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Let o/, and </, be standard real Jordan algebras of self-adjoint operators on complex Hilbert spaces H, and H,, respectively.
For k > 2,let (i},...,i,) be a fixed sequence with i,,...,7, € {1,...,k} and assume that at least one of the terms in (i,...,1,,)
appears exactly once. Define the generalized Jordan product Ty o T, 0+ o T = T; T;, ---T; +T; ---T; T; onelementsin ;. Let
®: o/, — ,bea map with the range containing all rank-one projections and trace zero-rank two self-adjoint operators. We
show that @ satisfies that 0, (O(A;) o -+ 0 O(A})) = 0,(A, 0---0A) forall A,..., A, where 0,(A) stands for the peripheral
spectrum of A, if and only if there exist a scalar ¢ € {-1,1} and a unitary operator U : H; — H, such that ®(A) = cUAU" for

all A € of,, or ®(A) = cUA'U" for all A € of,, where A is the transpose of A for an arbitrarily fixed orthonormal basis of H,.

Moreover, ¢ = 1 whenever m is odd.

1. Introduction

Recently, the study of maps preserving spectrum of products
of operators attracted attentions of researchers. In [1], Molnér
characterized surjective maps @ on bounded linear operators
acting on a Hilbert space preserving the spectrum of the
product of operators; that is, AB and ®(A)®D(B) always have
the same spectrum. This similar question was studied by
Huang and Hou in [2] by replacing the spectrum by several
spectral functions such as the left spectrum and spectral
boundary. Hou et al. [3, 4] studied, respectively, further
the maps @ between certain operator algebras preserving
the spectrum of a generalized product T} * T, % --- % T}
and a generalized Jordan product T} o T}, o - -+ o T} of low
rank operators. Note that the linear maps between Banach
algebras which preserve the spectrum are extensively studied
in connection with a longstanding open problem due to
Kaplansky on invertibility preserving linear maps ([5-10] and
the references therein).

Moreover, there has been considerable interest in
studying peripheral spectrum preserving maps on operator

algebras. Recall that the peripheral spectrum of an element
T in a complex Banach algebra «/ is defined by

0, () ={z €a(T):|z| = r(T)}, )

where o(T) and r(T) stand for the spectrum and the spectral
radius of T, respectively. Recall also that a set-valued map
A : o — 2 is said to be a spectral function if 0 #
A(T) € o(T) for every T € . Since o(T') is compact, 0,,(T)
is a well-defined nonempty set and is an important spectral
function. Observe that it is always true that 0,,(T'S) = 0,.(ST).
In [11], Tonev and Luttman studied maps preserving periph-
eral spectrum of the usual operator products on standard
operator algebras. Recall that a standard operator algebra is a
subalgebra of %(X) that contains the identity I and all finite
rank operators, where 9 (X) stands for as usual the Banach
algebra of all bounded linear operators on Banach space X.
They studied also the corresponding problems in uniform
algebras (see [12, 13]). Miura and Honma [14] generalized
the result in [I13] and characterized surjective maps ¢ and
y satisfying o (¢(T)y(S)) = 0,(TS) on standard operator
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algebras. Cui and Li studied in [15] the maps preserving
peripheral spectrum of Jordan products AB+ BA of operators
on standard operator algebras. In [16] the maps preserving
peripheral spectrum of Jordan semitriple products BAB of
operators were characterized. The authors studied in [17,
18], respectively, further the maps between certain operator
algebras which preserve peripheral spectrum of a generalized
product T} * T, * --- % T} and a generalized Jordan product
T, o T, o---o T as defined below.

Definition 1. Fix a positive integer k > 2 and a finite sequence
(i1,ig> .. .»1,,) suchthat {i},i,,...,i,} = {1,2,..., k} and there
isani, notequal toi, forall other g; that s, i, appears just one
time in the sequence. For operators T,.. ., T}, the operators,

(2)
Ty =TT, T, +T, T, T,  (3)

i i, i

T, *TZ*--‘*Tk=Ti1Ti2-~T

i
T oTyo- -

are, respectively, called generalized product and generalized
Jordan product of T,..., T}, while m is called the width of
the products.

