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Let A
1
and A

2
be standard real Jordan algebras of self-adjoint operators on complex Hilbert spaces 𝐻

1
and 𝐻

2
, respectively.

For 𝑘 ≥ 2, let (𝑖
1
, . . . , 𝑖

𝑚
) be a fixed sequence with 𝑖

1
, . . . , 𝑖

𝑚
∈ {1, . . . , 𝑘} and assume that at least one of the terms in (𝑖

1
, . . . , 𝑖

𝑚
)

appears exactly once. Define the generalized Jordan product 𝑇
1
∘ 𝑇
2
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑘
= 𝑇
𝑖1
𝑇
𝑖2
⋅ ⋅ ⋅ 𝑇
𝑖𝑚

+ 𝑇
𝑖𝑚

⋅ ⋅ ⋅ 𝑇
𝑖2
𝑇
𝑖1
on elements in A

𝑖
. Let

Φ : A
1

→ A
2
be a map with the range containing all rank-one projections and trace zero-rank two self-adjoint operators. We

show that Φ satisfies that 𝜎
𝜋
(Φ(𝐴

1
) ∘ ⋅ ⋅ ⋅ ∘ Φ(𝐴

𝑘
)) = 𝜎

𝜋
(𝐴
1
∘ ⋅ ⋅ ⋅ ∘ 𝐴

𝑘
) for all 𝐴

1
, . . . , 𝐴

𝑘
, where 𝜎

𝜋
(𝐴) stands for the peripheral

spectrum of 𝐴, if and only if there exist a scalar 𝑐 ∈ {−1, 1} and a unitary operator 𝑈 : 𝐻
1

→ 𝐻
2
such that Φ(𝐴) = 𝑐𝑈𝐴𝑈

∗ for
all 𝐴 ∈ A

1
, or Φ(𝐴) = 𝑐𝑈𝐴

𝑡
𝑈
∗ for all 𝐴 ∈ A

1
, where 𝐴

𝑡 is the transpose of 𝐴 for an arbitrarily fixed orthonormal basis of 𝐻
1
.

Moreover, 𝑐 = 1 whenever 𝑚 is odd.

1. Introduction

Recently, the study of maps preserving spectrum of products
of operators attracted attentions of researchers. In [1], Molnár
characterized surjective mapsΦ on bounded linear operators
acting on a Hilbert space preserving the spectrum of the
product of operators; that is, 𝐴𝐵 and Φ(𝐴)Φ(𝐵) always have
the same spectrum. This similar question was studied by
Huang and Hou in [2] by replacing the spectrum by several
spectral functions such as the left spectrum and spectral
boundary. Hou et al. [3, 4] studied, respectively, further
the maps Φ between certain operator algebras preserving
the spectrum of a generalized product 𝑇

1
∗ 𝑇
2
∗ ⋅ ⋅ ⋅ ∗ 𝑇

𝑘

and a generalized Jordan product 𝑇
1
∘ 𝑇
2
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑘
of low

rank operators. Note that the linear maps between Banach
algebras which preserve the spectrum are extensively studied
in connection with a longstanding open problem due to
Kaplansky on invertibility preserving linearmaps ([5–10] and
the references therein).

Moreover, there has been considerable interest in
studying peripheral spectrum preserving maps on operator

algebras. Recall that the peripheral spectrum of an element
𝑇 in a complex Banach algebraA is defined by

𝜎
𝜋
(𝑇) = {𝑧 ∈ 𝜎 (𝑇) : |𝑧| = 𝑟 (𝑇)} , (1)

where 𝜎(𝑇) and 𝑟(𝑇) stand for the spectrum and the spectral
radius of 𝑇, respectively. Recall also that a set-valued map
Λ : A → 2

C is said to be a spectral function if 0 ̸=

Λ(𝑇) ⊆ 𝜎(𝑇) for every 𝑇 ∈ A. Since 𝜎(𝑇) is compact, 𝜎
𝜋
(𝑇)

is a well-defined nonempty set and is an important spectral
function. Observe that it is always true that 𝜎

𝜋
(𝑇𝑆) = 𝜎

𝜋
(𝑆𝑇).

In [11], Tonev and Luttman studied maps preserving periph-
eral spectrum of the usual operator products on standard
operator algebras. Recall that a standard operator algebra is a
subalgebra ofB(𝑋) that contains the identity 𝐼 and all finite
rank operators, where B(𝑋) stands for as usual the Banach
algebra of all bounded linear operators on Banach space 𝑋.
They studied also the corresponding problems in uniform
algebras (see [12, 13]). Miura and Honma [14] generalized
the result in [13] and characterized surjective maps 𝜙 and
𝜓 satisfying 𝜎

𝜋
(𝜙(𝑇)𝜓(𝑆)) = 𝜎

𝜋
(𝑇𝑆) on standard operator
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algebras. Cui and Li studied in [15] the maps preserving
peripheral spectrum of Jordan products𝐴𝐵+𝐵𝐴 of operators
on standard operator algebras. In [16] the maps preserving
peripheral spectrum of Jordan semitriple products 𝐵𝐴𝐵 of
operators were characterized. The authors studied in [17,
18], respectively, further the maps between certain operator
algebras which preserve peripheral spectrum of a generalized
product 𝑇

1
∗ 𝑇
2
∗ ⋅ ⋅ ⋅ ∗ 𝑇

𝑘
and a generalized Jordan product

𝑇
1
∘ 𝑇
2
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑘
as defined below.

Definition 1. Fix a positive integer 𝑘 ≥ 2 and a finite sequence
(𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑚
) such that {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑚
} = {1, 2, . . . , 𝑘} and there

is an 𝑖
𝑝
not equal to 𝑖

𝑞
for all other 𝑞; that is, 𝑖

𝑝
appears just one

time in the sequence. For operators 𝑇
1
, . . . , 𝑇

𝑘
, the operators,

𝑇
1
∗ 𝑇
2
∗ ⋅ ⋅ ⋅ ∗ 𝑇

𝑘
= 𝑇
𝑖
1

𝑇
𝑖
2

⋅ ⋅ ⋅ 𝑇
𝑖
𝑚

, (2)

𝑇
1
∘ 𝑇
2
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑘
= 𝑇
𝑖
1

𝑇
𝑖
2

⋅ ⋅ ⋅ 𝑇
𝑖
𝑚

+ 𝑇
𝑖
𝑚

⋅ ⋅ ⋅ 𝑇
𝑖
2

𝑇
𝑖
1

(3)

are, respectively, called generalized product and generalized
Jordan product of 𝑇

1
, . . . , 𝑇

𝑘
, while 𝑚 is called the width of

the products.

Evidently, the generalized Jordan product 𝑇
1
∘ ⋅ ⋅ ⋅ ∘𝑇

𝑘
(the

generalized product 𝑇
1
∗ ⋅ ⋅ ⋅ ∗ 𝑇

𝑘
) covers the Jordan product

𝑇
1
𝑇
2
+ 𝑇
2
𝑇
1
and the Jordan triple product 𝑇

1
𝑇
2
𝑇
3
+ 𝑇
3
𝑇
2
𝑇
1

(the usual product 𝑇
1
𝑇
2
and the Jordan semitriple product

𝑇
1
𝑇
2
𝑇
1
), and so forth. We also remark that the notations

𝑇
1

∗ 𝑇
2

∗ ⋅ ⋅ ⋅ ∗ 𝑇
𝑘
and 𝑇

1
∘ 𝑇
2

∘ ⋅ ⋅ ⋅ ∘ 𝑇
𝑘
are not unique

for 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
because they depend on the choice of the

integers 𝑘 ≥ 2,𝑚 ≥ 2, and the sequence (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑚
). In this

paper, we presume that 𝑘, 𝑚, and the sequence (𝑖
1
, 𝑖
2
, . . . 𝑖
𝑚
)

are arbitrary but fixed throughout the paper.
Let us consider the case of Hilbert spaces. Denote by

B(𝐻) the set of all bounded linear operators on a complex
Hilbert space 𝐻 and 𝑇

∗ the adjoint of 𝑇 ∈ B(𝐻). If
𝑇 = 𝑇

∗, 𝑇 is self-adjoint. Denote by B
𝑠
(𝐻) the real Jordan

algebra of all self-adjoint operators in B(𝐻). A real Jordan
subalgebra of B

𝑠
(𝐻) is said to be standard if it contains the

identity 𝐼 and all finite rank self-adjoint operators. In [14]
Miura andHonma characterized the surjectivemaps between
standard operator algebras on Hilbert spaces that preserve
the peripheral spectrum of skew products 𝑇

∗
𝑆 of operators.

