
Research Article
Groebner Bases Based Verification Solution for SystemVerilog
Concurrent Assertions

Ning Zhou,1,2 Xinyan Gao,3 Jinzhao Wu,1,4 Jianchao Wei,3 and Dakui Li3

1 School of Computer and Information Technology, Beijing Jiaotong University, Beijing 10044, China
2 School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
3 G & S Labs, School of Software of Dalian University of Technology, Dalian 116620, China
4Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities,
Nanning 530006, China

Correspondence should be addressed to Jinzhao Wu; jzwu205@gmail.com

Received 13 February 2014; Accepted 7 April 2014; Published 11 June 2014

Academic Editor: Xiaoyu Song

Copyright © 2014 Ning Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce an approach exploiting the power of polynomial ring algebra to perform SystemVerilog assertion verification over
digital circuit systems.This method is based on Groebner bases theory and sequential properties checking.We define a constrained
subset of SVAs so that an efficient polynomial modeling mechanism for both circuit descriptions and assertions can be applied. We
present an algorithm framework based on the algebraic representations using Groebner bases for concurrent SVAs checking. Case
studies show that computer algebra can provide canonical symbolic representations for both assertions and circuit designs and can
act as a novel solver engine from the viewpoint of symbolic computation.

1. Introduction

SystemVerilog [1, 2] is the most important unified Hard-
ware Description and Verification Language (HDVL) and
provides a major set of extensions from the Verilog lan-
guage with the added benefit of supporting object orientated
constructs and assertions feature. SystemVerilog provides
special language constructs and assertions, to specify and
verify design behavior. An assertion is a statement that a
specific condition, or sequence of conditions, in a design is
true. In the industry of integrated circuits design, Assertions-
based verification (ABV) using SystemVerilog Assertions
(SVAs) is now changing the traditional design process. With
the help of SVAs, it is easy to formally characterize the
design requirements at various levels of abstraction, guide
the verification task, and simplify the design of the testbench.
Assertions essentially become active design comments, and
one important methodology treats them exactly like active
design comments.

Moreover,assertionscanbeattacheddirectly toRTL,work-
ing in cycle-precise domain, or they can operate in trans-
actional domain with the help of monitors data extractors.

Then, thesemodular checkersminimize or even eliminate the
need of model checkers, which consist of HDL modules to
provide the verification.

An important benefit of assertions is the ease of specifying
functional coverage. Simulation tools compute the functional
coverage, as defined by the assertions, which add a greater
level of assurance that the testbench invoked the desired
functions.

More recently, the key EDA tool vendors have researched
new verification methodologies and languages, which imple-
ment functional code coverage, assertion-based coverage.
and constrained random techniques inside a complete veri-
fication environment.

In [3], a subset of SystemVerilog assertions is defined to
apply induction-based bounded model checking (BMC) to
this subset of SVAswithin acceptable run times andmoderate
memory requirements. As is well known, the conventional
simulation for assertion checking is the well-understood and
most commonly used technique, but only feasible for very
small scale systems and cannot provide exhaustive checking.
While symbolic simulation proposed by Darringer [4] as
early as 1979 can provide exhaustive checking by covering

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 194574, 15 pages
http://dx.doi.org/10.1155/2014/194574

http://dx.doi.org/10.1155/2014/194574

2 Journal of Applied Mathematics

many conditions with a single simulation sequence, but it
could not handle large circuits due to exponential symbolic
expressions. Earlier work in applications of symbolic manip-
ulation and algebraic computation has gained significant
extensions and improvements. In [5], a technique framework
on Groebner bases demonstrated that computer algebraic
geometry method can be used to perform symbolic model
checking using an encoding of Boolean sets as the common
zeros of sets of polynomials. In [6], a similar technique to
framework based Wu’s Method has been further extended
to bit level symbolic model checking. In [7], an improved
framework of multivalued model checking via Groebner
bases method was proposed, which is based on a canonical
polynomial representation of the multivalued logics.

In our previous work [8], we proposed a method using
Groebner bases to perform SEREs assertion verification for
synchronous digital circuit systems. Then we introduced a
verification solution based on Wu’s method towards Sys-
temVerilog assertion checking [9]. This paper aims to verify
whether a SVA property holds or not on the traces produced
after several cycles running over a given synchronous sequen-
tial circuit. It is the follow-upwork of [9]. Groebner Bases and
Wu’s method are the most important methods of computer
algebra. Wu’s method of characteristic set is a powerful
theoremproving technique, andGroebner Bases allowsmany
important properties of the ideal and the associated algebraic
variety to be deduced easily. So Groebner Bases method has
a better theoretical guide, and the algorithm based on Wu’s
method is more efficient.

Checking SVAs is computationally very complex in gen-
eral while for practical purposes a subset is sufficient. In this
work we

(1) define a constrained subset of SVAs;
(2) perform algebraization of SVA operators for the

constrained subset;
(3) do translation of SVAs into polynomial set represen-

tations;
(4) provide a symbolic computation based algebraic algo-

rithm for SVAs verification.
Our approach canhandle safety properties that argue over

a bounded number of time steps. Local variables in SVAs
can be handled as symbolic constant without any temporal
information. Nevertheless, liveness properties and infinite
sequences in SVAs are excluded.

2. Preliminaries

In this section, to keep the paper self-contained, we will
give the basics of SystemVerilog and algebraic symbolic
computation used throughout this paper.

2.1. SystemVerilog Preliminary. SystemVerilog is an IEEE-
approved (IEEE 1800-2005) [1] hardware description lan-
guage. It provides superior capabilities for system architec-
ture, design, and verification.

SystemVerilog has combined many of the best features of
both VHDL and Verilog.

Therefore, on the one hand, VHDL users will recognize
many of the SystemVerilog constructs, such as enumerated
types, records, and multidimensional arrays. On the other
hand, Verilog users can reuse existing designs; SystemVerilog
is a superset of Verilog so no modification of existing Verilog
code is required.

Generally, the SystemVerilog language provides three
important benefits over Verilog.

(1) Explicit design intent—SystemVerilog introduces sev-
eral constructs that allow designers to explicitly state
what type of logic should be generated.

(2) Conciseness of expressions—SystemVerilog includes
commands that allow the users to specify design
behavior more concisely than previously possible.

(3) High level design abstraction—The SystemVerilog
interface construct facilitates intermodule communi-
cation.

Especially, SystemVerilog provides special language con-
structs and assertions, to verify design behavior. An assertion
is a statement that a specific condition, or sequence of
conditions, in a design is true. If the condition or sequence
is not true, the assertion statement will generate an error
message.

Additionally, one important capability in SystemVerilog
is the ability to define assertions outside of Verilog modules
and then bind them to a specific module or module instance.
This feature allows test engineers to add assertions to existing
Verilog models, without having to change the model in any
way. One of the goals of SystemVerilog assertions is to provide
a common semantic meaning for assertions so that they can
be used to drive various design and verification tools.

In SystemVerilog, there are two types of assertions.

(1) Immediate Assertions. Immediate assertions follow simu-
lation event semantics for their execution and are executed
like a statement in a procedural block. Immediate assertions
are primarily intended to be used with simulation and
evaluate using simulation event-based semantics.

(2) Concurrent Assertions. Concurrent assertions are based
on clock semantics and use sampled values of variables. All
timing glitches (real or artificial due to delay modeling and
transient behavior within the simulator) are abstracted away.
Concurrent assertions can be used in always block or initial
block as a statement, or a module as a concurrent block, or an
interface block as a concurrent block, or a program block as
a concurrent block.

An example of a property using sequence and formal
argument is shown below.

property 𝑡𝑒𝑠𝑡 [(𝑟𝑒𝑞, 𝑐, 𝑎𝑐𝑘)];

@(𝑝𝑜𝑠𝑒𝑑𝑔𝑒 𝑐𝑙𝑘)

𝑟𝑒𝑞 |− > 𝑐 ##1 𝑎𝑐𝑘;

endproperty [: 𝑡𝑒𝑠𝑡].

Journal of Applied Mathematics 3

This property states that signal 𝑟𝑒𝑞 and then signal 𝑐

become high and signal 𝑎𝑐𝑘 will be high in the next cycle.
As illustrated in this example, a concurrent assertion

property in SystemVerilog will never be evaluated by itself
except when it is invoked by a verification statement. There-
fore, the statement: assert property 𝑡𝑒𝑠𝑡(𝑎, 𝑏, 𝑐) will cause
the checker to perform assertion checking.

Basically, the verification statement in SVA has three
forms described as follows:

(i) assert to specify the property as a checker to ensure
that the property holds for the design;

(ii) assume to specify the property as an assumption for
the environment. Simulators check that the property
holds, while formal tools use the information to
generate input stimulus. The purpose of the assume
statement is to allow properties to be considered as
assumptions for formal analysis as well as for dynamic
simulation tools;

(iii) cover to monitor the property evaluation for cover-
age.

When a property is assumed, the tools constrain the
environment so that the property holds. In simulation,
asserted and assumed properties are continuously verified to
ensure that the design or the testbench never violate them.

In some tools, the assumptions on the environment can
be used as sequential constraints on the DUT (device under
test) inputs in constrained-random simulation.

These proofs are usually subject to other properties that
describe the assumed behavior of the environment using
assume property statements.

2.2. Groebner Bases Preliminary. Firstly, we will recall some
of the key notions of Groebner bases theory and symbolic
computation. More detailed and elementary introduction to
this subject can be available in books, such as those by Little
et al. [10] or those by Becker and Weispfenning [11].

We begin by listing some general facts and establishing
notations.

Let 𝑘 be an algebraically closed field, and let 𝑘[𝑥
1
, . . . , 𝑥

𝑛
]

be the polynomial ring in variables 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
with coeffi-

cient in 𝑘, under addition and multiplication of polynomial.
The basic structure of polynomial rings is given in terms
of subsets called ideals which is closed under addition and
closed under multiplication by any element of the ring.

Here, let 𝐼 ⊆ 𝑘[𝑥
1
, . . . , 𝑥

𝑛
] be an ideal. As we all know, the

following theorem holds.

Theorem 1 (Hilbert basis theorem). Every ideal 𝐼 ⊂ 𝑘[𝑥
1
, . . . ,

𝑥
𝑛
] has a finite generating set.That is, 𝐼 = ⟨𝑔

1
, . . . , 𝑔

𝑡
⟩ for some

𝑔
1
, . . . , 𝑔

𝑡
∈ 𝐼.

