𝑐∈R
{𝑐
2

𝑙
−

1

𝑚 (𝑚 − 1)

𝑆
z
𝑙

𝜆x
𝑙

𝑐
𝑙
} , (22)

which has the solution given by (17).This proves the theorem.

3. The Error Analysis

In order to derive an error bound for algorithm (15), we
need some preliminary inequalities. The following Hoffman-
Wielandt inequality establishes the relationship between 𝜆

𝑖
−

𝜆
x
𝑖
and 𝐿

𝐾
− 𝐿

x
𝐾
, which has been investigated in [18–21].

Lemma 8. One has
∞

∑

𝑙=1

(𝜆
𝑙
− 𝜆

x
𝑙
)
2
≤
󵄩󵄩󵄩󵄩𝐿𝐾 − 𝐿

x
𝐾

󵄩󵄩󵄩󵄩
2

HS, (23)

where ‖ 𝐿
𝐾
− 𝐿

x
𝐾
‖HS is the Hilbert-Schmidt norm of HS(H

𝐾
),

the Hilbert space of all Hilbert-Schmidt operators onH
𝐾
, with

inner product ⟨𝐴, 𝐵⟩HS = Tr(𝐵𝑇𝐴). Here Tr denotes the trace
of a linear operator.

The inner product in HS(H
𝐾
) can also be defined by

⟨𝐴, 𝐵⟩HS = ∑
𝑗
⟨𝐴𝑒
𝑗
, 𝐵𝑒
𝑗
⟩
𝐾
, where {𝑒

𝑗
} is an orthonormal

basis ofH
𝐾
. The space HS(H

𝐾
) is a subspace of the space of

bounded linear operators onH
𝐾
, denoted as (H

𝐾
, ‖ ⋅ ‖), with

the norm relations ‖𝐴‖ ≤ ‖𝐴‖HS and ‖𝐴𝐵‖HS ≤ ‖𝐴‖HS‖𝐵‖.
To bound the quantity ‖𝐿

𝐾
− 𝐿

x
𝐾
‖HS, we introduce the fol-

lowing McDiarmid-Bernstein type of probability inequality
for vector-valued random variable established in [17].

Lemma 9. Let z = {𝑧
𝑖
}
𝑚

𝑖=1
be independently drawn according

to a probability distribution 𝜌 on 𝑍, (𝐻, ‖ ⋅ ‖) a Hilbert space,
and 𝐹 : 𝑍𝑚 → 𝐻 measurable. If there is 𝑀̃ > 0 such that
‖𝐹(z) − E

𝑧𝑖
(𝐹(z))‖ ≤ 𝑀̃ for each 1 ≤ 𝑖 ≤ 𝑚 and almost every

z ∈ 𝑍𝑚, then for every 𝜖 > 0,

𝑃𝑟𝑜𝑏 {
󵄩󵄩󵄩󵄩𝐹 (z) − Ez (𝐹 (z))

󵄩󵄩󵄩󵄩 > 𝜖} ≤ 2 exp{−
𝜖
2

2 (𝑀̃𝜖 + 𝜎2)
} ,

(24)

where 𝜎2 = ∑
𝑚

𝑖=1
supz\{𝑧𝑖}∈𝑍𝑚−1E𝑧𝑖{‖𝐹(z) − E𝑧𝑖(𝐹(z))‖

2
}. For

any 0 < 𝛿 < 1, with confidence 1 − 𝛿, there holds

󵄩󵄩󵄩󵄩𝐹 (z) − Ez (𝐹 (z))
󵄩󵄩󵄩󵄩 ≤ 2 (𝑀̃ +

√𝜎2) log 2
𝛿
. (25)

From the fact Tr(⟨⋅, 𝐾
𝑥
⟩
𝐾
𝐾
𝑥
󸀠) = 𝐾(𝑥, 𝑥

󸀠
) (see [22]) and

after tedious calculations, one can derive that, for each 𝑙 ∈
{1, . . . , 𝑚}, ‖𝐿x

𝐾
− E
𝑥𝑙
(𝐿

x
𝐾
)‖HS ≤ (6/𝑚)𝜅

2. By Lemma 9, we
obtain the following.

Lemma 10. For any 0 < 𝛿 < 1, with confidence 1 − 𝛿, there
holds

󵄩󵄩󵄩󵄩𝐿𝐾 − 𝐿
x
𝐾

󵄩󵄩󵄩󵄩HS ≤
24𝜅
2 log (2/𝛿)
√𝑚

. (26)
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Define a vector-valued function 𝐹 : 𝑍𝑚 → H
𝐾
by

𝐹 (z) = 1

𝑚 (𝑚 − 1)

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
− (𝑓
𝜌
(𝑥
𝑖
) − 𝑓
𝜌
(𝑥
𝑗
)))𝐾
𝑥𝑖
.