Cui and Li studied in [15] the maps preserving peripheral
spectrum of skew Jordan products 𝐴𝐵

∗
+ 𝐵
∗
𝐴 of operators

on standard operator algebras on complex Hilbert spaces. A
characterization of maps preserving peripheral spectrum of
Jordan products of self-adjoint operators𝐴𝐵+𝐵𝐴 on standard
real Jordan subalgebras of B

𝑠
(𝐻) was also given in [15]. In

[16] the maps preserving peripheral spectrum of Jordan skew
semitriple products 𝐵𝐴

∗
𝐵 of operators were characterized,

and then, the maps preserving peripheral spectrum of the
skew generalized products of operators on Hilbert space 𝐻

were characterized in [17].
Products of self-adjoint operators in Hilbert space play a

role in several different areas of pure and applied mathemat-
ics. In this paper, we characterize the maps preserving the
peripheral spectrum of generalized Jordan products of self-
adjoint operators between the standard real Jordan algebras
of self-adjoint operators on complex Hilbert spaces. Let A

𝑖

be a standard real Jordan algebra in B
𝑠
(𝐻
𝑖
), 𝑖 = 1, 2, and

Φ : A
1

→ A
2
a map with range containing all rank-one

projections and all rank-two self-adjoint operators with zero
trace. We show thatΦ satisfies that 𝜎

𝜋
(Φ(𝐴
1
) ∘ ⋅ ⋅ ⋅ ∘Φ(𝐴

𝑘
)) =

𝜎
𝜋
(𝐴
1
∘ ⋅ ⋅ ⋅ ∘ 𝐴

𝑘
) for all 𝐴

1
, . . . , 𝐴

𝑘
inA
1
if and only if there

exist a scalar 𝑐 ∈ {−1, 1} and a unitary operator𝑈 : 𝐻
1

→ 𝐻
2

such that Φ(𝐴) = 𝑐𝑈𝐴𝑈
∗ for all 𝐴 ∈ A

1
, or Φ(𝐴) = 𝑐𝑈𝐴

𝑡
𝑈
∗

for all 𝐴 ∈ A
1
, where 𝐴

𝑡 is the transpose of 𝐴 with respect
to an arbitrary but fixed orthonormal basis of 𝐻

1
. Moreover,

𝑐 = 1 whenever 𝑚 is odd. We also characterize the maps
from A

1
into A

2
that preserves the peripheral spectrum of

generalized product onA
𝑖
.

2. Generalized Jordan Products of
Self-Adjoint Operators

Let 𝐻
1
and 𝐻

2
be two complex Hilbert spaces and B

𝑠
(𝐻
1
)

andB
𝑠
(𝐻
2
) the real linear spaces of all self-adjoint operators

inB(𝐻
1
) andB(𝐻

2
), respectively.ThenB

𝑠
(𝐻
1
) andB

𝑠
(𝐻
2
)

are real Jordan algebras. Recall that a standard real Jordan
algebra on 𝐻

𝑖
is a Jordan subalgebra of B

𝑠
(𝐻
𝑖
) which

contains all finite rank self-adjoint operators and the identity
operator. In this section, wewill characterizemaps preserving
peripheral spectrum of generalized Jordan products of self-
adjoint operators.

Theorem 2. Let A
1
and A

2
be standard real Jordan algebras

of self-adjoint operators on complex Hilbert spaces𝐻
1
and𝐻

2
,

respectively. Consider the product 𝑇
1
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑘
defined in (3) of

Definition 1 with the width 𝑚. Assume that Φ : A
1

→ A
2

is a map the range of which contains all rank-one projections
and all rank-two self-adjoint operators with zero trace. ThenΦ

satisfies

𝜎
𝜋
(Φ (𝐴

1
) ∘ ⋅ ⋅ ⋅ ∘ Φ (𝐴

𝑘
)) = 𝜎

𝜋
(𝐴
1
∘ ⋅ ⋅ ⋅ ∘ 𝐴

𝑘
) (4)

for all 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑘
∈ A
1
if and only if there exist a unitary

operator 𝑈 ∈ B(𝐻
1
, 𝐻
2
) and a scalar 𝑐 ∈ {−1, 1} such that

either

(1) Φ(𝐴) = 𝑐𝑈𝐴𝑈
∗ for every 𝐴 ∈ A

1
, or

(2) Φ(𝐴) = 𝑐𝑈𝐴
𝑡
𝑈
∗ for every 𝐴 ∈ A

1
. Here 𝐴

𝑡 is the
transpose of 𝐴 with respect to an arbitrary but fixed
orthonormal basis of 𝐻

1
.

Moreover, 𝑐 = 1 whenever 𝑚 is odd.

To prove Theorem 2, we consider the special case that
𝐴
𝑖
𝑝

= 𝐴 and 𝐴
𝑖
𝑞

= 𝐵 for all 𝑞 ̸= 𝑝. Thus there exist
nonnegative integers 𝑟, 𝑠 with 𝑟 + 𝑠 = 𝑚 − 1 ≥ 1 such that
𝐴
1
∘ 𝐴
2
∘ ⋅ ⋅ ⋅ ∘ 𝐴

𝑘
= 𝐵
𝑟
𝐴𝐵
𝑠
+ 𝐵
𝑠
𝐴𝐵
𝑟. For this special case we

have.

Theorem 3. Let A
1
and A

2
be standard real Jordan algebras

of self-adjoint operators on complex Hilbert spaces𝐻
1
and𝐻

2
,

respectively. Assume that Φ : A
1

→ A
2
is a map the range

of which contains all rank-one projections and all rank-two
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self-adjoint operators with zero trace, and 𝑟, 𝑠 are nonnegative
integers with 𝑟 + 𝑠 ≥ 1. Then Φ satisfies

𝜎
𝜋
(𝐵
𝑟
𝐴𝐵
𝑠
+ 𝐵
𝑠
𝐴𝐵
𝑟
)

= 𝜎
𝜋
(Φ(𝐵)

𝑟
Φ (𝐴)Φ(𝐵)

𝑠
+ Φ(𝐵)

𝑠
Φ (𝐴)Φ(𝐵)

𝑟
)

(5)

for all𝐴, 𝐵 ∈ A
1
if and only if there exist a unitary operator𝑈 ∈

B(𝐻
1
, 𝐻
2
) and a scalar 𝑐 ∈ {−1, 1} such that Φ(𝐴) = 𝑐𝑈𝐴𝑈

∗

for every 𝐴 ∈ A
1
, or Φ(𝐴) = 𝑐𝑈𝐴

𝑡
𝑈
∗ for every 𝐴 ∈ A

1
.

Moreover, 𝑐 = 1whenever 𝑟+𝑠 is even. Here𝐴𝑡 is the transpose
of𝐴with respect to an arbitrary but fixed orthonormal basis of
𝐻
1
.

If Φ meets (4), then it also meets (5) for some 𝑟, 𝑠 with
𝑟 + 𝑠 = 𝑚−1 by taking𝐴

𝑖
𝑝

= 𝐴 and𝐴
𝑖
𝑞

= 𝐵 for 𝑞 ̸= 𝑝. Hence
it is obvious that the truth of Theorem 3 will imply the truth
of Theorem 2.

Thus we focus our attention to prove Theorem 3. We will
do it by decomposing the proof in a number of steps and use
of technical lemmas.

Note that, if 𝑠 = 𝑟 > 0, then the question is reduced to the
generalized product 𝐵

𝑟
𝐴𝐵
𝑟 of self-adjoint operators, which

will be discussed in the next section. So, unless specified
otherwise, we always assume in this section that 𝑠 > 𝑟 ≥ 0.

Lemma 4. For any unit vector 𝑥 ∈ 𝐻 and nonzero 𝐵 ∈

B
𝑠
(𝐻), we have

𝜎
𝜋
(𝐵
𝑟
𝑥 ⊗ 𝑥𝐵

𝑠
+ 𝐵
𝑠
𝑥 ⊗ 𝑥𝐵

𝑟
)

=

{{

{{

{

{⟨𝐵
𝑟+𝑠

𝑥, 𝑥⟩ +
𝐵
𝑟
𝑥


𝐵
𝑠
𝑥
} if ⟨𝐵𝑟+𝑠𝑥, 𝑥⟩ > 0;

{⟨𝐵
𝑟+𝑠

𝑥, 𝑥⟩ −
𝐵
𝑟
𝑥


𝐵
𝑠
𝑥
} if ⟨𝐵𝑟+𝑠𝑥, 𝑥⟩ < 0;

{±
𝐵
𝑟
𝑥


𝐵
𝑠
𝑥
} if ⟨𝐵

𝑟+𝑠
𝑥, 𝑥⟩ = 0.

(6)

Proof. In fact, if there exist nonzero 𝛼, 𝛽 ∈ R such that 𝐵𝑟𝑥 =

𝛼𝑥,𝐵𝑠𝑥 = 𝛽𝑥, clearly (6) holds.Now assume that𝐵𝑟𝑥 and𝑥 or
𝐵
𝑠
𝑥 and 𝑥 are linearly independent.Then there exist nonzero

𝛾 ∈ R and 𝑧 ∈ 𝐻 such that (𝐵𝑟𝑥 ⊗ 𝑥𝐵
𝑠
+ 𝐵
𝑠
𝑥 ⊗ 𝑥𝐵

𝑟
)𝑧 = 𝛾𝑧;

that is,

⟨𝐵
𝑠
𝑧, 𝑥⟩ 𝐵

𝑟
𝑥 + ⟨𝐵

𝑟
𝑧, 𝑥⟩ 𝐵

𝑠
𝑥 = 𝛾𝑧. (7)

It follows that

⟨𝐵
𝑠
𝑧, 𝑥⟩ ⟨𝐵

𝑟
𝑥, 𝑥⟩ + ⟨𝐵

𝑟
𝑧, 𝑥⟩ ⟨𝐵

𝑠
𝑥, 𝑥⟩ = 𝛾 ⟨𝑧, 𝑥⟩ , (8)

⟨𝐵
𝑠
𝑧, 𝑥⟩ ⟨𝐵

𝑟+𝑠
𝑥, 𝑥⟩ + ⟨𝐵

𝑟
𝑧, 𝑥⟩ ⟨𝐵

2𝑠
𝑥, 𝑥⟩ = 𝛾 ⟨𝐵

𝑠
𝑧, 𝑥⟩ ,

(9)

⟨𝐵
𝑟
𝑧, 𝑥⟩ ⟨𝐵

𝑟+𝑠
𝑥, 𝑥⟩ + ⟨𝐵

𝑠
𝑧, 𝑥⟩ ⟨𝐵

2𝑟
𝑥, 𝑥⟩ = 𝛾 ⟨𝐵

𝑟
𝑧, 𝑥⟩ .