Then, by the Hilbert basis theorem, there exist finitely
many polynomials 𝑓

1
, . . . , 𝑓

𝑚
such that 𝐼 = ⟨𝑓

1
, . . . , 𝑓

𝑚
⟩. A

polynomial 𝑓 ⊆ 𝑘[𝑥
1
, . . . , 𝑥

𝑛
] defines a map 𝑓 : 𝑘

𝑛
→ 𝑘 via

evaluation (𝑎
1
, . . . , 𝑎

𝑛
) 󳨃→ 𝑓(𝑎

1
, . . . , 𝑎

𝑛
).

The set 𝑉(𝐼) := 𝑎 ∈ 𝑘
𝑛

| ∀𝑓 ∈ 𝐼 : 𝑓(𝑎) = 0 ⊆ 𝑘
𝑛 is called

the variety associated with 𝐼.

If 𝑉
1

= 𝑉(𝐼
1
) and 𝑉

2
= 𝑉(𝐼

2
) are the varieties defined

by ideals 𝐼
1
and 𝐼
2
, then we have 𝑉

1
∩ 𝑉
2

= 𝑉(⟨𝐼
1
, 𝐼
2
⟩) and

𝑉
1
∪𝑉
2

= 𝑉(𝐼
1
×𝐼
2
), where 𝐼

1
×𝐼
2

= ⟨𝑓
1
𝑓
2

| 𝑓
1

∈ 𝐼
1
, 𝑓
2

∈ 𝐼
2
⟩. If

𝐼
1

= ⟨𝑓
1
, . . . , 𝑓

𝑟
⟩ and 𝐼

2
= ⟨ℎ
1
, . . . , ℎ

𝑠
⟩, then 𝐼

1
×𝐼
2

= ⟨𝑓
𝑖
×𝑔
𝑗

|

1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑠⟩.
Any set of points in 𝑘

𝑛 can be regarded as the variety
of some ideal. Note that there will be more than one ideal
defining a given variety. For example, the ideals ⟨𝑥

0
⟩ and

⟨𝑥
0
, 𝑥
1
𝑥
0

− 1⟩ both define the variety 𝑉(𝑥
0
).

In order to perform verification, we need to be able to
determine when two ideals represent the same set of points.
That is to say, we need a canonical representation for any ideal.
Groebner bases can be used for this purpose.

An essential ingredient for defining Groebner bases is
a monomial ordering on a polynomial ring 𝑘[𝑥

1
, . . . , 𝑥

𝑛
],

which allows us to pick out a leading term for any polynomial.

Definition 2 (monomial ordering). A monomial ordering on
𝑘[𝑥
1
, . . . , 𝑥

𝑛
] is any relation ≺ on 𝑍

𝑛

≥0
, or equivalently, any

relation on the set of monomials 𝑥
𝛼, 𝛼 ∈ 𝑍

𝑛

≥0
, satisfying

(i) ≺ is a total (or linear) ordering on 𝑍
𝑛

≥0
;

(ii) ≺ is a well-ordering.This means that every nonempty
subset of 𝑍

𝑛

≥0
has a smallest element under ≺;

(iii) for all 𝛾 ∈ 𝑍
𝑛

≥0
, 𝛼 ≺ 𝛽 ⇒ 𝛼 + 𝛾 ≺ 𝛽 + 𝛾.

Examples of monomial ordering include lexicographic
order, graded lexicographic order, and graded reverse lexico-
graphic order.

Definition 3 (lexicographic order). Let 𝛼 = (𝛼
1
, . . . , 𝛼

𝑛
) and

𝛽 = (𝛽
1
, . . . , 𝛽

𝑛
) ∈ 𝑍

𝑛

≥0
. We say 𝛼≺lex𝛽 if, in the vector

difference 𝛼 − 𝛽 ∈ 𝑍
𝑛, the leftmost nonzero entry is positive.

We will write 𝑥
𝛼
≺lex𝑥
𝛽 if 𝛼≺lex𝛽.

Definition 4 (Groebner basis). Fix a monomial order. A finite
subset 𝐺 = {𝑔

1
, . . . , 𝑔

𝑡
} of an ideal 𝐼 is said to be a Groebner

basis (or standard basis) if ⟨𝐿𝑇(𝑔
1
), . . . , 𝐿𝑇(𝑔

𝑡
)⟩ = ⟨𝐿𝑇(𝐼)⟩.

Equivalently, but more informally, a set {𝑔
1
, . . . , 𝑔

𝑡
} ⊂ 𝐼

is a Groebner basis of 𝐼 if and only if the leading term of any
element of 𝐼 is divisible by one of the 𝐿𝑇(𝑔

𝑖
).

In [12], Buchberger provided an algorithm for construct-
ing a Groebner basis for a given ideal.This algorithm can also
be used to determinewhether a polynomial belongs to a given
ideal.

A reduced Groebner basis 𝐺 is a Groebner basis where
the leading coefficients of polynomials in 𝐺 are all 1 and no
monomial of an element of 𝐺 lies in the ideal generated by
the leading terms of other elements of 𝐺 : ∀𝑔 ∈ 𝐺 and no
monomial of 𝑔 is in ⟨𝐿𝑇(𝐺 − {𝑔})⟩.

The important result is that, for a fixed monomial order-
ing, any nonzero ideal has a unique reduced Groebner basis.
The algorithm for finding a Groebner basis can easily be
extended to output its reduced Groebner basis. Thus we will
have a canonical symbolic representation for any ideal.

4 Journal of Applied Mathematics

Inputs

Clock

Synchronous digital circuit

Outputs

FFs

Combinational
logic

Present
states

Next
states

Figure 1: Synchronous digital circuits model.

Theorem 5 (the elimination theorem). Let 𝐼 ⊂ 𝑘[𝑥
1
, . . . , 𝑥

𝑛
]

be an ideal and let 𝐺 be a Groebner basis of 𝐼 with respect to
lexicographic order where 𝑥

1
≻ 𝑥
2

≻ ⋅ ⋅ ⋅ ≻ 𝑥
𝑛
. Then, for every

0 ≤ 𝑙 ≤ 𝑛, the set

𝐺
𝑙
= 𝐺 ∩ 𝑘 [𝑥

𝑙+1
, . . . , 𝑥

𝑛
] (1)

is a Groebner basis of the 𝑙th elimination ideal 𝐼
𝑙
.

Theorem 6. Let 𝐺 be a Groebner basis for an ideal 𝐼 ⊂

𝑘[𝑥
1
, . . . , 𝑥

𝑛
] and let 𝑓 ∈ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
]. Then 𝑓 ∈ 𝐼 if and

only if the remainder on division of 𝑓 by 𝐺 is zero, denoted by
𝑟𝑒𝑚𝑑(𝑓, 𝐺) = 0.

The property given in Theorem 6 can also be taken as
the definition of a Groebner basis. Then we will get an
efficient algorithm for solving the idealmembership problem.
Assuming that we know a Groebner basis 𝐺 for the ideal
in question, we only need to compute the remainder with
respect to 𝐺 to determine whether 𝑓 ∈ 𝐼.

In this paper, we will then use the ideal or any basis for
the ideal as an efficient way of algebraization of system to be
verified.

3. System Modeling with Polynomial

3.1. Circuit Representation Model. In this section, we will
sketch the underlying digital system model for simulation
used in our work.

Most modern circuit design is carried out within the syn-
chronous model, which simplifies reasoning about behavior
at the cost of strict requirements on clocking.

As shown in Figure 1, a classical synchronous design is
comprised of combinatorial logic and blocks of registers with
a global clock. In a synchronous digital system, the clock
signal is often regarded as simple control signal and used
to define a time reference for the movement of data within
that system. Combinational logic performs all the logical
functions in the circuit and it typically consists of logic gates.
Registers usually synchronize the circuit’s operation to the
edges of the clock signal, and are the only elements which
have memory properties.

The basic circuit model we used can be abstracted as the
following model.

Definition 7 (synchronous circuit model). A synchronous
circuit model structure is a tuple:

C = {clk, L,A,Mux, FFs, I,O}, where

(i) clk is a global synchronous clock signal,
(ii) L is a set of logical operation units,
(iii) A is a set of arithmetic operation units,
(iv) Mux is a set of multiplex units,
(v) FFs is a set of sequential units,
(vi) I is a set of primary input signals,
(vii) O is a set of primary output signals.

In the following, we will discuss polynomial represen-
tation of a given circuit model. Firstly, let us retrospect the
classical circuit representation model.

Traditionally, Binary decision diagrams (BDD) [13], the
first generation decision diagrams technique, designed by
Akers in 1978, acts as an efficient digital circuit representation
(or Boolean functions). Recently, the next generation of
decision diagrams, that is, word-level decision diagrams
(WLDD) [14], has considerably widened its expressiveness
for datapath operations due to processing of data in word-
level format.

Generally, ROBDD or WLDD is mapped into hardware
description languages according to the following scheme:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑐𝑖𝑟𝑐𝑢𝑖𝑡) ⇐⇒ 𝑀𝑜𝑑𝑒𝑙 𝑖𝑛 𝑅𝑂𝐵𝐷𝐷 | 𝑊𝐿𝐷𝐷 𝑓𝑜𝑟𝑚.

(2)

Though the dimension of a decision diagram is exponen-
tially bounded by the number of variables, decision diagrams
based canonical data structure is very useful in many well-
known verification methods.

From the viewpoint of abstract symbolic computation,
these decision diagrams based on representation for circuit
systems are not suitable any more. Thus, we will adopt an
alternative representation form based on polynomial sets
instead of decision diagrams according to the following
scheme:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑐𝑖𝑟𝑐𝑢𝑖𝑡) ⇐⇒ 𝑍𝑒𝑟𝑜 𝑆𝑒𝑡 (𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑆𝑒𝑡) . (3)

As is well known, given a monomial order, there is
precisely one polynomial representation of a function.

For convenience, we introduce the following symbols for
algebraic representations.

(1) Foranysymbolic (circuit, unit, signal, sequence, prop-
erty, etc.) 𝑓, its algebraic representation form is de-
noted by ⟦𝑓⟧.

(2) If a running cycle 𝑡 is given, its algebraic representa-
tion form can be denoted by ⟦𝑓⟧

[𝑡]
.

(3) Furthermore, if a time range [𝑚 ⋅ ⋅ ⋅ 𝑛] is specified, its
algebraic representation form can then be denoted by
⟦𝑓⟧
𝑘

[𝑡]
or ⟦𝑓⟧

[𝑚⋅⋅⋅𝑛]

[𝑡]
.