(27)

It is easy to show thatEz(𝐹(z)) = 0 and for each 𝑙 ∈ {1, . . . , 𝑚},
‖𝐹(z) − E

𝑧𝑙
(𝐹(z))‖

𝐾
≤ 8𝑀𝜅/𝑚. By Lemma 9, one has the

following.

Lemma 11. For any 0 < 𝛿 < 1, with confidence 1 − 𝛿, there
holds

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
− (𝑓
𝜌
(𝑥
𝑖
) − 𝑓
𝜌
(𝑥
𝑗
)))𝐾
𝑥𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐾

≤ 32√𝑚 (𝑚 − 1)𝑀𝜅 log 2
𝛿
.

(28)

With the help of the preceding five lemmas, we are now
in a position to derive an error estimate for the algorithm.We
will conduct analysis for the error in the H

𝑘
-metric, which

makes the corresponding error estimate stronger than that
performed in the 𝐿2

𝜌𝑋
-metric [16].

Theorem 12. Assume (7). For any 0 < 𝛿 < 1, with confidence
1 − 𝛿, one has

󵄩󵄩󵄩󵄩󵄩
𝑓
z
𝜖
− 𝑓
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
≤
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝜆
𝑟

𝑠
+
𝐶
1
log (4/𝛿)
𝜖√𝑚

+ 𝜆
min{1,𝑟−1}
𝑠

𝐶
3
log (4/𝛿)
√𝑚

+ 𝐶
2
𝜆
min{1,𝑟−1}
𝑠

(

∞

∑

𝑙=𝑠+1

𝜆
max{2𝑟,2}
𝑙

)

1/2

,

(29)

where 𝐶
1
, 𝐶
2
, and 𝐶

3
are constants independent of 𝑚 and 𝛿

(given explicitly in the proof).

Proof. ByLemmas 10 and 11, we know that for any 0 < 𝛿 < 1/2
there exists a subset 𝑍

𝛿
of 𝑍𝑚 of measure at least 1 − 2𝛿 such

that both (26) and (28) hold for each z ∈ 𝑍
𝛿
.

Let z ∈ 𝑍
𝛿
. It follows from the orthogonal expansion in

terms of the orthonormal basis {𝜙x
𝑙
} that

󵄩󵄩󵄩󵄩󵄩
𝑓
z
𝜖
− 𝑓
𝜌

󵄩󵄩󵄩󵄩󵄩

2

𝐾
=

∞

∑

𝑙=𝑠+1

⟨𝑓
𝜌
, 𝜙

x
𝑙
⟩
2

𝐾
+

𝑠

∑

𝑙=1

(⟨𝑓
𝜌
, 𝜙

x
𝑙
⟩
𝐾
− 𝑐

z
𝜖,𝑙
)
2

=: Δ
1
+ Δ
2
.

(30)

We bound the first term Δ
1
on the right-hand side of

(30) by decomposing it further into two parts with 𝑓
𝜌
=

∑
𝑠

𝑗=1
𝜆
𝑟

𝑗
𝑑
𝑗
𝜙
𝑗
+ ∑
∞

𝑗=𝑠+1
𝜆
𝑟

𝑗
𝑑
𝑗
𝜙
𝑗
:

√Δ
1
≤ (

∞

∑

𝑙=𝑠+1

⟨

𝑠

∑

𝑗=1

𝜆
𝑟

𝑗
𝑑
𝑗
𝜙
𝑗
, 𝜙

x
𝑙
⟩

2

𝐾

)

1/2

+ (

∞

∑

𝑙=𝑠+1

⟨

∞

∑

𝑗=𝑠+1

𝜆
𝑟

𝑗
𝑑
𝑗
𝜙
𝑗
, 𝜙

x
𝑙
⟩

2

𝐾

)

1/2

.