(10)

We consider the following two cases.

Case 1 (⟨𝐵
𝑟+𝑠

𝑥, 𝑥⟩ = 0). If ⟨𝐵
𝑟
𝑧, 𝑥⟩ ̸= 0, it follows from

(10) that ⟨𝐵
𝑠
𝑧, 𝑥⟩ ̸= 0. Then (9) and (10) imply that 𝛾 =

±‖𝐵
𝑟
𝑥‖‖𝐵
𝑠
𝑥‖. If ⟨𝐵

𝑟
𝑧, 𝑥⟩ = 0, it follows from (9) that

⟨𝐵
𝑠
𝑧, 𝑥⟩ = 0, but this contradicts (7). So 𝜎

𝜋
(𝐵
𝑟
𝑥⊗𝑥𝐵

𝑠
+𝐵
𝑠
𝑥⊗

𝑥𝐵
𝑟
) = {±‖𝐵

𝑟
𝑥‖‖𝐵
𝑠
𝑥‖}.

Case 2 (⟨𝐵
𝑟+𝑠

𝑥, 𝑥⟩ ̸= 0). In this case, there must be ⟨𝐵
𝑟
𝑧, 𝑥⟩ ̸=

0 and ⟨𝐵
𝑠
𝑧, 𝑥⟩ ̸= 0. Then it follows from (9) and (10) that

(𝛾 − ⟨𝐵
𝑟+𝑠

𝑥, 𝑥⟩)
2

=
𝐵
𝑟
𝑥


2𝐵
𝑠
𝑥


2

, (11)

which implies that 𝛾 = ⟨𝐵
𝑟+𝑠

𝑥, 𝑥⟩ ± ‖𝐵
𝑟
𝑥‖‖𝐵
𝑠
𝑥‖. So

𝜎 (𝐵
𝑟
𝑥 ⊗ 𝑥𝐵

𝑠
+ 𝐵
𝑠
𝑥 ⊗ 𝑥𝐵

𝑟
) = {0, ⟨𝐵

𝑟+𝑠
𝑥, 𝑥⟩ ±

𝐵
𝑟
𝑥


𝐵
𝑠
𝑥
} .

(12)

Now the result follows immediately.

In Lemmas 5 and 6, we always assume thatΦ : A
1

→ A
2

is a map satisfying (5) with range containing all rank-one
projections and all rank-two self-adjoint operators of zero
trace, and assume that 𝑟, 𝑠 are nonnegative integerswith 𝑟+𝑠 ≥

1. Recall that a self-adjoint operator 𝐴 is said to be positive,
denote by 𝐴 ≥ 0, if ⟨𝐴𝑥, 𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝐻; while 𝐴 ≥ 𝐵

means that 𝐴 − 𝐵 ≥ 0.

Lemma 5. Φ(𝐼) = 𝐼 or −𝐼. Φ(𝐼) = −𝐼 may occur only if 𝑟 + 𝑠

is odd.

Proof. For any 𝐴, 𝐵 ∈ A
1
, since

𝜎
𝜋
(𝐵
𝑟
𝐴𝐵
𝑠
+ 𝐵
𝑠
𝐴𝐵
𝑟
)

= 𝜎
𝜋
(Φ(𝐵)

𝑟
Φ (𝐴)Φ(𝐵)

𝑠
+ Φ(𝐵)

𝑠
Φ (𝐴)Φ(𝐵)

𝑟
) ,

(13)

it follows that 𝑟(𝐴) = 𝑟(Φ(𝐴)) holds for every 𝐴 ∈ A
1
. Let

Φ(𝐼) = 𝐵. By the assumption on the range of Φ, for any unit
vector 𝑦 ∈ 𝐻

2
, there exists 𝐴 ∈ A

1
such that Φ(𝐴) = 𝑦 ⊗ 𝑦.

We consider the following two cases.

Case 1 (𝑠 > 𝑟 = 0). It follows from (5) that

𝜎
𝜋
(2𝐴
𝑠
) = 𝜎
𝜋
(Φ(𝐴)

𝑠
Φ (𝐼) + Φ (𝐼)Φ(𝐴)

𝑠
)

= 𝜎
𝜋
(𝑦 ⊗ 𝑦𝐵 + 𝐵𝑦 ⊗ 𝑦) ,

(14)

which implies that ‖𝐵𝑦 ⊗ 𝑦 + 𝑦 ⊗ 𝑦𝐵‖ = 2 for all unit vectors
𝑦 ∈ 𝐻

2
. Then by Lemma 4, we have

2 =
𝐵𝑦 ⊗ 𝑦 + 𝑦 ⊗ 𝑦𝐵

 =
⟨𝐵𝑦, 𝑦⟩

 +
𝐵𝑦

 ≤ 2
𝐵𝑦

 , (15)

and hence ‖𝐵𝑦‖ ≥ 1 for all unit vectors 𝑦 ∈ 𝐻
2
, and ‖𝐵‖ ≥

1. On the other hand, for any unit vector 𝑦 ∈ 𝐻
2
, we have

2|⟨𝐵𝑦, 𝑦⟩| ≤ |⟨𝐵𝑦, 𝑦⟩| + ‖𝐵𝑦‖ = 2. Hence |⟨𝐵𝑦, 𝑦⟩| ≤ 1 holds
for all unit vectors 𝑦 ∈ 𝐻

2
and consequently, ‖𝐵‖ ≤ 1. So we

must have ‖𝐵‖ = 1 and ‖𝐵𝑦‖ = 1 for all unit vectors 𝑦 ∈ 𝐻
2
.

Now it follows from (15) that 𝐵 = 𝜀𝐼 with 𝜀 ∈ {−1, 1}. In
particular, if 𝑠 is even, as 𝐴

𝑠
≥ 0, (14) and (15) imply that

⟨𝐵𝑦, 𝑦⟩ = 1 for all unit vectors 𝑦 ∈ 𝐻
2
and hence 𝐵 = 𝐼.

Case 2 (𝑠 > 𝑟 > 0). By (5) we have

𝜎
𝜋
(2𝐴
𝑟+𝑠

) = 𝜎
𝜋
(Φ(𝐴)

𝑠
Φ (𝐼)Φ(𝐴)

𝑟
+ Φ(𝐴)

𝑟
Φ (𝐼)Φ(𝐴)

𝑠
)

= 𝜎
𝜋
(2𝑦 ⊗ 𝑦𝐵𝑦 ⊗ 𝑦) ,

(16)
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which implies that ‖𝑦 ⊗ 𝑦𝐵𝑦 ⊗ 𝑦‖ = ‖𝐴
𝑟+𝑠

‖ = 1 for all unit
vectors 𝑦 ∈ 𝐻

2
. Then |⟨𝐵𝑦, 𝑦⟩| = 1 holds for each unit vector

𝑦, and so 𝐵 = 𝜀𝐼 with 𝜀 ∈ {−1, 1}. Particularly, if 𝑟 + 𝑠 is even,
then 𝐴

𝑟+𝑠
≥ 0 and it follows from (16) that ⟨𝐵𝑦, 𝑦⟩ = 1 holds

for every unit vector 𝑦. Hence 𝐵 = 𝐼.

If Φ(𝐼) = −𝐼, then −Φ satisfies the conditions in
Theorem 3, so we may as well assume Φ(𝐼) = 𝐼 in the sequel,
and thus 𝜎

𝜋
(𝐴) = 𝜎

𝜋
(Φ(𝐴)) holds for every 𝐴 ∈ A

1
.

Lemma6. Φ preserves rank-one projections in both directions.

Proof. We consider the following two cases.

Case 1 (𝑠 > 𝑟 = 0). Consider the following.

Case 1.1 (𝑠 is even). For any unit vector 𝑥 ∈ 𝐻
1
, letΦ(𝑥⊗𝑥) =

𝐵 andΦ(𝐼 − 𝑥 ⊗ 𝑥) = 𝑇. It follows from {0} = 𝜎
𝜋
((𝑥 ⊗ 𝑥)

𝑠
(𝐼 −

𝑥⊗𝑥)+(𝐼−𝑥⊗𝑥)(𝑥⊗𝑥)
𝑠
) = 𝜎
𝜋
(𝐵
𝑠
𝑇+𝑇𝐵

𝑠
) that𝐵𝑠𝑇+𝑇𝐵

𝑠
= 0.