Here, 𝑡 denotes the current time and 𝑘 = (𝑛 − 𝑚) denotes
time steps.

Journal of Applied Mathematics 5

Table 1: Polynomial model for arithmetic operation.

Arithmetic operation Polynomial representation
𝑦 = 𝑎 + 𝑏 ⟦+⟧ = (𝑦 − 𝑎 − 𝑏)

𝑦 = 𝑎 − 𝑏 ⟦−⟧ = (𝑦 − 𝑎 + 𝑏)

𝑦 = 𝑎 ∗ 𝑏 ⟦∗⟧ = (𝑦 − 𝑎 ∗ 𝑏)

𝑦 = 𝑎/𝑏 ⟦/⟧ = (𝑦 ∗ 𝑏 − 𝑎)

Table 2: Polynomial model for logic operation.

Arithmetic operation Polynomial representation
𝑦 = NOT 𝑥 ⟦NOT⟧ = (1 − 𝑥 − 𝑦)

𝑦 = 𝑥
1
AND 𝑥

2
⟦AND⟧ = (𝑥

1
∗ 𝑥
2

− 𝑦)

𝑦 = 𝑥
1
OR 𝑥

2
⟦OR⟧ = (𝑥

1
+ 𝑥
2

− 𝑥
1

∗ 𝑥
2

− 𝑦)

Cycle-based symbolic simulation will be performed on
the system model for verification. Intuitively, cycle-based
symbolic simulation is a hybrid approach in the sense that the
values that are propagated through the network can be either
symbolic expressions or constant values. It assumes that there
exists one unified clock signal in the circuit and all inputs of
the systems remain unchanged while evaluating their values
in each simulation cycle.The results of simulation report only
the final values of the output signals or states in the current
simulation cycle.

The detailed simulation process can be described as
follows. Firstly, cycle-based symbolic simulation is initialized
by setting the state of the circuit to the initial vector. Each of
the primary input signals will be assigned a distinct symbolic
or a constant value. Then, at the end of a simulation step, the
expressions representing the next-state functions generally
undergo a parametric transformation based optimization.
After transformation, the newly generated functions are used
as present state for the next state of simulation.

3.2. Arithmetic and Logic Unit Modeling. In this paper, we
only focus on arithmetic unit for calculating fixed-point oper-
ations. For any arithmetic unit, integer arithmetic operations
(addition, subtraction, multiplication, and division) can be
constructed by the polynomials in Table 1.

The basic logic operations, like “AND”, “OR”, and “NOT”
can be modeled by the following forms. Their corresponding
polynomial representations [15] are specified as in Table 2.

Furthermore, we can extend the above rule to other
common logic operators. For example,

𝑦 = 𝑥
1

⊕ 𝑥
2

(or 𝑦 = 𝑥
1
XOR 𝑥

2
)

󳨐⇒ ⟦⊕⟧ = (𝑦 − (𝑥
1

+ 𝑥
2

− 𝑥
1

∗ 𝑥
2
) ∗ (1 − 𝑥

1
∗ 𝑥
2
)) .

(4)

For all bit level variables 𝑥
𝑖

(0 ≤ 𝑖 ≤ 𝑛), a limitation ⟨{𝑥
𝑖
∗

𝑥
𝑖
− 𝑥
𝑖
}⟩ should be added.

3.3. Branch Unit Modeling. Basically, multiway branch is an
important control structure in digital system. It provides a set
of condition bits, 𝑏𝑖 (0 ≤ 𝑖 ≤ 𝐵), a set of target identifiers,
(0, . . . , 𝑇 − 1), and a mapping from condition bit values to

target identifiers. This mapping takes the form of a condition
tree.

For any binary signal𝑥, its value should be limited to {1, 0}

by adding {𝑥 ∗ 𝑥 − 𝑥}

𝑦 = 𝑀𝑢𝑥 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
, 𝑠) ,

𝑖 = 𝑠 󳨀→ 𝑦 = 𝑥
𝑖
, (0 ≤ 𝑖 ≤ 𝑛)

󳨐⇒ ⟦𝑀𝑢𝑥⟧ = ⟨

{

{

{

𝑦 −

𝑛−1

∑

𝑖=1

(∏

𝑗∈{0,1,...,𝑛−1}\{𝑖}

(
(𝑠 − 𝑗)

(𝑖 − 𝑗)
))

∗𝑥
𝑖

}

}

}

⟩ ,

(5)

with ∏
𝑛−1

𝑖=0
(𝑠 − 𝑖) = 0.

3.4. Sequential Unit Modeling. Each flip-flop (FF) in the
circuit can bemodeled as amultiplexer.Wehave the following
proposition to state this model.

Proposition 8. For a 𝐷 flip-flop (𝐷󸀠 is the next state), with
an enable signal 𝑐, its equivalent combinational formal is 𝑦

󸀠
=

𝑀𝑢𝑥(𝐷, 𝐷
󸀠
, 𝑠) : 𝑖 = 𝑠 → 𝑦

󸀠
= 𝑥
𝑖
, (0 ≤ 𝑖 < 2, 𝑥

0
= 𝐷, 𝑥

1
=

𝐷
󸀠
), whose polynomial algebraic model can be described as

⟦𝐹𝐹𝑠⟧ =

⟨(𝑦
󸀠
− 𝐷) ∗ (𝑐

󸀠
− 1) , (𝑦

󸀠
− 𝐷
󸀠
) ∗ 𝑐, (𝑦

󸀠
− 𝐷) ∗ (𝑦

󸀠
− 𝐷
󸀠
)⟩

(6)

or

⟨𝑦
󸀠
− 𝐷 ∗ (𝑐

󸀠
− 1) − 𝐷

󸀠
∗ 𝑐
󸀠
⟩ . (7)

Proof. Let 𝐷 be the current state and let 𝑦
󸀠 denote the next

state of the flip-flop. When the signal 𝑐
󸀠 value is 0, 𝑦󸀠 has the

same value as 𝐷 so that the FF maintains its present state;
when the signal 𝑐

󸀠 value is 1, 𝑦
󸀠 takes a new value from the

𝐷
󸀠 input (where, 𝐷

󸀠 denotes the new value next state of the
FF). Therefore, we have the 2-value multiway branch model
and its polynomial set representation for FF.

Proposition 9. Let 𝐷 be an FF model, (𝐷󸀠 is the next state),
without enable signal, then its equivalent combinational formal
polynomial algebraic model can be described as: (𝑦󸀠 − 𝐷).

Proof. Straightforward.

3.5. Sequential Unrolling. Generally, for a sequential circuit
C, one time frame of a sequential circuit is viewed as a combi-
national circuit in which each flip-flop will be converted into
two corresponding signals: a pseudo primary input (PPI) and
a pseudo primary output (PPO).

Symbolical simulation of a sequential circuit for 𝑛 cycles
can be regarded as unrolling the circuit 𝑛 times.The unrolled
circuit is still a pure combinational circuit, and the 𝑖th copy of
the circuit represents the circuit at cycle 𝑖. Thus, the unrolled
circuit contains all the symbolic results from the 𝑛 cycles.

6 Journal of Applied Mathematics

3.6. Indexed Polynomial Set Representation. To illustrate the
sequential modeling for a given cycle number clearly, we
define an indexed polynomial set representation for the 𝑖th
cycle.

Let 𝑥𝑖
[𝑙]

(0 ≤ 𝑖 ≤ 𝑟) denote the input signals for the 𝑙th
clock,𝑚𝑖

[𝑙]
(0 ≤ 𝑖 ≤ 𝑠) the intermediate signals, and 𝑦𝑖

[𝑙]
(0 ≤

𝑖 ≤ 𝑡) the output signals. We then have the following time
frame expansion model for the sequential circuit:

𝐹𝑀 = {

𝑛

⋃

𝑖=0

𝐹𝑀 [𝑖]} , (8)

where 𝐹𝑀[𝑖] = C(𝑥1
[𝑖]

, . . . , 𝑚1
[𝑖]

, . . . , 𝑚1
[𝑖]

, . . . , 𝑥1
[𝑖+1]

, . . . ,

𝑚1
[𝑖+1]

, . . . , 𝑦1
[𝑖+1]

, . . .) denote the 𝑖th time frame model.
Time frame expansion is achieved by connecting the

PPIs (e.g., 𝑥1
[𝑖+1]

from 𝐹𝑀[𝑖 + 1]) of the time frame to the
corresponding PPOs (𝑥1

[𝑖+1]
from 𝐹𝑀[𝑖]) of the previous

time frame.

4. Sequence Depth Calculation

In this subsection, we will discuss the important feature of
SVA, time range, and its signal constraint unrolled model.

In SVA, for each sequence the earliest time step for the
evaluation and the latest time step should be determined
firstly.The sequence is then unrolled based on above informa-
tion. Finally, the unrolled sequence will be performed using
algebraization process.

In [3], a time range calculating algorithm is provided.
Here, we will introduce some related definition and special
handling for our purpose.

The following is the syntax definition for time range.

4.1. Time Range

Definition 10 (time range syntax). The syntax of “time range”
can be described as follows.

𝑐𝑦𝑐𝑙𝑒 𝑑𝑒𝑙𝑎𝑦 𝑐𝑜𝑛𝑠𝑡 𝑟𝑎𝑛𝑔𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ::=

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 : 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

| 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 : $.

Note that 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is computed at compile
time and must result in an integer value and can only be 0
or greater.

In this paper, we only focus on constant time range case.
Thus, its form can be simplified as:

(1) 𝑎##[𝑚 : 𝑛]𝑏 (𝑚, 𝑛 ∈ N and 𝑛 ≥ 𝑚 ≥ 0)

(2) 𝑆
1
##[𝑚 : 𝑛]𝑆

2
(𝑚, 𝑛 ∈ N and 𝑛 ≥ 𝑚 ≥ 0).

Here, 𝑎, 𝑏 are signals and 𝑆
1
, 𝑆
2
are sequences.

Assume the starting time is cycle 𝑡, then we have: the
sequence (1) will start (𝑛 − 𝑚 + 1) sequences of evaluation
which are

𝑎 ##𝑚𝑏,

𝑎 ## (𝑚 + 1)𝑏,

. . .,

𝑎##(𝑛 − 𝑚 + 1)𝑏, respectively.