(31)

The part with ∑∞
𝑗=𝑠+1

is easy to deal with since {𝜙x
𝑙
} is an

orthonormal basis; we have

(

∞

∑

𝑙=𝑠+1

⟨

∞

∑

𝑗=𝑠+1

𝜆
𝑟

𝑗
𝑑
𝑗
𝜙
𝑗
, 𝜙

x
𝑙
⟩

2

𝐾

)

1/2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=𝑠+1

𝜆
𝑟

𝑗
𝑑
𝑗
𝜙
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐾

≤
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝜆
𝑟

𝑠
,

(32)

where the last inequality follows from ‖{𝑑
𝑖
}‖
𝑙
2 = ‖𝑔𝜌‖𝐾

. The
part with∑𝑠

𝑗=1
can be estimated by the Schwarz inequality as

(

∞

∑

𝑙=𝑠+1

⟨

𝑠

∑

𝑗=1

𝜆
𝑟

𝑗
𝑑
𝑗
𝜙
𝑗
, 𝜙

x
𝑙
⟩

2

𝐾

)

1/2

≤ (

∞

∑

𝑙=𝑠+1

󵄩󵄩󵄩󵄩󵄩
{𝑑
𝑗
}
󵄩󵄩󵄩󵄩󵄩

2

𝑙
2

𝑠

∑

𝑗=1

𝜆
2𝑟

𝑗
⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾
)

1/2

≤
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
(

∞

∑

𝑙=𝑠+1

𝑠

∑

𝑗=1

𝜆
2𝑟

𝑗
⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾
)

1/2

.

(33)

We continue to bound (∑∞
𝑙=𝑠+1

∑
𝑠

𝑗=1
𝜆
2𝑟

𝑗
⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾
)
1/2

in
two cases.

Case 1 (𝑟 ≥ 1). For 𝑙 ≥ 𝑠 + 1, we observe that

𝑠

∑

𝑗=1

𝜆
2𝑟

𝑗
⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾
≤

𝑠

∑

𝑗=1

2
2𝑟−1
(𝜆
2𝑟

𝑙
+ (𝜆
𝑗
− 𝜆
𝑙
)
2𝑟

) ⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾

≤ 2
2𝑟−1

𝑠

∑

𝑗=1

(𝜆
2𝑟

𝑙
+ 𝜆
2𝑟−2

1
(𝜆
𝑗
− 𝜆
𝑙
)
2

) ⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾

≤ 2
2𝑟−1

𝑠

∑

𝑗=1

(𝜆
2𝑟

𝑙
+ 2𝜆
2𝑟−2

1
(𝜆
𝑗
− 𝜆

x
𝑙
)
2

+ 2𝜆
2𝑟−2

1
(𝜆

x
𝑙
− 𝜆
𝑙
)
2
) ⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾
.

(34)
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From the definition of the Hilbert-Schmidt norm, we have

󵄩󵄩󵄩󵄩𝐿𝐾 − 𝐿
x
𝐾

󵄩󵄩󵄩󵄩
2

HS =
∞

∑

𝑙=1

󵄩󵄩󵄩󵄩(𝐿𝐾 − 𝐿
x
𝐾
) 𝜙

x
𝑙

󵄩󵄩󵄩󵄩
2

𝐾

=

∞

∑

𝑗,𝑙=1

(𝜆
𝑗
− 𝜆

x
𝑙
)
2

⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾
.

(35)

By Lemma 8, we get

∞

∑

𝑙=𝑠+1

𝑠

∑

𝑗=1

𝜆
2𝑟

𝑗
⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾

≤ 2
2𝑟−1

∞

∑

𝑙=𝑠+1

𝜆
2𝑟

𝑙
+ 2
2𝑟+1
𝜆
2𝑟−2

1

󵄩󵄩󵄩󵄩𝐿𝐾 − 𝐿
x
𝐾

󵄩󵄩󵄩󵄩
2

HS.

(36)

Case 2 (𝑟 < 1). We notice that 𝜆2𝑟
𝑗
≤ 𝜆
2𝑟−2

𝑠
𝜆
2

𝑗
and obtain from

the above estimate

∞

∑

𝑙=𝑠+1

𝑠

∑

𝑗=1

𝜆
2𝑟

𝑗
⟨𝜙
𝑗
, 𝜙

x
𝑙
⟩
2

𝐾

≤ 2𝜆
2𝑟−2

𝑠

∞

∑

𝑙=𝑠+1

𝜆
2

𝑙
+ 8𝜆
2𝑟−2

𝑠

󵄩󵄩󵄩󵄩𝐿𝐾 − 𝐿
x
𝐾

󵄩󵄩󵄩󵄩
2

HS.