Note that if 𝐴 ≥ 0, and 𝐴𝑆 + 𝑆𝐴 = 0, then 𝐴𝑆 = 𝑆𝐴 = 0.
If fact 𝐴𝑆 + 𝑆𝐴 = 0 implies that 𝐴2𝑆 = 𝑆𝐴

2. Since 𝐴 ≥ 0, we
must have 𝐴𝑆 = 𝑆𝐴 and 2𝐴𝑆 = 𝐴𝑆 + 𝑆𝐴 = 0, which forces
𝐴𝑆 = 𝑆𝐴 = 0.

Now, as𝐵𝑠 ≥ 0 and𝐵
𝑠
𝑇+𝑇𝐵

𝑠
= 0, we see that𝐵𝑠𝑇 = 𝑇𝐵

𝑠
=

0. It follows from 𝜎
𝜋
(𝐵) = {1} that 𝐵

𝑠
̸= 0, which implies

that {0} ̸= ran𝐵
𝑠
⊆ ker𝑇, where ran 𝑇 stands for the range

of 𝑇. For any unit vector 𝑦 ∈ ker𝑇, pick 𝐴 ∈ A
1
such that

Φ(𝐴) = 𝑦⊗𝑦. It follows from 𝜎
𝜋
((𝐼−𝑥⊗𝑥)𝐴

𝑠
+𝐴
𝑠
(𝐼−𝑥⊗𝑥)) =

𝜎
𝜋
(𝑇𝑦⊗𝑦+𝑦⊗𝑦𝑇) = {0} that (𝐼−𝑥⊗𝑥)𝐴

𝑠
+𝐴
𝑠
(𝐼−𝑥⊗𝑥) = 0,

which, together with 𝐴
𝑠

≥ 0, implies that (𝐼 − 𝑥 ⊗ 𝑥)𝐴
𝑠

=

𝐴
𝑠
(𝐼 −𝑥⊗𝑥) = 0. So we have𝐴 = 𝑥⊗𝑥 andΦ(𝑥⊗𝑥) = 𝑦⊗𝑦

is rank-one.

Case 1.2 (𝑠 is odd). For any unit vector 𝑥 ∈ 𝐻
1
, let 𝐴 = 𝑥 ⊗ 𝑥

andΦ(𝐴) = 𝐵. We will prove that 𝐵 is a rank-one projection.

Claim 1.2.1 (dim ker(𝐵 − 𝐼) = 1). Note that 𝜎
𝜋
(𝐵) = 𝜎

𝜋
(𝐴) =

{1}. Then 1 ∈ 𝜎(𝐵) ⊆ (−1, 1]. It follows that either (i)
dim ker(𝐵 − 𝐼) ≥ 1 or (ii) 𝐵 − 𝐼 is injective but not surjective.

Assume that (ii) occurs. Since 1 ∈ 𝜎
𝜋
(𝐵), we have ‖𝐵‖ = 1

and 𝐵 ≤ 𝐼. So, according to some suitable space decompo-
sition of 𝐻

2
, 𝐵 has an operator matrix representation of the

form

(

𝑎 0 𝑏 0 0

0 𝑎 0 𝑐 0

𝑏 0 ∗ ∗ ∗

0 𝑐 ∗ ∗ ∗

0 0 ∗ ∗ ∗

), (17)

where 𝑎 > 1/2 and 𝑏, 𝑐 ≥ 0. To see this, one can first
choose three orthonormal vectors 𝑥

1
, 𝑥
2
, 𝑥
3
such that 1 −

𝑑 < ⟨𝐵𝑥
𝑗
, 𝑥
𝑗
⟩ < 1 for some sufficiently small 𝑑 ∈ (0, 1/4).

Suppose the compression 𝐵 of 𝐵 onto the span of {𝑥
1
, 𝑥
2
, 𝑥
3
}

has eigenvalues 𝜇
1
≥ 𝜇
2
≥ 𝜇
3
. Then

𝜇
2
≥

(𝜇
2
+ 𝜇
3
)

2
≥

[(3 − 3𝑑) − 1]

2
>

1

2
. (18)

Let 𝜇
2
= 𝑎. Then 𝐵 is similar to

(

𝑎 0 ∗

0 𝑎 ∗

∗ ∗ ∗

) . (19)

Thus, there exists a space decomposition such that 𝐵 has an
operator matrix of the form

(
𝑎𝐼
2

𝐵
12

𝐵
∗

12
∗

) . (20)

Clearly, there are unitary𝑈,𝑉 such that𝑈𝐵
12
𝑉
∗ has operator

matrix of the form

(
𝑏 0 0

0 𝑐 0
) , (21)

where 𝑏, 𝑐 ≥ 0. So 𝐵 has the desired operator matrix form.
Under the same decomposition, take 𝑆 = (

0 1

1 0
) ⊕ 0; then

𝜎
𝜋
(𝐵𝑆
𝑠
+𝑆
𝑠
𝐵) has two different points with 𝑟(𝐵𝑆

𝑠
+𝑆
𝑠
𝐵) ≥ 2𝑎 >

1 and there exists 𝑅 ∈ A
1
such that Φ(𝑅) = 𝑆. It follows that

𝜎
𝜋
(𝑅) = {−1, 1}. So ‖𝑅‖ = 1 and ‖𝑅

𝑠
𝑢‖ ≤ 1 for all unit vectors

𝑢 ∈ 𝐻
1
. But 𝜎

𝜋
(𝐴𝑅
𝑠
+ 𝑅
𝑠
𝐴) = 𝜎

𝜋
(𝑥 ⊗ 𝑥𝑅

𝑠
+ 𝑅
𝑠
𝑥 ⊗ 𝑥) is either

a singleton or {±‖𝑅
𝑠
𝑥‖} with ‖𝑅

𝑠
𝑥‖ ≤ 1. This contradicts the

fact 𝑟(𝐴𝑅
𝑠
+ 𝑅
𝑠
𝐴) = 𝑟(𝐵𝑆

𝑠
+ 𝑆
𝑠
𝐵) ≥ 2𝑎 > 1.

So dim ker(𝐵 − 𝐼) ≥ 1. Assume that dim ker(𝐵 − 𝐼) =

𝑛 ≥ 2. According to the space decomposition 𝐻
2
= ker(𝐵 −

𝐼) ⊕ ker(𝐵 − 𝐼)
⊥, 𝐵 has an operator matrix 𝐼

𝑛
⊕ 𝑁. Under

the same space decomposition, take 𝑀 = (
0 1

1 0
) ⊕ 0. Similar

to the previous discussion, one gets a contradiction again. So
dim ker(𝐵 − 𝐼) = 1.

Claim 1.2.2. There exists a unit vector 𝑦 ∈ 𝐻
2
such that 𝐵 =

𝑦 ⊗ 𝑦.
If it is not true, then, by Claim 1.2.1, there exist a unit

vector 𝑦 ∈ ker(𝐵 − 𝐼) and a nonzero 𝐵
2
∈ A
2
with 𝐵

2
𝑦 = 0

such that 𝐵 = 𝑦⊗𝑦+𝐵
2
. So there exists a unit vector 𝑧 ∈ [𝑦]

⊥

such that 𝐵
2
𝑧 ̸= 0. Let 𝐶

1
= 𝑦 ⊗ 𝑦 and 𝐶

2
= 𝑧 ⊗ 𝑧. Then

𝜎
𝜋
(𝐵𝐶
𝑠

1
+𝐶
𝑠

1
𝐵) = 𝜎

𝜋
(𝐵𝐶
1
+𝐶
1
𝐵) = {2},𝐶

1
𝐶
𝑠

2
+𝐶
𝑠

2
𝐶
1
= 0, and

𝐵𝐶
𝑠

2
+ 𝐶
𝑠

2
𝐵 ̸= 0. Since the range of Φ contains all rank-one

projections, there exist 𝐷
1
and 𝐷

2
in A
1
such that Φ(𝐷

1
) =

𝐶
1
and Φ(𝐷

2
) = 𝐶
2
. Then 𝜎

𝜋
(𝐷
1
) = 𝜎
𝜋
(𝐷
2
) = {1}, 𝜎

𝜋
(𝐴𝐷
𝑠

1
+

𝐷
𝑠

1
𝐴) = 𝜎

𝜋
(𝐵𝐶
𝑠

1
+ 𝐶
𝑠

1
𝐵) = {2},𝐷

1
𝐷
𝑠

2
+ 𝐷
𝑠

2
𝐷
1
= 0, and 𝐴𝐷

𝑠

2
+

𝐷
𝑠

2
𝐴 ̸= 0.
Since {2} = 𝜎

𝜋
(𝐴𝐷
𝑠

1
+ 𝐷
𝑠

1
𝐴) = 𝜎

𝜋
(𝑥 ⊗ 𝑥𝐷

𝑠

1
+ 𝐷
𝑠

1
𝑥 ⊗ 𝑥), it

follows from (6) that |⟨𝐷𝑠
1
𝑥, 𝑥⟩| + ‖𝐷

𝑠

1
𝑥‖ = 2, which, together

with ‖𝐷
1
‖ = 1, implies that 𝐷

𝑠

1
𝑥 = 𝑥. So, according to

the space decomposition 𝐻
1

= [𝑥] ⊕ [𝑥]
⊥, 𝐷𝑠
1

= [1] ⊕ 𝑍

with 𝜎(𝑍) ⊆ (−1, 1]. If 𝐷
2
has an operator matrix (

V
11
𝑉
12

𝑉
∗

12
𝑉
22

)

accordingly, then

0 = 𝐷
𝑠

1
𝐷
2
+ 𝐷
2
𝐷
𝑠

1
= (

2V
11

𝑉
12

+ 𝑉
12
𝑍

𝑍𝑉
∗

12
+ 𝑉
∗

12
𝑍𝑉
22

+ 𝑉
22
𝑍
) . (22)