Their corresponding algebraic forms are

⟦𝑎##𝑚𝑏⟧
[𝑡]

= ⟦𝑎
𝑡
∧ 𝑏
𝑡+1

⟧,

⟦𝑎##(𝑚 + 1)𝑏⟧
[𝑡]

= ⟦𝑎
𝑡
∧ 𝑏
𝑡+2

⟧,

. . .,

⟦𝑎##(𝑛 − 𝑚 + 1)𝑏⟧
[𝑡]

= ⟦𝑎
𝑡
∧ 𝑏
𝑡+𝑛−𝑚+1

⟧.

Thenwe have the equivalent form of above representation
set as

⟦(𝑎
𝑡
∧ 𝑏
𝑡+𝑚

) ∨ ⋅ ⋅ ⋅ ∨ (𝑎
𝑡
∧ 𝑏
𝑡+𝑛

)⟧ . (9)

4.2. Sequential Depth Calculation. The time range of a
sequential is a time interval during which an operation or a
terminal of a sequence has to be considered and is denoted by
a closed bounded set of positive integers:

𝑇 = [𝑙 ⋅ ⋅ ⋅ ℎ] = {𝑥 | 𝑙 ≤ 𝑥 ≤ ℎ} (here, 𝑥, 𝑙, ℎ ∈ N) . (10)

Furthermore, the maximum of two intervals 𝑇
1
and 𝑇

2
is

defined by max(𝑇
1
, 𝑇
2
) = [max(𝑙

1
, 𝑙
2
) ⋅ ⋅ ⋅max(ℎ

1
, ℎ
2
)].

In the samemanner, the sum of two time ranges of𝑇
1
and

𝑇
2
is defined as

𝑇
1

+ 𝑇
2

= [(𝑙
1

+ 𝑙
2
) ⋅ ⋅ ⋅ (ℎ

1
+ ℎ
2
)] . (11)

Definition 11 (maximum sequential depth). The maximum
sequential depth of a SVA expression 𝐹 or a sequence, written
as 𝑑𝑒𝑝(𝐹), is defined recursively.

(i) 𝑑𝑒𝑝(𝑎) = [1 ⋅ ⋅ ⋅ 1], if 𝑎 is a signal;

(ii) 𝑑𝑒𝑝(¬𝑎) = [1 ⋅ ⋅ ⋅ 1], if 𝑎 is a signal;

(iii) 𝑑𝑒𝑝(𝑎##𝑏) = 𝑑𝑒𝑝(𝑎) + 𝑑𝑒𝑝(𝑏), if 𝐹
1
, 𝐹
2
are sequences

of SVA;

(iv) 𝑑𝑒𝑝(𝐹
1
##[𝑚 : 𝑛]𝐹

2
) = 𝑑𝑒𝑝(𝐹

1
) + 𝑑𝑒𝑝(𝐹

2
) + [𝑚 ⋅ ⋅ ⋅ 𝑛],

if 𝐹
1
, 𝐹
2
are sequences of SVA;

(v) 𝑑𝑒𝑝(𝐹
1
and 𝐹

2
) = max(𝑑𝑒𝑝(𝐹

1
), 𝑑𝑒𝑝(𝐹

2
)), if𝐹

1
,𝐹
2
are

sequences of SVA;

(vi) 𝑑𝑒𝑝(𝐹
1
or 𝐹
2
) = max(𝑑𝑒𝑝(𝐹

1
), 𝑑𝑒𝑝(𝐹

2
)), if 𝐹

1
, 𝐹
2
are

sequences of SVA;

(vii) 𝑑𝑒𝑝(𝐹
1
intersect 𝐹

2
) = 𝑑𝑒𝑝(𝐹

1
) + 𝑑𝑒𝑝(𝐹

2
) − 1, if 𝐹

1
,

𝐹
2
are sequences of SVA;

(viii) 𝑑𝑒𝑝(𝐹[𝑛]) = 𝑛 ∗ 𝑑𝑒𝑝(𝐹), if 𝐹 is a sequence of SVA.

Journal of Applied Mathematics 7

##[2..3]

e And [4..6]

##[1..2] ##[2..3]

a b c d

[3..5] [3..5] [4..6][4..6]

[0..0]

Figure 2: Sequence depth parsing tree.

For example, the following sequence is used to illustrate
how to calculate the sequence depth.

sequence

𝑒 ##[2 ⋅ ⋅ ⋅ 3] ((𝑎##[1⋅ ⋅ ⋅ 2]𝑏) and (𝑐 ##[1 ⋅ ⋅ ⋅ 2] 𝑑))

endsequence.

Figure 2 shows the binary parsing tree for calculating
sequence depth of this sequence. The box denotes operator
and cycle denotes signal node in the syntax tree.

Firstly, consider the top layer of the parsing tree and
the sequence ##[2 ⋅ ⋅ ⋅ 3]. Here, because the first operand 𝑒

is a terminal of the sequence, thus this operand becomes
relevant at time step 0 only (𝑇

1st = [0 ⋅ ⋅ ⋅ 0]). Since the interval
has to be considered, the second operand (the subtree of
“and”)matches 2 or 3 time steps later.Therefore, calculating is
recursively performed with 𝑇 = [0 ⋅ ⋅ ⋅ 0] + [2 ⋅ ⋅ ⋅ 3] = [2 ⋅ ⋅ ⋅ 3]

for the second operand.
Similarly, we can have the sequence depth of the whole

sequence and all its subsequences as denoted in the figure.

5. SVA to Polynomial Set Translation

As mentioned previously, SystemVerilog assertions are an
integral component of SystemVerilog and provide two kinds
of assertions: immediate assertions and concurrent asser-
tions.

In this section, we only discuss concurrent assertions and
their temporal layer representation model.

Concurrent assertions express functional design intent
and can be used to express assumed input behavior, expected
output behavior, and forbidden behavior. That is, assertions
define properties that the design must meet. Many prop-
erties can be expressed strictly from variables available in
the design, while properties are often constructed out of
sequential behaviors.

Thus, we will firstly discuss the basic algebraization
process for the sequential behavior model.

5.1. Algebraization Process. Theproperties written in SVAwill
be unrolled and checked against the design for bounded time
steps in our method. Note that only a constrained subset of
SVA can be supported by our method (unspecified upper
bound time range and first-match operator are excluded).

Firstly, we translate the properties described by the
constrained subset of SVA into flat sequences according to
the semantics of each supported operator.

Asmentioned in [16], the total set of SVA is divided into 4
subgroups, namely, simple sequence expression (SSE), inter-
val sequence expression (ISE), complex sequence expression
(CSE), and unbounded sequence expression (USE). Here, in
our method, these groups can only be partly supported.

Therefore, we define the following sequence expressions
by adding further conditions.

(i) Constrained simple sequence expression (CSSE) is
formed by Boolean expression, repeat operator, and
cycle delay operator.

(ii) Constrained interval sequence expression (CISE) is
a super set of CSSE formed by extra time range
operators.

(iii) Constrained complex sequence expression is a super
set of CSSE and CISE containing operators or and
intersection.

Secondly, the unrolled flat sequences will be added to
temporal constraints to form proportional formulas with
logical connectives (∨, ∧, and ¬).

Finally, the resulted proportional formulas will be trans-
lated into equivalent polynomial set.

Then, the verification problem is reduced to proving zero
set inclusion relationship which can be resolved by Groebner
bases approaches.

5.2. Boolean LayerModeling. TheBoolean layer of SVA forms
an underlying basis for the whole assertion architecture
which consists of Boolean expressions that hold or do not
hold at a given cycle.

In this paper, we distinguish between signal logic values
and truth logic values. That is, for a truth logic statement
about a given property, its truth can be evaluated to 𝑡𝑟𝑢𝑒 or
𝑓𝑎𝑙𝑠𝑒. But for a signal, when primary inputs are symbolic
values, its signal logic value may not be evaluated as ℎ𝑖𝑔ℎ or
𝑙𝑜𝑤.

Therefore, we have the following definition for signal
logic.

Definition 12 (signal logic). In digital circuit systems, signal
logic (SL, for short) is defined as:

(i) if a signal𝑥 is active-high (𝐻, for short), then its signal
value is defined as 1;

(ii) if a signal 𝑥 is active-low (𝐿, for short), then its signal
value is defined as 0.

8 Journal of Applied Mathematics

Definition 13 (symbolic constant). A symbolic constant is a
rigid Boolean variable that forever holds the same Boolean
value.The notion of symbolic constant was firstly introduced
in STE [17] for two purposes:

(1) to encode an arbitrary Boolean constraints among a
set of circuit nodes in a parametric form;

(2) to encode all possible scalar values for a set of nodes.

Assume 𝐻 denotes a symbolic constant for signal logic
and 𝐻 denotes its negative form, if 𝐻 denotes ℎ𝑖𝑔ℎ then 𝐻

will be 𝑙𝑜𝑤.
Consider (𝑟𝑒𝑞==𝐻) and (𝑎𝑐𝑘==𝐻) as an example.

According to our definitions, 𝑟𝑒𝑞 and 𝑎𝑐𝑘 are signals belong-
ing to signal logic, while both (𝑟𝑒𝑞==𝐻) and (𝑎𝑐𝑘==𝐻) are of
truth logic.

For example, assertion (𝑎[15 : 0] == 𝑏[15 : 0]) is also a
valid Boolean expression stating that the 16-bit vectors 𝑎[15 :

0] and 𝑏[15 : 0] are equal.
In SVA, the following are valid Boolean expressions:

(i) 𝑎𝑟𝑟𝑎𝑦𝐴 == 𝑎𝑟𝑟𝑎𝑦𝐵

(ii) 𝑎𝑟𝑟𝑎𝑦𝐴! = 𝑎𝑟𝑟𝑎𝑦𝐵

(iii) 𝑎𝑟𝑟𝑎𝑦𝐴[𝑖] >= 𝑎𝑟𝑟𝑎𝑦 𝐵[𝑗]

(iv) 𝑎𝑟𝑟𝑎𝑦𝐵[𝑖][𝑗+ : 2] == 𝑎𝑟𝑟𝑎𝑦𝐴[𝑘][𝑚− : 2]

(v) (𝑎𝑟𝑟𝑎𝑦𝐴[𝑖]&(𝑎𝑟𝑟𝑎𝑦𝐵[𝑗])) == 0.

Since the state of a signal variable can be viewed as a zero
of a set of polynomials. We have the following.

(1) For any signal 𝑥 holds at a given time step 𝑖, thus, the
state of 𝑥 == 1 (𝑥 is active-high at cycle 𝑖) can be
represented by polynomial {𝑥

[𝑖]
− 1}.

(2) Alternatively, the state of 𝑥 == 0 (𝑥 is active-low at
cycle 𝑖) can be represented by polynomial {𝑥

[𝑖]
}.