(37)

The bounds for the two cases together with (32) give a
bound for Δ

1
as

√Δ
1
≤
{

{

{

󵄩󵄩󵄩󵄩󵄩
𝑔
𝑝

󵄩󵄩󵄩󵄩󵄩𝐾
𝜆
𝑟

𝑠
+ 𝜏
1
, if 𝑟 ≥ 1,

󵄩󵄩󵄩󵄩󵄩
𝑔
𝑝

󵄩󵄩󵄩󵄩󵄩𝐾
𝜆
𝑟

𝑠
+ 𝜏
2
, if 𝑟 < 1.

(38)

Here

𝜏
1
= 2
𝑟󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
((

∞

∑

𝑙=𝑠+1

𝜆
2𝑟

𝑙
)

1/2

+ 2𝜆
𝑟−1

1

󵄩󵄩󵄩󵄩𝐿𝐾 − 𝐿
x
𝐾

󵄩󵄩󵄩󵄩HS) ,

𝜏
2
= 2
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝜆
𝑟−1

𝑠
((

∞

∑

𝑙=𝑠+1

𝜆
2

𝑙
)

1/2

+ 2
󵄩󵄩󵄩󵄩𝐿𝐾 − 𝐿

x
𝐾

󵄩󵄩󵄩󵄩HS) .

(39)

Now we turn to the second term Δ
2
on the right-hand

side of (30). Note that

√Δ
2
= (

𝑠

∑

𝑙=1

(⟨𝑓
𝜌
, 𝜙

x
𝑙
⟩
𝐾
− 𝑐

z
𝜖,𝑙
)
2

)

1/2

≤
1

𝜖
(

𝑠

∑

𝑙=1

(𝜆
x
𝑙
⟨𝑓
𝜌
, 𝜙

x
𝑙
⟩
𝐾
− 𝜆

x
𝑙
𝑐
z
𝜖,𝑙
)
2

)

1/2

.

(40)

ByTheorem 7, we have
𝑠

∑

𝑙=1

(𝜆
x
𝑙
⟨𝑓
𝜌
, 𝜙

x
𝑙
⟩
𝐾
− 𝜆

x
𝑙
𝑐
z
𝜖,𝑙
)
2

=

𝑠

∑

𝑙=1

(⟨𝑓
𝜌
,

1

𝑚 (𝑚 − 1)

𝑚

∑

𝑖,𝑗=1

𝜙
x
𝑙
(𝑥
𝑖
) (𝐾
𝑥𝑖
− 𝐾
𝑥𝑗
)⟩

𝐾

−
𝑆
z
𝑙

2𝑚 (𝑚 − 1)
)

2

=

𝑠

∑

𝑙=1

(
1

𝑚 (𝑚 − 1)

𝑚

∑

𝑖,𝑗=1

𝜙
x
𝑙
(𝑥
𝑖
) (𝑓
𝜌
(𝑥
𝑖
) − 𝑓
𝜌
(𝑥
𝑗
))

−
1

𝑚 (𝑚 − 1)

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
) 𝜙

x
𝑙
(𝑥
𝑖
))

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑚 (𝑚 − 1)

𝑚

∑

𝑖,𝑗=1

(𝑦
𝑖
− 𝑦
𝑗
− (𝑓
𝜌
(𝑥
𝑖
) − 𝑓
𝜌
(𝑥
𝑗
)))𝐾
𝑥𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐾

≤
32𝑀𝜅 log (2/𝛿)

√𝑚
.

(41)

Thus, for any 0 < 𝛿 < 1, with confidence 1 − 𝛿, we have

√Δ
2
≤
32𝑀𝜅 log (2/𝛿)

𝜖√𝑚
. (42)

Putting the bounds for√Δ
1
and√Δ

2
into (26), we know that,

with confidence 1 − 𝛿, ‖𝑓z
𝜖
− 𝑓
𝜌
‖
𝐾
can be bounded by

32𝑀𝜅 log (2/𝛿)
𝜖√𝑚

+ ‖ 𝑔
𝜌
‖
𝐾
𝜆
𝑟

𝑠
+ {
𝜏
1
, if 𝑟 ≥ 1,
𝜏
2
, if 𝑟 < 1.

(43)

Let 𝐶
1
= 32𝑀𝜅, 𝐶

2
= 2

max{𝑟,1}
‖𝑔
𝜌
‖
𝐾
, and 𝐶

3
=

24𝜅
2
2
max{𝑟+1,2}

𝜆
max{𝑟−1,0}
1

‖𝑔
𝜌
‖
𝐾
. Then the conclusion of

Theorem 12 follows by scaling 2𝛿 to 𝛿.