Since 𝐼 + 𝑍 is invertible, we see that 𝑉
12

= 0. Clearly, V
11

= 0.
So, 𝐷
2
= 0 ⊕ 𝑉

22
. But then it contradicts the fact that 𝐴𝐷

𝑠

2
+

𝐷
𝑠

2
𝐴 ̸= 0. So Claim 1.2.2 holds and Φ preserves rank-one

projections.
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Conversely, assume that Φ(𝐴) is a rank-one projection;
then a similar discussion shows that 𝐴 is a rank-one projec-
tion, too.

Case 2 (𝑠 > 𝑟 > 0). Consider the following.

Case 2.1 (𝑟 + 𝑠 is even). For any unit vector 𝑥 ∈ 𝐻
1
, let Φ(𝑥 ⊗

𝑥) = 𝐵 and Φ(𝐼 − 𝑥 ⊗ 𝑥) = 𝑇. It follows from {0} = 𝜎
𝜋
((𝐼 −

𝑥 ⊗ 𝑥)
𝑟
(𝑥 ⊗ 𝑥)(𝐼 − 𝑥 ⊗ 𝑥)

𝑠
+ (𝐼 − 𝑥 ⊗ 𝑥)

𝑠
(𝑥 ⊗ 𝑥)(𝐼 − 𝑥 ⊗ 𝑥)

𝑟
) =

𝜎
𝜋
(𝑇
𝑟
𝐵𝑇
𝑠
+ 𝑇
𝑠
𝐵𝑇
𝑟
) that 𝑇𝑟𝐵𝑇

𝑠
+ 𝑇
𝑠
𝐵𝑇
𝑟
= 0. Since 𝑇

𝑠−𝑟
≥ 0

and 𝑇
𝑟
𝐵𝑇
𝑟
𝑇
𝑠−𝑟

+ 𝑇
𝑠−𝑟

𝑇
𝑟
𝐵𝑇
𝑟
= 𝑇
𝑟
𝐵𝑇
𝑠
+ 𝑇
𝑠
𝐵𝑇
𝑟
= 0, we see

that 𝑇𝑠𝐵𝑇
𝑟
= 𝑇
𝑟
𝐵𝑇
𝑠
= 0. If ker𝑇 = {0}, then ker𝑇𝑟 = {0}

and ker𝑇𝑠 = {0}, which, together with 𝑇
𝑟
𝐵𝑇
𝑠
= 0, imply that

𝐵𝑇
𝑠
= 0, and thus 𝐵 = 0, a contradiction.
So, ker𝑇 ̸= {0}. Take a unit vector 𝑦 ∈ ker𝑇 and 𝐴 ∈

A
1
such that Φ(𝐴) = 𝑦 ⊗ 𝑦. It follows from 𝜎

𝜋
(𝐴
𝑟
(𝐼 − 𝑥 ⊗

𝑥)𝐴
𝑠
+ 𝐴
𝑠
(𝐼 − 𝑥 ⊗ 𝑥)𝐴

𝑟
) = 𝜎

𝜋
(2𝑦 ⊗ 𝑦𝑇𝑦 ⊗ 𝑦) = {0} that

𝐴
𝑟
(𝐼 − 𝑥 ⊗ 𝑥)𝐴

𝑠
+ 𝐴
𝑠
(𝐼 − 𝑥 ⊗ 𝑥)𝐴

𝑟
= 0, which, together with

𝐴
𝑠−𝑟

≥ 0, implies that 𝐴𝑟(𝐼 − 𝑥 ⊗ 𝑥)𝐴
𝑠
= 𝐴
𝑠
(𝐼 − 𝑥 ⊗ 𝑥)𝐴

𝑟
= 0.

Hence we have 𝐴 = 𝑥 ⊗ 𝑥 and Φ(𝑥 ⊗ 𝑥) = 𝑦 ⊗ 𝑦.

Case 2.2 (𝑟 + 𝑠 is odd). For any unit vectors 𝑥 ∈ 𝐻
1
, let

𝐴 = 𝑥 ⊗ 𝑥 and Φ(𝐴) = 𝐵. We will prove that 𝐵 is a rank-
one projection.

Claim 2.2.1 (dim ker(𝐵 − 𝐼) = 1). Note that 𝜎
𝜋
(𝐵) = 𝜎

𝜋
(𝐴) =

{1}. Then 1 ∈ 𝜎(𝐵) ⊆ (−1, 1]. It follows that either (i)
dim ker(𝐵 − 𝐼) ≥ 1 or (ii) 𝐵 − 𝐼 is injective but not surjective.

Assume that (ii) occurs. Since 1 ∈ 𝜎
𝜋
(𝐵), we have ‖𝐵‖ = 1

and 𝐵 ≤ 𝐼. So, like shown in Case 1.2.1, with respect to some
suitable space decomposition of𝐻

2
, 𝐵 has an operator matrix

representation of the form

(

𝑎 0 𝑏 0 0

0 𝑎 0 𝑐 0

𝑏 0 ∗ ∗ ∗

0 𝑐 ∗ ∗ ∗

0 0 ∗ ∗ ∗

), (23)

where 𝑎 > 1/2 and 𝑏, 𝑐 ≥ 0. Under the same decomposition,
take 𝑆 = (

0 1

1 0
) ⊕ 0, and then {±2𝑎} = 𝜎

𝜋
(𝑆
𝑟
𝐵𝑆
𝑠
+ 𝑆
𝑠
𝐵𝑆
𝑟
). As

𝑆 has rank-two and zero trace, there exists 𝑅 ∈ A
1
such that

Φ(𝑅) = 𝑆. It follows that 𝜎
𝜋
(𝑅) = {−1, 1}. So ‖𝑅‖ = 1 and

‖𝑅
𝑠
𝑢‖‖𝑅
𝑟
𝑢‖ ≤ 1 for all unit vectors 𝑢 ∈ 𝐻

1
. But 𝜎

𝜋
(𝑅
𝑟
𝐴𝑅
𝑠
+

𝑅
𝑠
𝐴𝑅
𝑟
) = 𝜎
𝜋
(𝑅
𝑟
𝑥 ⊗ 𝑥𝑅

𝑠
+ 𝑅
𝑠
𝑥 ⊗ 𝑥𝑅

𝑟
) = {±‖𝑅

𝑟
𝑥‖‖𝑅
𝑠
𝑥‖}. This

contradicts the fact 𝑟(𝐴𝑅
𝑠
+ 𝑅
𝑠
𝐴) = 𝑟(𝐵𝑆

𝑠
+ 𝑆
𝑠
𝐵) ≥ 2𝑎 > 1.

So dim ker(𝐵 − 𝐼) ≥ 1. Assume that dim ker(𝐵 − 𝐼) =

𝑛 ≥ 2. According to the space decomposition 𝐻
2
= ker(𝐵 −

𝐼) ⊕ ker(𝐵 − 𝐼)
⊥, 𝐵 has an operator matrix 𝐼

𝑛
⊕ 𝑁. Under

the same space decomposition, take 𝑀 = (
0 1

1 0
) ⊕ 0. Similar

to the previous discussion, one gets a contradiction again. So
dim ker(𝐵 − 𝐼) = 1.

Claim 2.2.2. There exists a unit vector 𝑦 ∈ 𝐻
2
such that 𝐵 =

𝑦 ⊗ 𝑦.
If it is not true, then, by Claim 2.2.1, there exist a unit

vector 𝑦 ∈ ker(𝐵 − 𝐼) and a nonzero 𝐵
2
∈ A
2
with 𝐵

2
𝑦 = 0

such that 𝐵 = 𝑦⊗𝑦+𝐵
2
. So there exists a unit vector 𝑧 ∈ [𝑦]

⊥

such that 𝐵𝑟
2
𝑧 ̸= 0 and 𝐵

𝑠

2
𝑧 ̸= 0. Let 𝐶

1
= 𝑦 ⊗ 𝑦 and 𝐶

2
=

𝑧 ⊗ 𝑧. Since the range of Φ contains all rank-one projections,

there exist 𝐷
1
and 𝐷

2
in A
1
such that Φ(𝐷

1
) = 𝐶

1
and

Φ(𝐷
2
) = 𝐶

2
. Then 𝜎

𝜋
(𝐷
𝑟

1
𝐴𝐷
𝑠

1
+ 𝐷
𝑠

1
𝐴𝐷
𝑟

1
) = 𝜎

𝜋
(𝐶
𝑟

1
𝐵𝐶
𝑠

1
+

𝐶
𝑠

1
𝐵𝐶
𝑟

1
) = 𝜎

𝜋
(2𝑦 ⊗ 𝑦𝐵𝑦 ⊗ 𝑦) = {2}, which, together with

(6), implies that ⟨𝐷
𝑟+𝑠

1
𝑥, 𝑥⟩ + ‖𝐷

𝑟

1
𝑥‖‖𝐷
𝑠

1
𝑥‖ = 2. It follows

from ⟨𝐷
𝑟+𝑠

1
𝑥, 𝑥⟩ ≤ ‖𝐷

𝑟

1
𝑥‖‖𝐷
𝑠

1
𝑥‖ ≤ 1 that ⟨𝐷

𝑟+𝑠

1
𝑥, 𝑥⟩ = 1.