(3) Symbolically, the state of 𝑥 == 𝐻 (𝑥 is active-high 𝐻

at the 𝑖th cycle) can be modeled as {𝑥
[𝑖]

− 𝐻}.

5.3. Sequence Operator Modeling. Temporal assertions define
not only the values of signals, but also the relationship
between signals over time. The sequences are the building
blocks of temporal assertions and can express a set of linear
behavior lasting for one or more cycles. These sequences are
usually used to specify and verify interface and bus protocols.

A sequence is a regular expression over the Boolean
expressions that concisely specifies a set of linear sequences.
The Boolean expressions must be true at those specific clock
ticks for the sequence to be true over time.

SystemVerilog provides several sequence composition
operators to combine individual sequences in a variety of
ways that enhance code writing and readability which can
construct sequence expressions from Boolean expressions.

In this paper, throughout operator, [1 : $] operator, and
the first match operator are not supported by our method.

SystemVerilog defines a number of operations that can
be performed on sequences. The sequence composition
operators in SVA are listed as follows.

Definition 14 (sequence operator).

𝑅 ::= 𝑏//“Boolean expression” form

| (1, V = 𝑒)// “local variable sampling” form
| (𝑅)// “parenthesis” form
| (𝑅
1
##1 𝑅

2
)// “concatenation” form

| (𝑅
1
##0 𝑅

2
)// “fusion” form

| (𝑅
1
or 𝑅
2
)// “or” form

| (𝑅
1
intersect 𝑅

2
)// “intersect” form

| first match (𝑅)// “first match” form
| 𝑅[∗0]// “null repetition” form
| 𝑅[∗1 : $]// “unbounded repetition” form
| [∗], [=], [− >]// “repetition” repeater
| throughout//specifying a Boolean expression must
hold throughout a sequence
| within//specifying conditions within a sequence.

The resulted sequences constructed by operators are then
used in properties for use in assertions and covers.

5.3.1. Cycle Delay Operator. In SystemVerilog, the ## con-
struct is referred to as a cycle delay operator.

“##1” and “##0” are concatenation operators: the former
is the classical regular expression concatenation; the latter is
a variant with one-letter overlapping.

A ##𝑛 followed by a number 𝑛 or range specifies the 𝑛

cycles delay from the current clock cycle to the beginning of
the sequence that follows.

(1) Fixed-length Case
sequence fixs;

𝑎##𝑛𝑏

endsequence
⇒ ⟦𝑓𝑖𝑥𝑠⟧ = {⟦𝑎⟧

𝑡
, ⟦𝑏⟧
𝑡+𝑛

}

(2) Time-range Case
sequence 𝑡𝑚𝑠

𝑎##[𝑚 ⋅ ⋅ ⋅ 𝑛]𝑏

endsequence
⇒ ⟦𝑡𝑚𝑠⟧ = {⟦𝑎⟧

[𝑡]
, ⟦𝑏⟧
𝑚

[𝑡]
} ∨ ⋅ ⋅ ⋅ ∨ {⟦𝑎⟧

[𝑡]
, ⟦𝑏⟧
𝑛

[𝑡]
}.

5.3.2. Intersect Operator. The two operands of intersect
operator are sequences. The requirements for match of the
intersect operation are as follows.

(i) Both operands must match.
(ii) The lengths of the two matches of the operand

sequences must be the same.

Journal of Applied Mathematics 9

𝑅
1
intersect 𝑅

2
.

𝑅
1
starts at the same time as 𝑅

2
; the intersection will

match if 𝑅
1
, starting at the same time as 𝑅

2
, matches at the

same time as 𝑅
2
matches.

Therefore, we have

⟦𝑅
1
intersect 𝑅

2
⟧ = ⟦𝑅

1
⟧
𝑑𝑒𝑝(𝑅

1
)

[𝑡]
∧ ⟦𝑅
2
⟧
𝑑𝑒𝑝(𝑅

2
)

[𝑡]
. (12)

The sequence length matching intersect operator con-
structs a sequence like the and nonlength matching operator,
except that both sequences must be completed in same cycle.

5.3.3. and Operator. 𝑅
1
and 𝑅

2
.

This operator states that 𝑅
1
starts at the same time as 𝑅

2

and the sequence expression matches with the later of 𝑅
1
and

𝑅
2
matching. This binary operator and is used when both

operands are expected to match, but the end times of the
operand sequences can be different.

That is, 𝑅
1
and 𝑅

2
denotes both 𝑅

1
and 𝑅

2
holds for the

same number cycles. Then, the matches of 𝑅
1
and 𝑅

2
must

satisfy the following:

(i) The start point of the match of 𝑅
1
must be no earlier

than the start point of the match of 𝑅
2
.

(ii) The end point of thematch of𝑅
1
must be no later than

the end point of the match of 𝑅
2
.

The sequence nonlength matching and operator con-
structs a sequence in which two sequences both hold at the
current cycle regardless of whether they are completed in the
same cycle or in different cycles

⟦𝑅
1
and 𝑅

2
⟧ 󳨐⇒

ℎ
1

⋁

𝑖=𝑙
1

ℎ
2

⋁

𝑗=𝑙
2

({⟦𝑅
1
⟧
𝑖

[𝑡]
} ∧ {⟦𝑅

2
⟧
𝑗

[𝑡]
}) . (13)

Here, 𝑙
𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ 𝑙, ℎ

𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ ℎ, and 0 < 𝑖 ≤ 2.

5.3.4. or Operator. 𝑅
1
or 𝑅
2
.

The sequence or operator constructs a sequence in which
one of two alternative sequences hold at the current cycle.
Thus, the sequence (𝑎##1𝑏) or (𝑐##1𝑑) states that either
sequence 𝑎, 𝑏 or sequence 𝑐, 𝑑 would satisfy the assertion

⟦𝑅
1
or 𝑅
2
⟧ 󳨐⇒

ℎ
1

⋁

𝑖=𝑙
1

ℎ
2

⋁

𝑗=𝑙
2

({⟦𝑅
1
⟧
𝑖

[𝑡]
} ∨ {⟦𝑅

2
⟧
𝑗

[𝑡]
}) . (14)

Here, 𝑙
𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ 𝑙, ℎ

𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ ℎ, and 0 < 𝑖 ≤ 2.

5.3.5. Local Variables. SystemVerilog provides a feature by
which variables can be used in assertions. The user can
declare variables local to a property. This feature is highly
useful in pipelined designs where the consequent occur-
rence might be many cycles later than their corresponding
antecedents.

Local variables are optional and local to properties. They
can be initialized, assigned (and reassigned) a value, operated
on, and compared to other expressions.

The syntax of a sequence declaration with a local variable
is shown below.

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ::=

sequence 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟[([𝑡𝑓 𝑝𝑜𝑟𝑡 𝑙𝑖𝑠𝑡])];

𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛 V𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑒𝑥𝑝𝑟;

endsequence [: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟].

The property declaration syntax with a local variable can
be illustrated as follows:

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ::=

property 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟[([𝑡𝑓 𝑝𝑜𝑟𝑡 𝑙𝑖𝑠𝑡])];

𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛V𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑠𝑝𝑒𝑐;

endproperty [: 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟].

The variable identifier declaration syntax of a local vari-
able can be illustrated as follows:

𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛 V𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ::=

V𝑎𝑟 𝑑𝑎𝑡𝑎 𝑡𝑦𝑝𝑒 𝑙𝑖𝑠𝑡 𝑜𝑓 V𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠.

The dynamic creation of a variable and its assignment is
achieved by using the local variable declaration in a sequence
or property declaration and making an assignment in the
sequence.

Thus, local variables of a sequence (or property) may be
set to a value, which can be computed from a parameter or
other objects (e.g., arguments, constants, and objects visible
by the sequence (or property)).

For example, a property of a pipeline with a fixed latency
can be specified below.

property 𝑙𝑎𝑡𝑒𝑛𝑐𝑦;
𝑖𝑛𝑡 𝑥;
(V𝑎𝑙𝑖𝑑 𝑖𝑛, 𝑥 = 𝑝 𝑖𝑛)|− > ##3(𝑝 𝑜𝑢𝑡 == (𝑥 + 1));

endproperty.

This property e is evaluated as follows:
When V𝑎𝑙𝑖𝑑 𝑖𝑛 is true, 𝑥 is assigned the value of 𝑝 𝑖𝑛. If 3

cycles later, 𝑝 𝑜𝑢𝑡 is equal to 𝑥 + 1, then property 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is
true. Otherwise, the property is false. When V𝑎𝑙𝑖𝑑 𝑖𝑛 is false,
property 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is evaluated as true.

For the algebraization of SVA properties with local
variables, in our method these local variables will be taken
as common signal variables (symbolic constant) without any
sequential information.

Thus, we have the polynomial set representation for
property 𝑙𝑎𝑡𝑒𝑛𝑐𝑦:

⟦𝑙𝑎𝑡𝑒𝑛𝑐𝑦⟧
[𝑡]

= {

(V𝑎𝑙𝑖𝑑 𝑖𝑛
[𝑡]

− 1),
(𝑥 − 𝑝 𝑖𝑛

[𝑡]
),

(𝑝 𝑜𝑢𝑡
[𝑡+3]

− (𝑥 + 1))}.

10 Journal of Applied Mathematics

5.3.6. Repetition Operators. SystemVerilog allows the user
to specify repetitions when defining sequences of Boolean
expressions.The repetition counts can be specified as either a
range of constants or a single constant expression.

Nonconsecutive repetition specifies finitely many itera-
tive matches of the operand Boolean expression, with a delay
of one or more clock ticks from one match of the operand
to the next successive match and no match of the operand
strictly in between. The overall repetition sequence matches
at or after the last iterative match of the operand, but before
any later match of the operand.

The syntax of repetition operator can be illustrated as
follows:

𝑛𝑜𝑛 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖V𝑒 𝑟𝑒𝑝 ::= [= 𝑐𝑜𝑛𝑠𝑡 𝑜𝑟 𝑟𝑎𝑛𝑔𝑒 𝑒𝑥𝑝𝑟] . (15)

The number of iterations of a repetition can be specified
by exact count.

For example, a sequence with repetition can be defined as

𝑎 |=> 𝑏 [= 3] ##1 𝑐. (16)

The sequence expects that 2 clock cycles after the valid
start, signal “𝑏” will be repeated three times.

We have ⟦𝑅[= 𝑛]⟧ = ⋁
𝑛

𝑖=0
({⟦𝑅⟧

𝑖∗𝑑𝑒𝑝(𝑅)

[𝑡]
}).