Evidently, the generalized Jordan product T} o- - - o T} (the
generalized product T} * - -- % T}) covers the Jordan product
T,T, + T, T, and the Jordan triple product T\ T,T; + T5T,T,
(the usual product T;T, and the Jordan semitriple product
T,T,T,), and so forth. We also remark that the notations
T, % T, % -+ % T and T} o T, o -+ o T} are not unique
for T}, T,, ..., T} because they depend on the choice of the
integers k > 2, m > 2, and the sequence (i, 1,, ..., 1,,). In this
paper, we presume that k, m, and the sequence (i,,1,...1,,)
are arbitrary but fixed throughout the paper.

Let us consider the case of Hilbert spaces. Denote by
JB(H) the set of all bounded linear operators on a complex
Hilbert space H and T the adjoint of T € (H). If
T = T", T is self-adjoint. Denote by B,(H) the real Jordan
algebra of all self-adjoint operators in B(H). A real Jordan
subalgebra of % (H) is said to be standard if it contains the
identity I and all finite rank self-adjoint operators. In [14]
Miura and Honma characterized the surjective maps between
standard operator algebras on Hilbert spaces that preserve
the peripheral spectrum of skew products T*S of operators.
Cui and Li studied in [15] the maps preserving peripheral
spectrum of skew Jordan products AB* + B* A of operators
on standard operator algebras on complex Hilbert spaces. A
characterization of maps preserving peripheral spectrum of
Jordan products of self-adjoint operators AB+BA on standard
real Jordan subalgebras of % (H) was also given in [15]. In
[16] the maps preserving peripheral spectrum of Jordan skew
semitriple products BA* B of operators were characterized,
and then, the maps preserving peripheral spectrum of the
skew generalized products of operators on Hilbert space H
were characterized in [17].

Products of self-adjoint operators in Hilbert space play a
role in several different areas of pure and applied mathemat-
ics. In this paper, we characterize the maps preserving the
peripheral spectrum of generalized Jordan products of self-
adjoint operators between the standard real Jordan algebras
of self-adjoint operators on complex Hilbert spaces. Let ;
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be a standard real Jordan algebra in B (H;), i = 1,2, and
® : o, — g, amap with range containing all rank-one
projections and all rank-two self-adjoint operators with zero
trace. We show that © satisfies that 0, (O(A)e---0c D(A,)) =
0,(Ajo---0Ap)forall A,,..., Ay in &, if and only if there
existascalar c € {-1, 1} and a unitary operatorU : H, — H,
such that ®(A) = cUAU" for all A € o, or ®(A) = cUA'U*
for all A € of,, where A’ is the transpose of A with respect
to an arbitrary but fixed orthonormal basis of H,. Moreover,
¢ = 1 whenever m is odd. We also characterize the maps
from o, into &/, that preserves the peripheral spectrum of
generalized product on <.

2. Generalized Jordan Products of
Self-Adjoint Operators

Let H, and H, be two complex Hilbert spaces and % (H,)
and %B,(H,) the real linear spaces of all self-adjoint operators
in B(H,) and B(H,), respectively. Then B (H,) and B (H,)
are real Jordan algebras. Recall that a standard real Jordan
algebra on H; is a Jordan subalgebra of 9 (H;) which
contains all finite rank self-adjoint operators and the identity
operator. In this section, we will characterize maps preserving
peripheral spectrum of generalized Jordan products of self-
adjoint operators.

Theorem 2. Let o/, and o/, be standard real Jordan algebras
of self-adjoint operators on complex Hilbert spaces H, and H,,
respectively. Consider the product T, o - - - o T} defined in (3) of
Definition 1 with the width m. Assume that ® : o, — I,
is a map the range of which contains all rank-one projections
and all rank-two self-adjoint operators with zero trace. Then ©
satisfies

0r (P (Ay) om0 @(Ay)) =0, (Ar o0 Ay)  (4)
forall A, A,,..., A, € o, if and only if there exist a unitary

operator U € B(H,,H,) and a scalar ¢ € {-1,1} such that
either

(1) ®(A) = cUAU" for every A € o, or

(2) ®(A) = cUA'U* for every A € gf,. Here Al is the
transpose of A with respect to an arbitrary but fixed
orthonormal basis of H,.