So 𝐷
𝑟+𝑠

1
𝑥 = 𝑥, and according to the space decomposition

𝐻
1

= [𝑥] ⊕ [𝑥]
⊥, 𝐷𝑟+𝑠
1

= [1] ⊕ 𝑍 with 𝜎(𝑍) ⊆ (−1, 1]. Thus
under the same space decomposition we have 𝐷

1
= [1] ⊕ 𝑌

with 𝜎(𝑌) ⊆ (−1, 1]. Write𝐷
2
in the operatormatrix (

V
11
𝑉
12

𝑉
∗

12
𝑉
22

)

accordingly; then

0 = 𝐷
𝑠

1
𝐷
2
𝐷
𝑟

1
+ 𝐷
𝑟

1
𝐷
2
𝐷
𝑠

1

= (
2V
11

𝑉
12

(𝑌
𝑠
+ 𝑌
𝑟
)

(𝑌
𝑠
+ 𝑌
𝑟
) 𝑉
∗

12
𝑌
𝑟
𝑉
22
𝑌
𝑠
+ 𝑌
𝑠
𝑉
22
𝑌
𝑟) .

(24)

Clearly, V
11

= 0. So, 𝐴𝑟𝐷
2
𝐴
𝑠
+ 𝐴
𝑠
𝐷
2
𝐴
𝑟

= 0. But then this
contradicts the fact that𝜎

𝜋
(𝐴
𝑟
𝐷
2
𝐴
𝑠
+𝐴
𝑠
𝐷
2
𝐴
𝑟
) = 𝜎
𝜋
(𝐵
𝑟
𝐶
2
𝐵
𝑠
+

𝐵
𝑠
𝐶
2
𝐵
𝑟
) ̸= {0}. So Claim 2.2.2 holds and Φ preserves rank-

one projections.
Conversely, assume that Φ(𝐴) is a rank-one orthogonal

projection; then, a similar discussion implies that𝐴 is a rank-
one projection.

The following lemma was proved in [19].

Lemma7. Let𝐻 be a complexHilbert space and𝐴, 𝐵 ∈ B(𝐻)

self-adjoint operators. If |⟨𝐴𝑥, 𝑥⟩| + ‖𝐴𝑥‖‖𝑥‖ = |⟨𝐵𝑥, 𝑥⟩| +

‖𝐵𝑥‖‖𝑥‖ holds for all 𝑥 ∈ 𝐻, then 𝐴 = ±𝐵.

Now we are in a position to present our proof of
Theorem 3, except the case 𝑟 = 𝑠.

Proof of Theorem 3. The “if ” part is obvious. Let us check the
“only if ” part.

By Lemma 6, Φ preserves rank-one projections in both
directions. It follows that there exists a bijective map 𝑇 :

𝐻
1

→ 𝐻
2
such that

Φ (𝑥 ⊗ 𝑥) = 𝑇𝑥 ⊗ 𝑇𝑥 (25)

for all unit vectors 𝑥 ∈ 𝐻
1
, where ‖𝑇𝑥‖ = ‖𝑥‖ and 𝑇(𝜆𝑥) =

𝜆𝑇𝑥 for any 𝑥 ∈ 𝐻
1
and 𝜆 ∈ C.

We consider the following two cases.

Case 1 (𝑠 > 𝑟 = 0). For any unit vectors 𝑥, 𝑦 ∈ 𝐻
1
, we have

𝜎
𝜋
((𝑦 ⊗ 𝑦)(𝑥 ⊗ 𝑥)

𝑠
+ (𝑥 ⊗ 𝑥)

𝑠
(𝑦 ⊗ 𝑦)) = 𝜎

𝜋
((𝑇𝑦 ⊗ 𝑇𝑦)(𝑇𝑥 ⊗

𝑇𝑥)
𝑠
+ (𝑇𝑥 ⊗ 𝑇𝑥)

𝑠
(𝑇𝑦 ⊗ 𝑇𝑦)). By (6), ⟨𝑥, 𝑦⟩ = 0 if and only if

⟨𝑇𝑥, 𝑇𝑦⟩ = 0, and when ⟨𝑥, 𝑦⟩ ̸= 0,

⟨𝑇𝑥, 𝑇𝑦⟩


2

+
⟨𝑇𝑥, 𝑇𝑦⟩

 =
⟨𝑥, 𝑦⟩



2

+
⟨𝑥, 𝑦⟩

 .
(26)

It follows that
⟨𝑇𝑥, 𝑇𝑦⟩

 =
⟨𝑥, 𝑦⟩

 (27)

holds for all 𝑥, 𝑦 ∈ 𝐻
1
.

Wigner’s theorem [20] states that every bijective map 𝑇

between Hilbert spaces 𝐻
1
, 𝐻
2
satisfying (27) must have the

form 𝑇𝑥 = 𝜙(𝑥)𝑈𝑥 for any 𝑥 ∈ 𝐻
1
, where 𝑈 is a unitary

or a conjugate unitary (i.e., antiunitary) operator and 𝜙 is
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a so-called phase-function which means that its values are
of modulus one. Thus, by Wigner’s theorem, there exists a
unitary or conjugate unitary operator 𝑈 : 𝐻

1
→ 𝐻

2
such

that Φ(𝑥 ⊗ 𝑥) = 𝑈𝑥 ⊗ 𝑈𝑥 for every unit vector 𝑥 ∈ 𝐻
1
.

Assume first that 𝑈 is unitary. Let 𝐴 ∈ A
1
be arbitrary.

For any unit vector 𝑥 ∈ 𝐻
1
,

𝜎
𝜋
(𝐴(𝑥 ⊗ 𝑥)

𝑠
+ (𝑥 ⊗ 𝑥)

𝑠
𝐴)

= 𝜎
𝜋
(Φ (𝐴) (𝑈𝑥 ⊗ 𝑈𝑥)

𝑠
+ (𝑈𝑥 ⊗ 𝑈𝑥)

𝑠
Φ (𝐴)) .

(28)

Applying (6), for any unit vector 𝑥 ∈ 𝐻
1
, one has

|⟨𝐴𝑥, 𝑥⟩| + ‖𝐴𝑥‖ =
⟨𝑈
∗
Φ (𝐴)𝑈𝑥, 𝑥⟩

 +
𝑈
∗
Φ (𝐴)𝑈𝑥

 ,

(29)

and hence Lemma 7 implies that 𝑈
∗
Φ(𝐴)𝑈 = ±𝐴. Hence,

Φ(𝐴) = ±𝑈𝐴𝑈
∗ for every 𝐴 ∈ A

1
. We claim that Φ(𝐴) =

𝑈𝐴𝑈
∗ for every 𝐴 ∈ A

1
. Otherwise, there exists some

nonzero 𝐵
0
such that Φ(𝐵

0
) = −𝑈𝐵

0
𝑈
∗. Let M

+
= {𝐴 ∈

A
1

: Φ(𝐴) = 𝑈𝐴𝑈
∗
} and M

−
= {𝐵 ∈ A

1
: 𝐵 ̸= 0, Φ(𝐵) =

−𝑈𝐵𝑈
∗
}.ThenM

+
∩M
−
= 0,M

+
∪M
−
= A
1
, and𝐵

0
∈ M
−
.

Note that, as Φ(𝐼) = 𝐼, 𝐼 ∈ M
+
. It follows that, for any

𝐵 ∈ M
−
, we have 𝜎

𝜋
(2𝐵) = 𝜎

𝜋
(𝐼𝐵 + 𝐵𝐼) = 𝜎

𝜋
(Φ(𝐼)Φ(𝐵) +

Φ(𝐵)Φ(𝐼)) = −𝜎
𝜋
(2𝐵). Therefore, 𝜎

𝜋
(𝐵) = {−‖𝐵‖, ‖𝐵‖} holds

for all 𝐵 ∈ M
−
. Let 𝐵 = ∫

‖𝐵‖

−‖𝐵‖
𝜆𝑑𝐸
𝜆
be the spectral resolution

of 𝐵. Then the spectral project 𝐸 = ∫
‖𝐵‖

(1/2)‖𝐵‖
𝑑𝐸
𝜆

̸= 0. Though
we do not know if𝐸 ∈ A

1
, we can take unit vector 𝑥 ∈ 𝐸𝐻

1
so

that ⟨𝐵𝑥, 𝑥⟩ ≥ (1/2)‖𝐵‖ > 0. Thus, ⟨𝐵𝑥, 𝑥⟩ + ‖𝐵𝑥‖ ≥ ‖𝐵‖ > 0.
By Lemma 4, we have 𝜎

𝜋
(𝑥⊗𝑥𝐵+𝐵𝑥⊗𝑥) = {⟨𝐵𝑥, 𝑥⟩+‖𝐵𝑥‖}.