5.4. Property OperatorModeling. In general, property expres-
sions in SVA are built using sequences, other sublevel proper-
ties, and simple Boolean expressions via property operators.

In SVA, a property that is a sequence is evaluated as true
if, and only if, there is a nonempty match of the sequence.
A sequence that admits an empty match is not allowed as a
property.

The success of assertion-based verification methodology
relies heavily on the quality of properties describing the
intended behavior of the design. Since it is a fairly new
methodology, verification and design engineers are often
faced with a question of “how to identify good properties” for
a design. It may be tempting to write properties that closely
resemble the implementation.

Properties we discussed in this paper can be classified as.

(1) Design Centric. Design centric properties represent asser-
tions added by the RTL designers to characterize white
box design attributes. These properties are typically towards
FSMs, localmemories, clock synchronization logic, and other
hardware-related designs. The design should conform to the
expectations of these properties.

(2) Assumption Centric. Assumption centric properties rep-
resent assumptions about the design environment. They are
used in informal verification to specify assumptions about the
inputs. The assume directive can inform a verification tool to
assume such a condition during the analysis.

(3) Requirement/Verification Centric. Many requirement
properties are best described using a “cause-to-effect” style
that specifies what should happen under a given condition.
This type of properties can be specified by implication

operator. For example, a handshake can be described as “if
request is asserted, then acknowledge should be asserted
within 5 cycles”.

In general, property expressions are built using sequen-
ces, other sublevel properties, and simple Boolean expres-
sions.

These individual elements are combined using property
operators: implication, NOT, AND,OR, and so forth.

The property composition operators are listed as follows.

Definition 15 (property operator).

𝑃 ::= 𝑅/
∗ “sequence” form ∗/

|(𝑃)/
∗ “parenthesis” form ∗/

|not 𝑃/
∗ “negation” form ∗/

|(𝑃
1
or 𝑃
2
)/
∗ “or” form ∗/

|(𝑃
1
and 𝑃

2
)/
∗ “and” form ∗/

|(𝑅|− > 𝑃) |(𝑅| => 𝑃)/
∗ “implication” form ∗/

|disable iff(𝑏) 𝑃/
∗ “reset” form ∗/.

Note that disable if and only if will not be supported
in this paper. Property operators construct properties out of
sequence expressions.

5.4.1. Implication

Operators. The SystemVerilog implication operator supports
sequence implication and provides two forms of implication:
overlapped using operator |− >, and nonoverlapped using
operator | =>, respectively.

The syntax of implication is described as follows:

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑒𝑥𝑝𝑟 | − > 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑒𝑥𝑝𝑟

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑒𝑥𝑝𝑟 | => 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑒𝑥𝑝𝑟.

(17)

The implication operator takes a sequence as its anteced-
ent and a property as its consequent. Every time the sequence
matches the property must hold. Note that both the running
of the sequence and the property may span multiple clock
cycles and that the sequence may match multiple times.

For each successful match of the antecedent sequence,
the consequence sequence (right-hand operand) is sepa-
rately evaluated, beginning at the end point of the matched
antecedent sequence. All matches of antecedent sequence
require a match of the consequence sequence.

Moreover, if the antecedent sequence (left hand operand)
does not succeed, implication succeeds vacuously by return-
ing true. For many protocol related assertions, it is important
to specify the sequence of events (the antecedent or cause)
that must occur before checking for another sequence (the
consequent or effect). This is because if the antecedent does
not occur, then there is no need to perform any further
verification. In hardware, this occurs because the antecedent
reflects an expression that, when active, triggers something to
happen.

Journal of Applied Mathematics 11

A property with a consequent sequence behaves as if the
consequent has an implication first-match applied to it.

5.4.2. NOT

Operator. The operator NOT 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑒𝑥𝑝𝑟 states that the
evaluation of the property returns the opposite of the eval-
uation of the underlying 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑒𝑥𝑝𝑟.

5.4.3. AND

Operator. The formula “𝑃
1
AND 𝑃

2
” states that the property

is evaluated as true if, and only if, both 𝑃
1
and 𝑃
2
are evaluatd

as true.

5.4.4. OR

Operator. The operator “𝑃
1
OR 𝑃

2
” states that the property is

evaluated as true if and only if, at least one of 𝑃
1
and 𝑃

2
is

evaluated as true.

5.4.5. IF-ELSE

Operator. This operator has two valid forms which are listed
as follows.

(1) IF (𝑑𝑖𝑠𝑡) 𝑃
1
.

A property of this form is evaluated as true if, and only if,
either 𝑑𝑖𝑠𝑡 is evaluated as false or 𝑃

1
is evaluated as true.

(2) IF (𝑑𝑖𝑠𝑡) 𝑃
1
ELSE 𝑃

2
.

A property of this form is evaluated as true if, and only if,
either 𝑑𝑖𝑠𝑡 is evaluated as true and 𝑃

1
is evaluated as true or

𝑑𝑖𝑠𝑡 is evaluated as false and 𝑃
2
is evaluated as true.

From previous discussion, we have the following propo-
sition for property reasoning.

Proposition 16. Assume that𝑃,𝑃
1
, and𝑃

2
are valid properties

in SVA, the following rules are used to construct the correspond-
ing verification process. Here, 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀𝑜𝑑𝑒𝑙, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) :

{ture, false} is a self-defined checking function that can deter-
mine whether a given “𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦” holds or not with respect to
a circuit model “𝑀𝑜𝑑𝑒𝑙”.

(1) 𝑃
1
OR 𝑃

2
⇒ 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃

1
⟧) ∨ 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃

2
⟧)

(2) 𝑃
1
AND 𝑃

2
⇒ 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃

1
⟧)∧𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃

2
⟧)

(3) NOT 𝑃 ⇒ ¬𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃⟧)

(4) IF (𝑑𝑖𝑠𝑡) 𝑃
1

⇒ ¬𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, 𝑑𝑖𝑠𝑡) ∨ 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀,

⟦𝑃
1
⟧)

(5) IF (𝑑𝑖𝑠𝑡) 𝑃
1
ELSE 𝑃

2
⇒ (𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, 𝑑𝑖𝑠𝑡)∧𝐴𝑠𝑠𝐶ℎ𝑘

(𝑀, ⟦𝑃
1
⟧))∨(¬𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, 𝑑𝑖𝑠𝑡)∧𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃

2
⟧))

(6) 𝑆 | − > 𝑃 ⇒ if (¬𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑆⟧))𝑟𝑒𝑡𝑢𝑟𝑛 true else
(𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑆⟧

[𝑡]
) ∧ 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃⟧

dep(𝑃)
[𝑡+dep(𝑆)−1]))

(7) 𝑆 |=> 𝑃 ⇒ if(¬𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑆⟧))𝑟𝑒𝑡𝑢𝑟𝑛 true else
(𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑆⟧

[𝑡]
) ∧ 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀, ⟦𝑃⟧

dep(𝑃)
[𝑡+dep(𝑆)])).

6. Verification Algorithm

In this section, we will describe how an assertion is checked
using Groebner bases approach. Firstly, we will discuss
a practical algorithm using Groebner bases for assertion
checking.

6.1. Basic Principle. As just mentioned, our checking method
is based on algebraic geometry which is the study of the
geometric objects arising as the common zeros of collections
of polynomials. Our aim is to find polynomials whose
zeros correspond to pairs of states in which the appropriate
assignments are made.

We can regard any set of points in 𝑘
𝑛 as the variety of some

ideal. We can then use the ideal or any basis for the ideal as a
way of encoding the set of points.

From Groebner Bases theory [10, 12] every nonzero ideal
𝐼 ⊂ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
] has a Groebner basis and the following

proposition evidently holds.

Proposition 17. Let 𝐶 and 𝑆 be polynomial sets of 𝑘[𝑥
1
, . . . ,

𝑥
𝑛
], and ⟨𝐺𝑆⟩ a Groebner basis for ⟨𝑆⟩, and then we have that

⟨𝐶⟩ ⊆ ⟨𝑆⟩ ⇔ ∀𝑐 ∈ 𝐶 : 𝑟𝑒𝑚𝑑(𝑐, 𝐺𝑆) == 0 holds.

Theorem 18. Suppose that 𝐴(⟦𝐴⟧ = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑟
}) is a

property to be verified. 𝑇 is the initial preconditions of 𝐶, and
𝑀 is a system model to be checked. Let ⟦𝑇⟧ and ⟦𝑀⟧ be
the polynomial set representations for 𝑇 and 𝑀, respectively,
constructed by previous mentioned rules. Let 𝐻 = ⟦𝑇 ∪ 𝑀⟧ =

{ℎ
1
, ℎ
2
, . . . , ℎ

𝑠
} ⊆ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
], 𝐼 = ⟨𝐻⟩ (where, ⟨𝐻⟩ denotes

the ideal generated by 𝐻) and 𝐺𝐵
𝐻

= 𝑔𝑏𝑎𝑠𝑖𝑠(𝐻, ≺), then we
have

((1 ∉ 𝐺𝐵
𝐻

) and 𝑟𝑒𝑚𝑑 (𝐶, 𝐺𝐵
𝐻

) == 0)

⇐⇒ ((1 ∉ 𝐺𝐵
𝐻

) and
𝑟

⋀

𝑖=0

(𝑟𝑒𝑚𝑑 (𝑔
𝑖
, 𝐺𝐵
𝐻

) == 0))

⇐⇒ (𝑀 |= 𝐴) holds.

(18)

Proof. (1) The polynomial set ⟦𝑀⟧ of system model 𝑀

describes the data-flow relationship that inputs, outputs, and
functional transformation should meet. The initial condition
⟦𝑀⟧ can be seen as extra constraint applied by users. There
should not exist contradiction between them; that is, the
polynomial equations of ⟦𝑇 ∪ 𝑀⟧ must have a common
solution.

ByHilbert’s Nullstellensatz theory, if we have polynomials
⟦𝑇 ∪ 𝑀⟧ = {𝑓

1
, . . . , 𝑓

𝑠
} ∈ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
], we compute a

reducedGroebner basis of the ideal they generatewith respect
to any ordering. If this basis is {1}, the polynomials have no
common zero in 𝑘

𝑛; if the basis is not {1}, they must have a
common zero.

Therefore, (1 ∉ 𝐺𝐵
𝐻

) should hold.
(2) Evidently, by previous proposition, it is easy to have

that 𝑟𝑒𝑚𝑑(𝐶, 𝐺𝐵
𝐻

) == 0 should hold.
Thus, we have that this theorem holds.