Moreover, ¢ = 1 whenever m is odd.

To prove Theorem 2, we consider the special case that
A; = Aand A; = Bforallq # p. Thus there exist
nonnegative integers v, s with r + s = m — 1 > 1 such that
AjoA,o0---0 A =B AB’ + B'AB'". For this special case we
have.

Theorem 3. Let o/, and of, be standard real Jordan algebras
of self-adjoint operators on complex Hilbert spaces H, and H,,
respectively. Assume that ® : o/, — d, is a map the range
of which contains all rank-one projections and all rank-two



Abstract and Applied Analysis

self-adjoint operators with zero trace, and r, s are nonnegative
integers with r + s > 1. Then O satisfies

o, (B"AB' + B°'AB")
)
= 0, (O(B)'® (A) ©(B)’ + ®(B)'® (A) ©(B)")

forall A, B € o, ifand only ifthere exist a unitary operator U €

%B(H,, H,) and a scalar ¢ € {-1, 1} such that ®(A) = cUAU"

for every A € o, or ®D(A) = cUA'U" for every A € .

Moreover, ¢ = 1 whenever r+s is even. Here A" is the transpose
of A with respect to an arbitrary but fixed orthonormal basis of
H,.

If ® meets (4), then it also meets (5) for some r, s with
r+s=m-—1 bytakingA,»P = AandAiq = Bfor g # p. Hence
it is obvious that the truth of Theorem 3 will imply the truth
of Theorem 2.

Thus we focus our attention to prove Theorem 3. We will
do it by decomposing the proof in a number of steps and use
of technical lemmas.

Note that, if s = r > 0, then the question is reduced to the
generalized product B"AB" of self-adjoint operators, which
will be discussed in the next section. So, unless specified
otherwise, we always assume in this section that s > r > 0.

Lemma 4. For any unit vector x € H and nonzero B €
RB(H), we have

0,(Bx®xB +Bx®xB")

(B ) + [B ] [Bx]) i (B > 05 (g
= (B ) - Bl B} i (870 <0
{e [5] [B]) if (B7"x,x) =0,

Proof. In fact, if there exist nonzero «, 8 € R such that B'x =
ax, B'x = fx, clearly (6) holds. Now assume that B x and x or
B’x and x are linearly independent. Then there exist nonzero
y € R and z € H such that (B'x ® xB' + B'x ® xB)z = yz;
that is,

(B'z,x) B'x+ (B'z,x) B'x = yz. (7)
It follows that
(B'z,x) (B'x,x) + (B'z,x) (B'x,x) =y{(z,x), (8)

(B°z,x) (B x,x) + (B'z, x) <stx, x> =y(B’z,x),
)

(B'z,x) (B™"x,x) + (B2, x) <Bzrx,x> =y(B'z,x).
(10)

We consider the following two cases.
Case 1 ({B™"x,x) = 0). If (B'z,x) # 0, it follows from

(10) that (B°z,x) # 0. Then (9) and (10) imply that y =
+|B x|||B°x|l. If (B"z,x) = 0, it follows from (9) that

(B'z, x) = 0, but this contradicts (7). So 0,,(B'x®xB’ + B'x®
xB") = {£|B"x[|| B°x||}.

Case 2 ({B™"x, x) # 0). In this case, there must be (B’ z, x) #
0 and (B’z, x) # 0. Then it follows from (9) and (10) that

I, (11)

which implies that y = (B x, x) + ||B x||| B°x||. So

(y - (B™x.x))" = |B'x[|B'x

o(B'x®xB'+Bx®xB") ={0,(B"x,x) + |Bx| |Bx|} .
(12)

Now the result follows immediately. O

In Lemmas 5 and 6, we always assume that ® : &/, — &,
is a map satisfying (5) with range containing all rank-one
projections and all rank-two self-adjoint operators of zero
trace, and assume that 7, s are nonnegative integers with r+s >
1. Recall that a self-adjoint operator A is said to be positive,
denote by A > 0, if (Ax,x) > 0 for all x € H; while A > B
means that A— B > 0.