Since 𝑥 ⊗ 𝑥 ∈ A
1
and 𝜎
𝜋
(𝑥 ⊗ 𝑥) = {1}, 𝑥 ⊗ 𝑥 ∈ M

+
. But then,

{⟨𝐵𝑥, 𝑥⟩ + ‖𝐵𝑥‖} = 𝜎
𝜋
(𝑥 ⊗ 𝑥𝐵 + 𝐵𝑥 ⊗ 𝑥)

= 𝜎
𝜋
(Φ (𝑥 ⊗ 𝑥)Φ (𝐵) + Φ (𝐵)Φ (𝑥 ⊗ 𝑥))

= −𝜎
𝜋
(𝑥 ⊗ 𝑥𝐵 + 𝐵𝑥 ⊗ 𝑥)

= {−⟨𝐵𝑥, 𝑥⟩ − ‖𝐵𝑥‖} ,

(30)

a contradiction. So, Φ(𝐴) = 𝑈𝐴𝑈
∗ holds for every 𝐴 ∈ A

1
.

Now assume that 𝑈 is conjugate unitary. Take arbi-
trarily an orthonormal basis {𝑒

𝑖
}
𝑖∈Λ

of 𝐻 and define 𝐽 by
𝐽(∑
𝑖∈Λ

𝜉
𝑖
𝑒
𝑖
) = ∑

𝑖∈Λ
𝜉
𝑖
𝑒
𝑖
. Then 𝐽 : 𝐻

1
→ 𝐻

1
is conjugate

unitary and 𝐽
2

= 𝐼. Let 𝑉 = 𝑈𝐽. Then 𝑉 is unitary and a
similar discussion as above implies that Φ(𝐴) = 𝑉𝐴

𝑡
𝑉
∗ for

all 𝐴 ∈ A
1
and 𝐴

𝑡 is the transpose of 𝐴 for the orthonormal
basis {𝑒

𝑖
}
𝑖∈Λ

of 𝐻
1
.

Case 2 (𝑠 > 𝑟 > 0). For any unit vectors 𝑥, 𝑦 ∈ 𝐻
1
, we have

{2
⟨𝑥, 𝑦⟩



2

} = 𝜎
𝜋
((𝑥 ⊗ 𝑥)

𝑟
(𝑦 ⊗ 𝑦) (𝑥 ⊗ 𝑥)

𝑠

+ (𝑥 ⊗ 𝑥)
𝑠
(𝑦 ⊗ 𝑦) (𝑥 ⊗ 𝑥)

𝑟
)

= 𝜎
𝜋
((𝑇𝑥 ⊗ 𝑇𝑥)

𝑟
(𝑇𝑦 ⊗ 𝑇𝑦) (𝑇𝑥 ⊗ 𝑇𝑥)

𝑠

+ (𝑇𝑥 ⊗ 𝑇𝑥)
𝑠
(𝑇𝑦 ⊗ 𝑇𝑦) (𝑇𝑥 ⊗ 𝑇𝑥)

𝑟
)

= {2
⟨𝑇𝑥, 𝑇𝑦⟩



2

} .

(31)

Hence

⟨𝑇𝑥, 𝑇𝑦⟩
 =

⟨𝑥, 𝑦⟩
 (32)

holds for all 𝑥, 𝑦 ∈ 𝐻
1
. Thus, by Wigner’s theorem, there

exists a unitary or conjugate unitary operator 𝑈 : 𝐻
1

→ 𝐻
2

such that Φ(𝑥 ⊗ 𝑥) = 𝑈𝑥 ⊗ 𝑈𝑥 for every unit vector 𝑥 ∈ 𝐻
1
.

Now assume that 𝑈 is unitary. Let 𝐴 ∈ A
1
be arbitrary.

For any unit vector 𝑥 ∈ 𝐻
1
, since

{2 ⟨𝐴𝑥, 𝑥⟩} = 𝜎
𝜋
((𝑥 ⊗ 𝑥)

𝑟
𝐴(𝑥 ⊗ 𝑥)

𝑠
+ (𝑥 ⊗ 𝑥)

𝑠
𝐴(𝑥 ⊗ 𝑥)

𝑟
)

= 𝜎
𝜋
((𝑈𝑥 ⊗ 𝑈𝑥)

𝑟
Φ (𝐴) (𝑈𝑥 ⊗ 𝑈𝑥)

𝑠

+ (𝑈𝑥 ⊗ 𝑈𝑥)
𝑠
Φ (𝐴) (𝑈𝑥 ⊗ 𝑈𝑥)

𝑟
)

= {2 ⟨Φ (𝐴)𝑈𝑥,𝑈𝑥⟩} ,

(33)

we have

⟨𝐴𝑥, 𝑥⟩ = ⟨Φ (𝐴)𝑈𝑥,𝑈𝑥⟩ ∀unit vectors 𝑥 ∈ 𝐻
1
. (34)

So we get Φ(𝐴) = 𝑈𝐴𝑈
∗ for every 𝐴 ∈ A

1
.

Similar to the case 𝑠 > 𝑟 = 0, if𝑈 is conjugate unitary, then
there exists a unitary operator𝑉 such thatΦ(𝐴) = 𝑉𝐴

𝑡
𝑉
∗ for

all 𝐴 ∈ A
1
.

Hence we have shown that, in the case Φ(𝐼) = 𝐼, there
exists a unitary 𝑈 such that either Φ(𝐴) = 𝑈𝐴𝑈

∗ for every
𝐴 ∈ A

1
; or Φ(𝐴) = 𝑈𝐴

𝑡
𝑈
∗ for every 𝐴 ∈ A

1
, where

𝐴
𝑡 is the transpose of 𝐴 with respect to an arbitrarily given

orthonormal basis of 𝐻
1
.

If Φ(𝐼) = −𝐼, considering Ψ = −Φ gives Φ(𝐴) = −𝑈𝐴𝑈
∗

for every 𝐴 ∈ A
1
or Φ(𝐴) = −𝑈𝐴

𝑡
𝑈
∗ for every 𝐴 ∈ A

1
. It is

clear that this case does not occur if 𝑟 + 𝑠 is even.

3. Generalized Products of Self-Adjoint
Operators on Hilbert Spaces

In this section, we will characterize maps preserving periph-
eral spectrum of generalized products of self-adjoint opera-
tors. Its special case,Theorem 10, makes up for the gap for the
case 𝑠 = 𝑟 in the proof of Theorem 3.

LetA be a real Jordan algebra inB
𝑠
(𝐻). If a generalized

product 𝑇
1
∗𝑇
2
∗ ⋅ ⋅ ⋅ ∗𝑇

𝑘
defined in (2) satisfies that 𝑇

1
∗𝑇
2
∗

⋅ ⋅ ⋅ ∗ 𝑇
𝑘

∈ A for any 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
∈ A, that is, the general

product is closed in A, we say that 𝑇
1
∗ 𝑇
2
∗ ⋅ ⋅ ⋅ ∗ 𝑇

𝑘
is a

generalized product onA. The following lemma was proved
in [3].

Lemma 8. Let 𝑇
1
∗ 𝑇
2
∗ ⋅ ⋅ ⋅ ∗ 𝑇

𝑘
= 𝑇
𝑖
1

⋅ ⋅ ⋅ 𝑇
𝑖
𝑝

⋅ ⋅ ⋅ 𝑇
𝑖
𝑚

be a
generalized product on a standard real Jordan algebra A ⊆

B
𝑠
(𝐻) defined as in (2) of Definition 1. Then there exists a

positive integer 𝑛 with 𝑚 = 2𝑛 − 1 such that 𝑖
𝑝

= 𝑛, and
𝑖
𝑗
= 𝑖
2𝑛−𝑗

for all 𝑗 = 1, . . . , 𝑛.

The following is the main result in this section. Observe
that we do not need the assumption that the range of the map
contains all rank-two self-adjoint operators with zero trace.
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Theorem 9. Let A
1
and A

2
be standard real Jordan algebras

of self-adjoint operators on complex Hilbert spaces 𝐻
1
and𝐻

2
,

respectively. Consider the generalized product 𝑇
1
∗ ⋅ ⋅ ⋅ ∗ 𝑇

𝑘

on B
𝑠
(𝐻
𝑖
) as in Lemma 8 with width 𝑚. Assume that Φ :

A
1

→ A
2
is a map the range of which contains all rank-one

projections. Then Φ satisfies

𝜎
𝜋
(Φ (𝐴

1
) ∗ ⋅ ⋅ ⋅ ∗ Φ (𝐴

𝑘
)) = 𝜎

𝜋
(𝐴
1
∗ ⋅ ⋅ ⋅ ∗ 𝐴

𝑘
) (35)

for all 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑘
∈ A
1
if and only if one of the following

conditions holds.