12 Journal of Applied Mathematics

Input:
(1) circuit model 𝑀;
(2) initial condition 𝑇;
(3) an assertion 𝐴;
Output: Boolean: 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒;
BEGIN

/∗Step 1: initialize input signals via testbench ∗/
(00) 𝐼𝑛𝑖𝑡𝑆𝑖𝑔𝑛𝑎𝑙𝑠(𝑇⃗);
(01) M = 0;PS

𝐴
= 0; 𝐻 = 0;PS

𝑇
= 0;

/∗Step 2: build polynomial model ∗/
(02) M = ⟦𝑀⟧ = 𝐵𝑢𝑖𝑙𝑑PS(𝑀);

/∗Step 3: build polynomial set for initial condition 𝑇
∗/

(03) 𝑃𝑆
𝑇

= ⟦𝑇⟧ = 𝐵𝑢𝑖𝑙𝑑PS(𝑇);
/∗Step 4: build polynomial set for consequentA ∗/

(04) 𝑃𝑆
𝐴

= ⟦𝐴⟧ = 𝐵𝑢𝑖𝑙𝑑PS(𝐴);
/∗Step 5: calculate the PS

𝑇
∪ M∗/

(05) 𝐻 = PST ∪ M;
/∗Step 6: calculate the Groebner base of ⟨𝐻⟩

∗/
(06) GB

𝐻
:= 𝑔basis(𝐻, ≺);

/∗Step 7: determine the basis is {1} or not ∗/
(07) if(1 ∈ GB

𝐻
) {

(08) return 𝑓𝑎𝑙𝑠𝑒; }
/∗Step 8: check every polynomial ∗/
/∗𝐴 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

|𝐴|
}
∗/

(09) 𝑖 = 1;
(10) 𝑤ℎ𝑖𝑙𝑒(𝑖 ≤ |𝐴|){

(11) if(𝑟𝑒𝑚𝑑(⟦𝑎
𝑖
⟧ ,GB

𝐻
) ̸= 0) {

(12) return 𝑓𝑎𝑙𝑠𝑒; }
(13) i++;
(14) } /∗ endwhile ∗/
(15) return 𝑡𝑟𝑢𝑒; /∗ Assertion does hold ∗/
END;

Algorithm 1: “𝐴𝑠𝑠𝐶ℎ𝑘𝑃𝑜𝑙𝑦𝐵𝑢𝑖𝑙𝑑(𝑀, 𝑇, 𝐴)”.

6.2. Checking Algorithm. For simplicity, in this section, we
only provide the key decision algorithm.

Firstly, the original system model is transformed into a
normal polynomial representation and the assertion as well.
Then, calculate the hypothesis set and its Groebner basis
using the Buchberger algorithm [18] and their elimination
ideals. Finally, examine the inclusion relationship between
elimination ideals to determine whether the assertion to be
checked holds or not.

From above discussion, we have the following process
steps and detailed algorithm description. Algorithm 1.

For convenience, we can derive another version checking
procedure named “𝐴𝑠𝑠𝐶ℎ𝑘(⟦𝑀⟧, ⟦𝐴⟧)” which can accept
polynomial representations as inputs without explicit poly-
nomial construction process.

Further, by applying Theorem 18 and the checking algo-
rithm “𝐴𝑠𝑠𝐶ℎ𝑘(⟦𝑀⟧, ⟦𝐴⟧)”, we can easily verify all sup-
ported properties written in SVA.

7. An Example

In this section, we will study a classical circuit to show how
SVA properties are verified by polynomial representation and
algebra computation method.

Consider the Johnson counter circuit in Figure 3. Johnson
counters can provide individual digit outputs rather than a

�3 �2 �1

m1m2m3

m4
clk

And

And
y

Figure 3: Johnson counter.

Table 3: Table of Johnson counter output.

Counter (clock) V3(𝑚3) V2(𝑚2) V1(𝑚1)

0 0 0 0
1 1 0 0
2 1 1 0
3 0 1 1
4 0 0 1
5 0 0 0

binary or BCD output, as shown in Table 3. Notice that each
legal count may be defined by the location of the last flip-flop
to change states and which way it changed state.

7.1. Algebraization of Circuit and Assertion. Johnson counter
provides individual digit outputs, as shown in Table 3.

The polynomial set for Johnson counter circuit in Figure 3
can be constructed as follows:

𝑆𝑒𝑡adder = {𝑓1 = {𝑚3
󸀠
− 𝑚4} , 𝑓2 = {𝑚2

󸀠
− 𝑚3} ,

𝑓3 = {𝑚1
󸀠
− 𝑚2} ,

𝑓4 = {𝑚4 − (1 − 𝑚1) ∗ (1 − 𝑚2)} ,

𝑓5 = {𝑦 − 𝑚1 ∗ (1 − 𝑚2)}} ,

(19)

where 𝑚1
󸀠 denotes the next state of 𝑚1. For the 𝑖th cycle, we

use 𝑥1
[𝑖]
to denote variable name in current cycle.

Similarly, another Johnson counter circuit with an error
is shown in Figure 4, the corresponding polynomial set can
be described by

𝑆𝑒𝑡adder = {𝑓1, 𝑓2, 𝑓3,

𝑓4
󸀠

= {𝑚4 + 𝑚1 + 𝑚2

− (1 − 𝑚1) ∗ (1 − 𝑚2)} , 𝑓5} .

(20)

Journal of Applied Mathematics 13

�3 �2 �1

m1m2m3

m4
clk

Or

And
y

Figure 4: Johnson counter with error.

To illustrate the problem clearly, we define polynomial set
representation 𝑃𝑀[𝑖] for 𝑖th cycle as follows:

𝑃𝑀 [𝑖] = {𝑚3
[𝑖+1]

− 𝑚4
[𝑖]

, 𝑚2
[𝑖+1]

− 𝑚3
[𝑖]

,

𝑚1
[𝑖+1]

− 𝑚2
[𝑖]

, 𝑚4
[𝑖]

− (1 − 𝑚2
[𝑖]

) ∗ (1 − 𝑚1
[𝑖]

) ,

𝑦 − 𝑚1
[𝑖]

∗ (1 − 𝑚2
[𝑖]

)} .

(21)

Support that the circuit will run 6 cycles for verification,
therefore, we have 𝑃𝑀 = {⋃

5

𝑖=0
𝑃𝑀[𝑖]}.

For any Boolean variable 𝑎, we will add an extra con-
straint: 𝑎∗𝑎−𝑎.Thus, we define the corresponding constraints
set as follows: 𝐶𝑁𝑆[𝑖] = {𝑐

[𝑖]
∗ 𝑐
[𝑖]

− 𝑐
[𝑖]

, 𝑐 ∈ {𝑚1, 𝑚2, 𝑚3, 𝑚4,

𝑦}}.
In the same manner, we have 𝐶𝑁𝑆 = {⋃

5

𝑖=0
𝐶𝑁𝑆[𝑖]}.

The sequential property for this counter circuit can be
specified by the following SystemVerilog assertions.

property 𝐽𝐶𝑃𝐴;

(𝑚3 = 0 && 𝑚2 = 0 && 𝑚1 = 0)

| => ##1(𝑚3 == 1 && 𝑚2 == 0 && 𝑚1 == 0)

| => ##2(𝑚3 == 1 && 𝑚2 == 1 && 𝑚1 == 0)

| => ##3(𝑚3 == 0 && 𝑚2 == 1 && 𝑚1 ==

1);

endproperty
property 𝐽𝐶𝑃1;

@(𝑐𝑙𝑘)(𝑚1 == 0)| => ##2 (𝑚1 == 0);

endproperty
property 𝐽𝐶𝑃2;

@(𝑐𝑙𝑘)(𝑚2 == 0)| => ##2 (𝑚2 == 1);

endproperty
property 𝐽𝐶𝑃3;

@(𝑐𝑙𝑘)(𝑚3 == 0)| => ##2 (𝑚3 == 1);

endproperty.

Table 4: Polynomial forms.

Name Precondition Expected consequent

JCPA

{𝑚1
[0]

, 𝑚2
[0]

, 𝑚3
[0]

}

cycle 1 {𝑚1
[1]

− 1, 𝑚2
[1]

, 𝑚3
[1]

}

cycle 2 {𝑚1
[2]

− 1, 𝑚2
[2]

− 1, 𝑚3
[2]

}

cycle 3 {𝑚1
[3]

, 𝑚2
[3]

− 1, 𝑚3
[3]

− 1}

JCP1 {𝑚1
[0]

} 𝑚1
[2]

JCP2 {𝑚2
[0]

} 𝑚2
[2]

− 1

JCP3 {𝑚3
[0]

} 𝑚3
[2]

− 1

We will afterwards demonstrate the verification process
step by step.

The circuit model to be verified is as shown below:

𝑆𝑀 = 𝑃𝑀 ∪ 𝐶𝑁𝑆. (22)

The property of this counter can be specified as the
following SVA assertion:

assert property (𝐽𝐶𝑃1)

assert property (𝐽𝐶𝑃2).

The Algebraization form of the above properties can be
modeled as in Table 4.

7.2. Experiment Using Maple. We run this example by using
Maple 13. Before running, we manually translated all models
into polynomials. The experiment is performed on a PC with
a 2.40GHz CPU (intel i5M450) and 1024MB of memory.
It took about 0.04 seconds and 0.81MB of memory when
applying Groebner method.

[>with(Groebner)
[> 𝐶𝑀 := ⋅ ⋅ ⋅ /

∗Circuit Model∗/
[> 𝑇𝐷𝐸𝐺 := 𝑡𝑑𝑒𝑔(

𝑚1
[0]
, 𝑚2
[0]
, 𝑚3
[0]
, 𝑚4
[0]
,

𝑚1
[1]
, 𝑚2
[1]
, 𝑚3
[1]
, 𝑚4
[1]
,

𝑚1
[2]
, 𝑚2
[2]
, 𝑚3
[2]
, 𝑚4
[2]
,

𝑚1
[3]
, 𝑚2
[3]
, 𝑚3
[3]
, 𝑚4
[3]
,

𝑚1
[4]
, 𝑚2
[4]
, 𝑚3
[4]
, 𝑚4
[4]
,

𝑦
[0]
, 𝑦
[1]
, 𝑦
[2]
, 𝑦
[3]

)

[> 𝐶𝐺𝐵 := 𝐵𝑎𝑠𝑖𝑠(𝐶𝑀, 𝑇𝐷𝐸𝐺).