To illustrate the error estimate, we establish learning rate
for the algorithm (15) in a special case when the eigenvalues
{𝜆
𝑙
} decay polynomially.

Theorem 13. Assume (7) and for some 1/2𝑟 < 𝛼
2
≤ 𝛼
1
<

(1 + 𝑟)𝛼
2
− (1/2) and 𝐷

1
, 𝐷
2
> 0, the eigenvalues {𝜆

𝑙
} decay

polynomially as

𝐷
1
𝑙
−𝛼1 ≤ 𝜆

𝑙
≤ 𝐷
2
𝑙
−𝛼2 . (44)

Let 𝜖 > 0 such that 𝑠 = ⌊𝑚
1/(2𝑟𝛼2−1)⌋ for 𝑟 ≥ 1 or 𝑠 =

⌊𝑚
1/(2𝛼2−1)⌋ for 0 < 𝑟 < 1. Then, for any 0 < 𝛿 < 1, with

confidence 1 − 𝛿, we have

󵄩󵄩󵄩󵄩󵄩
𝑓
z
𝛾
− 𝑓
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
≤

{{{{

{{{{

{

𝐶
1
log 4
𝛿
𝑚
−1/2
, 𝑖𝑓 𝑟 ≥ 1,

𝐶
2
log 4
𝛿
𝑚
((𝛼1(1−𝑟))/(2𝛼2−1))−(1/2), 𝑖𝑓 𝑟 < 1,

(45)
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where 𝐶
1
and 𝐶

2
are constants independent of𝑚 and 𝛿 (given

explicitly in the proof).

Proof. It follows from the asymptotic behavior of the eigen-
values that

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝜆
𝑟

𝑠
+
𝐶
1
log (4/𝛿)
𝜖√𝑚

≤
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝐷
𝑟

2
𝑠
−𝛼2𝑟 +

𝐶
1
log (4/𝛿)
𝜖√𝑚

.

(46)

For 𝑟 ≥ 1, we have
∞

∑

𝑙=𝑠+1

𝜆
max{2𝑟,2}
𝑙

=

∞

∑

𝑙=𝑠+1

𝜆
2𝑟

𝑙
≤ 𝐷
2𝑟

2

∞

∑

𝑙=𝑠+1

𝑙
−2𝑟𝛼2

≤ 𝐷
2𝑟

2
∫

∞

𝑠

𝑥
−2𝑟𝛼2d𝑥 =

𝐷
2𝑟

2
𝑠
1−2𝑟𝛼2

2𝑟𝛼
2
− 1

,

(47)

𝜆
min{1,𝑟−1}
𝑠

{

{

{

𝐶
2
(

∞

∑

𝑙=𝑠+1

𝜆
max{2𝑟,2}
𝑙

)

1/2

+
𝐶
3
log (4/𝛿)
√𝑚

}

}

}

≤ 𝐶
2
𝜆
𝑠

𝐷
𝑟

2
𝑠
(1−2𝑟𝛼2)/2

√2𝑟𝛼
2
− 1

+ 𝐶
3
𝜆
𝑠

log (4/𝛿)
√𝑚

≤
𝐶
2
𝜆
1
𝐷
𝑟

2

√2𝑟𝛼
2
− 1
𝑠
(1−2𝑟𝛼2)/2 + 𝐶

3
𝜆
1

log (4/𝛿)
𝜖√𝑚

.

(48)

Combining (46) and (48), we see that

󵄩󵄩󵄩󵄩󵄩
𝑓
z
𝜖
− 𝑓
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
≤ (
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝐷
𝑟

2
+
𝐶
2
𝜆
1
𝐷
𝑟

2

√2𝑟𝛼
2
− 1
) 𝑠
(1−2𝑟𝛼2)/2

+ (𝐶
1
+ 𝐶
3
𝜆
1
)
log (4/𝛿)
𝜖√𝑚

.

(49)

By choosing 𝜖 > 0 such that 𝑠 = ⌊𝜖2/(2𝑟𝛼2−1)𝑚1/(2𝑟𝛼2−1)⌋ =
⌊𝑚
1/(2𝑟𝛼2−1)⌋, we have

󵄩󵄩󵄩󵄩󵄩
𝑓
z
𝜖
− 𝑓
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
≤ (
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝐷
𝑟

2
+
𝐶
2
𝜆
1
𝐷
𝑟

2

√2𝑟𝛼
2
− 1
+ 𝐶
1
+ 𝐶
3
𝜆
1
)

×
log (4/𝛿)
𝜖√𝑚

.