(1) There exists a unitary operator 𝑈 : 𝐻
1

→ 𝐻
2
such

that Φ(𝐴) = 𝑈𝐴𝑈
∗ for all 𝐴 ∈ A

1
.

(2) There exists a unitary operator 𝑈 : 𝐻
1

→ 𝐻
2
such

that Φ(𝐴) = 𝑈𝐴
𝑡
𝑈
∗ for all 𝐴 ∈ A

1
,

where 𝐴
𝑡 is the transpose of 𝐴 for an arbitrarily but fixed

orthonormal basis of 𝐻
1
.

To prove Theorem 9, we consider the special case by
taking 𝐴

𝑖
𝑝

= 𝐴 and 𝐴
𝑖
𝑞

= 𝐵 if 𝑞 ̸= 𝑝. By Lemma 8, there
exists positive integer 𝑟(= 𝑛) with 2𝑟 = 𝑚 − 1 ≥ 2 such that
𝐴
1
∗ 𝐴
2
∗ ⋅ ⋅ ⋅ ∗ 𝐴

𝑘
= 𝐵
𝑟
𝐴𝐵
𝑟. It is clear that Theorem 9 is an

immediate consequence of the following result.

Theorem 10. LetA
1
andA

2
be standard real Jordan algebras

of delf-adjoint operators on complex Hilbert spaces𝐻
1
and𝐻

2
,

respectively. Assume that Φ : A
1

→ A
2
is a map the range

of which contains all rank-one projections and 𝑟 is nonnegative
integer with 𝑟 ≥ 1. Then Φ satisfies

𝜎
𝜋
(𝐵
𝑟
𝐴𝐵
𝑟
) = 𝜎
𝜋
(Φ(𝐵)

𝑟
Φ (𝐴)Φ(𝐵)

𝑟
) ∀𝐴, 𝐵 ∈ A

1 (36)

if and only if one of the following conditions holds.

(1) There exists a unitary operator 𝑈 : 𝐻
1

→ 𝐻
2
such

that Φ(𝐴) = 𝑈𝐴𝑈
∗ for all 𝐴 ∈ A

1
.

(2) There exists a unitary operator 𝑈 : 𝐻
1

→ 𝐻
2
such

that Φ(𝐴) = 𝑈𝐴
𝑡
𝑈
∗ for all 𝐴 ∈ A

1
,

where 𝐴
𝑡 is the transpose of 𝐴 for an arbitrarily but fixed

orthonormal basis of 𝐻
1
.

To prove Theorem 10, it suffices to check the “only if ”
part. Assume in the following that Φ : A

1
→ A

2
is

a map satisfying (36) with range containing all rank-one
projections.

Lemma 11. Φ(𝐼) = 𝐼.

Proof. It follows from (36) that 𝑟(𝐴) = 𝑟(Φ(𝐴)) holds for
every 𝐴 ∈ A

1
. Let Φ(𝐼) = 𝐵. For any unit vector 𝑦 ∈ 𝐻

2
,

there exists 𝐴 ∈ A
1
such that Φ(𝐴) = 𝑦 ⊗ 𝑦. Then

𝜎
𝜋
(𝐴
2𝑟
) = 𝜎
𝜋
(Φ(𝐴)

𝑟
Φ (𝐼)Φ(𝐴)

𝑟
) = 𝜎
𝜋
(𝑦 ⊗ 𝑦𝐵𝑦 ⊗ 𝑦) ,

(37)

which, together with 𝐴
2𝑟

≥ 0, implies that ⟨𝐵𝑦, 𝑦⟩ = 1 for all
unit vectors 𝑦 ∈ 𝐻

2
. So 𝐵 = 𝐼.

Lemma 12. Φ preserves rank-one projections in both direc-
tions.

Proof. For any unit vector 𝑥 ∈ 𝐻
1
, let Φ(𝑥 ⊗ 𝑥) = 𝐵 and

Φ(𝐼 − 𝑥 ⊗ 𝑥) = 𝑇. It follows from {0} = 𝜎
𝜋
((𝑥 ⊗ 𝑥)

𝑟
(𝐼 − 𝑥 ⊗

𝑥)(𝑥 ⊗ 𝑥)
𝑟
) = 𝜎
𝜋
(𝐵
𝑟
𝑇𝐵
𝑟
) that 𝐵𝑟𝑇𝐵

𝑟
= 0. Similarly, we have

𝑇
𝑟
𝐵𝑇
𝑟
= 0. If ker𝑇 = {0}, then ker𝑇𝑟 = {0}, which, together

with 𝑇
𝑟
𝐵𝑇
𝑟

= 0, implies that 𝐵𝑇
𝑟

= 0, and thus 𝐵 = 0, a
contradiction.

So, there exist a unit vector 𝑦 ∈ ker𝑇. Take 𝐴 ∈ A
1
such

that Φ(𝐴) = 𝑦 ⊗ 𝑦. It follows from 𝜎
𝜋
(𝐴
𝑟
(𝐼 − 𝑥 ⊗ 𝑥)𝐴

𝑟
) =

𝜎
𝜋
(𝑦⊗𝑦𝑇𝑦⊗𝑦) = {0} that𝐴𝑟(𝐼−𝑥⊗𝑥)𝐴

𝑟
= 0, which implies

that 𝐴 = 𝑥 ⊗ 𝑥. Thus Φ(𝑥 ⊗ 𝑥) = 𝑦 ⊗ 𝑦 and, therefore, Φ
preserves rank-one projections.

Similarly one can show thatΦ(𝐴) is a rank-one projection
will imply that 𝐴 is a rank-one projection.

Proof of Theorem 10. By Lemma 12, Φ preserves rank-one
projections in both directions. It follows that there exists a
bijective map 𝑇 : 𝐻

1
→ 𝐻
2
such that

Φ (𝑥 ⊗ 𝑥) = 𝑇𝑥 ⊗ 𝑇𝑥 (38)

for all unit vectors 𝑥 ∈ 𝐻
1
, where ‖𝑇𝑥‖ = ‖𝑥‖ and 𝑇(𝜆𝑥) =

𝜆𝑇𝑥 for any 𝑥 ∈ 𝐻
1
and 𝜆 ∈ C.

For any unit vectors 𝑥, 𝑦 ∈ 𝐻
1
, we have

{
⟨𝑥, 𝑦⟩



2

} = 𝜎
𝜋
((𝑥 ⊗ 𝑥)

𝑟
(𝑦 ⊗ 𝑦) (𝑥 ⊗ 𝑥)

𝑟
)

= 𝜎
𝜋
((𝑇𝑥 ⊗ 𝑇𝑥)

𝑟
(𝑇𝑦 ⊗ 𝑇𝑦) (𝑇𝑥 ⊗ 𝑇𝑥)

𝑟
)

= {
⟨𝑇𝑥, 𝑇𝑦⟩



2

} .

(39)

Hence
⟨𝑇𝑥, 𝑇𝑦⟩

 =
⟨𝑥, 𝑦⟩

 (40)

holds for all𝑥, 𝑦 ∈ 𝐻
1
.Thus, byWigner’s theoremagain, there

exists a unitary or conjugate unitary operator 𝑈 : 𝐻
1

→ 𝐻
2

such that Φ(𝑥 ⊗ 𝑥) = 𝑈𝑥 ⊗ 𝑈𝑥 for every unit vector 𝑥 ∈ 𝐻
1
.

Now assume that 𝑈 is unitary. Let 𝐴 ∈ A
1
be arbitrary.

For any unit vector 𝑥 ∈ 𝐻
1
, since

{⟨𝐴𝑥, 𝑥⟩} = 𝜎
𝜋
((𝑥 ⊗ 𝑥)

𝑟
𝐴(𝑥 ⊗ 𝑥)

𝑟
)

= 𝜎
𝜋
((𝑈𝑥 ⊗ 𝑈𝑥)

𝑟
Φ (𝐴) (𝑈𝑥 ⊗ 𝑈𝑥)

𝑟
)

= {⟨Φ (𝐴)𝑈𝑥,𝑈𝑥⟩} ,

(41)

we have

⟨𝐴𝑥, 𝑥⟩ = ⟨Φ (𝐴)𝑈𝑥,𝑈𝑥⟩ ∀unit vectors 𝑥 ∈ 𝐻
1
. (42)

Hence we get Φ(𝐴) = 𝑈𝐴𝑈
∗ for every 𝐴 ∈ A

1
.

Similarly,𝑈 is conjugate unitary implies that there exists a
unitary operator such thatΦ(𝐴) = 𝑉𝐴

𝑡
𝑉
∗ for all𝐴 ∈ A

1
.

Remark 13. Finally, we remark that if we do not require that
the generalized product is closed in the involved standard
real Jordan algebras A

𝑖
, 𝑖 = 1, 2, we can still obtain

a characterization of the maps Φ from A
1
into A

2
with

range containing all rank-one projections which preserves
the peripheral spectrum of an arbitrarily given generalized
product. In fact, such maps have the same form stated in
Theorem 2.
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