Thus, we can have the Groebner basis as follows:

[> [𝑦1
[3]

, 𝑦1
[2]

, 𝑦1
[1]

, 𝑦1
[1]

, 𝑚3
[4]

, 𝑚2
[4]
,

𝑚1
[4]

− 1, 𝑚4
[3]
, 𝑚3
[3]
, 𝑚2
[3]

− 1, 𝑚1
[3]

− 1,
𝑚4
[2]
, 𝑚3
[2]

− 1, 𝑚2
[2]

− 1, 𝑚1
[2]
, 𝑚4
[1]

− 1,
𝑚3
[1]

− 1,
𝑚2
[1]
, 𝑚1
[1]
, 𝑚4
[0]

− 1, 𝑚3
[0]
, 𝑚2
[0]
, 𝑚1
[0]

]

[> 𝑟𝑒𝑡 := 𝑁𝑜𝑟𝑚𝑎𝑙𝐹𝑜𝑟𝑚(𝑚3
[1]

− 1, 𝐶𝐺𝐵, 𝑇𝐷𝐸𝐺)

[> 𝑟𝑒𝑡 = 0.

14 Journal of Applied Mathematics

Table 5: Computation result table.

Number Polynomial GBase Mem Time Return Result

0
{𝑚1
[1]

} 1 ∉ 𝐶𝐺𝐵

0.80M 0.02 S
0

Yes{𝑚2
[1]

} 1 ∉ 𝐶𝐺𝐵 0

{𝑚3
[1]

− 1} 1 ∉ 𝐶𝐺𝐵 0

1
{𝑚1
[2]

} 1 ∉ 𝐶𝐺𝐵

0.81M 0.03 S
0

Yes{𝑚2
[2]

− 1} 1 ∉ 𝐶𝐺𝐵 0

{𝑚3
[2]

− 1} 1 ∉ 𝐶𝐺𝐵 0

2
{𝑚1
[3]

− 1} 1 ∉ 𝐶𝐺𝐵

0.81M 0.04 S
0

Yes{𝑚2
[3]

− 1} 1 ∉ 𝐶𝐺𝐵 0

{𝑚3
[3]

} 1 ∉ 𝐶𝐺𝐵 0

3 {𝑚1
[2]

} 1 ∉ 𝐶𝐺𝐵 0.81M 0.04 S 0 Yes
4 {𝑚2

[2]
} 1 ∉ 𝐶𝐺𝐵 0.81M 0.04 S 0 Yes

5 {𝑚3
[2]

} 1 ∉ 𝐶𝐺𝐵 0.81M 0.04 S 0 Yes

Table 6: Computation result table.

Number Polynomial GBase Mem Time Return Result

0
{𝑚1
[1]

} 1 ∉ 𝐶GB
0.80M 0.02 S

0

Yes{𝑚2
[1]

} 1 ∉ 𝐶GB 0

{𝑚3
[1]

− 1} 1 ∉ 𝐶GB 0

1
{𝑚1
[2]

} 1 ∉ 𝐶GB
0.81M 0.03 S

0

Yes{𝑚2
[2]

− 1} 1 ∉ 𝐶GB 0

{𝑚3
[2]

− 1} 1 ∉ 𝐶GB 0

2
{𝑚1
[3]

− 1} 1 ∉ 𝐶GB
0.81M 0.14 S

0

NO{𝑚2
[3]

− 1} 1 ∉ 𝐶GB 0

{𝑚3
[3]

} 1 ∉ 𝐶GB −1

As shown in maple outputs, the given circuit has been
modeled as polynomial set𝐶𝑀 (itsGroebner bases is denoted
by 𝐶𝐺𝐵) and assertion expected result as {𝑚3

[1]
− 1}. From

the running result, we have 1 ∉ 𝐶𝐺𝐵 and return value
of 𝑁𝑜𝑟𝑚𝑎𝑙𝐹𝑜𝑟𝑚 is 0 which means 𝐶𝐺𝐵 is divided with no
remainder by {𝑚3

[1]
− 1}.

Thus, from the previously mentioned verification princi-
ples, it is easy to conclude that the assertion 𝐽𝐶𝑃1 holds under
this circuit model after 3 cycles.

More detailed experiment results for verification of cir-
cuit shown in Figure 3 are listed in Table 5.

Conversely, we check these assertions against the circuit
shown in Figure 4 in a similar way. More detailed experiment
results are demonstrated in Table 6.

From above table, when checking 𝐽𝐶𝑃𝐴 assertion, the
result 𝑟𝑒𝑡 := 𝑁𝑜𝑟𝑚𝑎𝑙𝐹𝑜𝑟𝑚(𝑚3

[3]
, 𝐶𝐺𝐵, 𝑇𝐷𝐸𝐺) ̸= 0 so that

we can conclude the assertion does not hold.Therefore, there
must exist unexpected errors in the original circuit.

This case is a fairly complete illustration of how the
checking algorithm works.

8. Conclusion

In this paper, we presented a new method for SVA prop-
erties checking by using Groebner bases based symbolic
algebraic approaches. To guarantee the feasibility we defined

a constrained subset of SVAs, which is powerful enough for
practical purposes.

We first introduce a notion of symbolic constant without
any sequential information for handling local variables in
SVAs inspired from STE. We then proposed a practical alge-
braizationmethod for each sequence operator. For sequential
circuits verification, we introduce a parameterized polyno-
mial set modeling method based on time frame expansion.

Our approach is based on polynomial models construc-
tion for both circuit models and SVA assertions.This method
is to eventually translate a simulation based verification
problem into a pure algebraic zero set determination problem
by a series of proposed steps, which can be performed on any
general symbolic algebraic tool.

Thismethod allows users to deal withmore than one state
and many input combinations every cycle. This advantage
comes directly from the fact that many vectors are simulated
at once using symbolic value.

In summary, in this research, by suitable restrictions of
SVA assertions, we can guarantee the availability of polyno-
mial set representation. Based on this polynomial set model,
symbolic simulation can be performed to produce symbolic
traces and temporal relationship constraints of signal vari-
ables as well. We then apply symbolic algebra approach to
check the zeros set relation between their polynomial sets and
determine whether the temporal assertion holds or not under
current running cycle.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The project is supported by the National Natural Science
Foundation of China under Grant no. 11371003, the
Natural Science Foundation of Guangxi under Grants
nos. 2011GXNSFA018154, 2012GXNSFGA060003, and
2013GXNSFAA019342, the Science and Technology
Foundation of Guangxi under Grant no. 10169-1, the
Scientific Research Project no. 201012MS274 from Guangxi
Education Department, the Fundamental Research Funds
for the Central Universities under Grants nos. DUT14QY05
and HCIC201204 of Guangxi Key Laboratory of Hybrid
Computation and IC Design Analysis Open Fund, and
the Baguio scholarship Project of Guangxi. The authors
would like to thank their colleagues for participating in the
research. They also appreciate the anonymous reviewers for
their helpful comments.

References

[1] IEEE System Verilog Working Group, IEEE Standard for
SystemVerilog C Unified Hardware Design, Specification, and
Verification (IEEE Std 1800-2005). IEEE, 2005.

[2] “IEEE draft standard for system verilog—unified hardware de-
sign, specification, and verification language,” IEEE P1800/D3,
2011.

Journal of Applied Mathematics 15

[3] R. Wille, G. Fey, M. Messing, G. Angst, L. Linhard, and R.
Drechsler, “Identifying a subset of SystemVerilog assertions for
efficient bounded model checking,” in Proceedings of the 11th
EUROMICRO Conference on Digital System Design Architec-
tures, Methods and Tools (DSD ’08), pp. 542–549, September
2008.

[4] L. Darringer, “Application of program verification techniques to
hardware verification,” in Proceedings of the IEEE-ACM Design
Automation Conference, pp. 375–381, 1979.

[5] G. S. Avrunin, “Symbolic model checking using algebraic
geometry,” in Proceedings of the 8th International Conference on
Computer Aided Verification, vol. CAV96, pp. 26–37, Springer,
London, UK, 1996.

[6] W. B. Mao and J. Z. Wu, “Application of Wus method to sym-
bolic model checking,” in Proceedings of the 2005 international
Symposiumon Symbolic andAlgebraic Computation (ISSAC ’05),
pp. 237–244, ACM Press, Beijing, China, 2005.

[7] J. Wu and L. Zhao, “Multi-valued model checking via groebner
basis approach,” in Proceedings of the 1st Joint IEEE/IFIP Sympo-
sium on Theoretical Aspects of Software Engineering (TASE ’07),
pp. 35–44, IEEE Computer Society Press, June 2007.

[8] N. Zhou, J. Wu, and X. Gao, “Algebraic verification method for
SEREs properties via Groebner bases approaches,” Journal of
AppliedMathematics, vol. 2013, Article ID 272781, 10 pages, 2013.

[9] X. Gao, N. Zhou, J. Wu, and D. Li, “Wu’s characteristic set
method for SystemVerilog assertions verification,” Journal of
Applied Mathematics, vol. 2013, Article ID 740194, 14 pages,
2013.

[10] J. Little, D. Cox, andD. O’Shea, Ideals, Varieties, and Algorithms,
Springer, New York, NY, USA, 1992.

[11] T. Becker andV.Weispfenning,Gröbner Bases: AComputational
Approach to Commutative Algebra, Springer, New York, NY,
USA, 1993.

[12] B. Buchberger, “Groebner bases: an algorithmic method in
polynomial ideal theory,” in Multidimensional Systems Theory,
pp. 184–232, 1985.

[13] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on
Computers C, vol. 27, no. 6, pp. 509–516, 1978.

[14] S. Hoereth and R. Drechsler, “Formal verification of word-level
specifications,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, pp. 52–58, Munich,
Germany, 1999.

[15] Y. M. Ryabukhin, “Boolean ring,” in Encyclopaedia of Mathe-
matics, Springer, Michiel, Germany, 2001.

[16] S. Das, R. Mohanty, P. Dasgupta, and P. P. Chakrabarti, “Synthe-
sis of system verilog assertions,” in Proceedings of the Conference
on Design, Automation and Test in Europe: Designers’ Forum
(DATE ’06), pp. 70–75, European Design and Automation
Association, Leuven, Belgium, March 2006.

[17] C.-J. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods in
System Design, vol. 6, no. 2, pp. 147–190, 1995.

[18] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms
An Introduction to Computational Algebraic Geometry and
Commutative Algebra, Undergraduate Texts in Mathematics,
Springer, New York, 3rd edition, 2007.