(50)

Similarly, for 0 < 𝑟 < 1, we have

∞

∑

𝑙=𝑠+1

𝜆
max{2𝑟,2}
𝑙

≤
𝐷
2

2
𝑠
1−2𝛼2

2𝛼
2
− 1
,

𝜆
min{1,𝑟−1}
𝑠

{

{

{

𝐶
2
(

∞

∑

𝑙=𝑠+1

𝜆
max{2𝑟,2}
𝑙

)

1/2

+
𝐶
3
log (4/𝛿)
√𝑚

}

}

}

≤
𝐶
2
𝐷
𝑟−1

1
𝐷
2

√2𝛼
2
− 1
𝑠
−𝛼1(𝑟−1)+((1−2𝛼2)/2)

+ 𝐶
3
𝑠
−𝛼1(𝑟−1)

log (4/𝛿)
√𝑚

.

(51)

Thus, we have, in light of 1/2𝑟 < 𝛼
2
≤ 𝛼
1
< (1 + 𝑟)𝛼

2
− (1/2),

󵄩󵄩󵄩󵄩󵄩
𝑓
z
𝜖
− 𝑓
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
≤ (
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝐷
𝑟

2
+
𝐶
2
𝐷
𝑟−1

1
𝐷
2

√2𝛼
2
− 1
) 𝑠
𝛼1(1−𝑟)+((1−2𝛼2)/2)

+ (𝐶
1
+ 𝐶
3
) 𝑠
𝛼1(1−𝑟)

log (4/𝛿)
𝜖√𝑚

.

(52)

By choosing 𝜖 > 0 such that 𝑠 = ⌊𝜖2/(2𝛼2−1)𝑚1/(2𝛼2−1)⌋ =
⌊𝑚
1/(2𝛼2−1)⌋, we have

󵄩󵄩󵄩󵄩󵄩
𝑓
z
𝜖
− 𝑓
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
≤ (
󵄩󵄩󵄩󵄩󵄩
𝑔
𝜌

󵄩󵄩󵄩󵄩󵄩𝐾
𝐷
𝑟

2
+
𝐶
2
𝐷
𝑟−1

1
𝐷
2

√2𝛼
2
− 1

+ 𝐶
1
+ 𝐶
3
)

× (log 4
𝛿
) 𝜖
(2𝛼1(1−𝑟)/(2𝛼2−1))−1

× 𝑚
(𝛼1(1−𝑟)/(2𝛼2−1))−(1/2).

(53)

This completes the proof of the theorem with
𝐶
1
= (‖𝑔

𝜌
‖
𝐾
𝐷
𝑟

2
+ (𝐶
2
𝜆
1
𝐷
𝑟

2
/√2𝑟𝛼

2
− 1) + 𝐶

1
+ 𝐶
3
𝜆
1
)𝜖
−1

and 𝐶
2
= (‖𝑔

𝜌
‖
𝐾
𝐷
𝑟

2
+ (𝐶
2
𝐷
𝑟−1

1
𝐷
2
/√2𝛼
2
− 1) + 𝐶

1
+

𝐶
3
)𝜖
(2𝛼1(1−𝑟)/(2𝛼2−1))−1.

Remark 14. The truncated parameter 𝜖 in algorithm (15) plays
a role of the regularization parameter instead of 𝛾. Thus
error bounds for our algorithm are closely related to the
truncated parameter. Note that our learning rates are given
in terms of special choices of the truncated parameter which
depends on a priori condition (7). However, methods for
determining directly the truncated parameter by the data are
more preferrable to practical learners. This will be our future
research direction.

Remark 15. Note that when 𝑟 is large enough (meaning that
𝑓
𝜌
has high regularity), the learning rate behaves like 𝑚−1/2.

Moreover, the nonzero coefficients in 𝑓z
𝜖
= ∑
𝑠

𝑙=1
𝑐
z
𝜖,𝑙
𝜙
x
𝑙
are at

most 𝑠 = ⌊𝑚1/(2𝑟𝛼2−1)⌋, which ismuch smaller than the sample
size𝑚when 𝑟𝛼

2
is large.Thus, our algorithm produces sparse

representations with respect to the empirical eigenfunctions
under a mild condition.
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