Lemma 5. O(I) = I or —I. O(I) = —I may occur only if r + s
is odd.

Proof. For any A, B € &1, since

o, (B'AB* + B°AB")
(13)
= 0, (D(B)  (A) B(B)* + D(B)*® (4) O(B)),

it follows that 7(A) = r(®(A)) holds for every A € /. Let
®(I) = B. By the assumption on the range of @, for any unit
vector y € H,, there exists A € &/, such that ®(A) = y ® y.
We consider the following two cases.

Case 1 (s > r = 0). It follows from (5) that

0, (24%) = o, (P(A)’D (I) + © (I) D(A)’)
14)
=0, (y®yB+By®y),

which implies that |[By ® y + y ® yB| = 2 for all unit vectors
y € H,. Then by Lemma 4, we have

2=|By®y+yeyB|=|(By.y)|+|By| <2[By|, (15)

and hence |By| > 1 for all unit vectors y € H,, and ||B| >
1. On the other hand, for any unit vector y € H,, we have
2|(By, )| < [{By, y)| + IByll = 2. Hence [(By, y)| < 1 holds
for all unit vectors y € H, and consequently, ||B|| < 1. So we
must have [|B|| = 1 and ||By|l = 1 for all unit vectors y € H,.
Now it follows from (15) that B = eI with ¢ € {-1,1}. In
particular, if s is even, as A® > 0, (14) and (15) imply that
(By, y) = 1 for all unit vectors y € H, and hence B = I.

Case 2 (s > r > 0). By (5) we have
0, (2A7) = 0, (D(A)'© (1) D(A)" + D(A) D (1) D(A))

=0,(2y®yBy®y),
(16)



which implies that |y ® yBy ® y|l = |A™| = 1 for all unit
vectors y € H,. Then [(By, y)| = 1 holds for each unit vector
y,and so B = eI with € € {-1, 1}. Particularly, if r + s is even,
then A™™ > 0 and it follows from (16) that (By, y) = 1 holds
for every unit vector y. Hence B = I. O

If ®(I) = -I, then —® satisfies the conditions in
Theorem 3, so we may as well assume O(I) = I in the sequel,
and thus 0,(A) = 0,,(®(A)) holds for every A € ;.

Lemma 6. O preserves rank-one projections in both directions.
Proof. We consider the following two cases.
Case 1 (s > r = 0). Consider the following.

Case 1.1 (s is even). For any unit vector x € H},let O(x®x) =
Band ®(I — x® x) = T. It follows from {0} = o, ((x ® x)°(I —
x®x)+(I-x®x)(x®x)*) = 0,(B'T+TB°) that BT +TB* = 0.

Note that if A > 0, and AS + SA = 0, then AS = SA = 0.
If fact AS + SA = 0 implies that A’S = SA”. Since A > 0, we
must have AS = SA and 2AS = AS + SA = 0, which forces
AS=SA=0.

Now, as B° > 0and B'T+TB’ = 0, we see that B’'T = TB® =
0. It follows from o,(B) = {1} that B® # 0, which implies
that {0} # ran B° C ker T, where ran T stands for the range
of T. For any unit vector y € kerT, pick A € ¢/, such that
D(A) = yoy. It follows from 0, (I -x®x)A°+ A’ (I -x®x)) =
0,(Ty®y+y®yT) = {0} that ([ —x®x)A*+ A*(I-x®x) = 0,
which, together with A® > 0, implies that (I — x ® x)A® =
A'(I-x®x) =0.Sowehave A = x®xand D(x®x) = y® y
is rank-one.

Case 1.2 (s is odd). For any unit vector x € H,let A =x®x
and ®(A) = B. We will prove that B is a rank-one projection.

Claim 1.2.1 (dim ker(B - I) = 1). Note that 0,,(B) = 0,(A) =
{1}. Then 1 € o(B) < (-1,1]. It follows that either (i)
dim ker(B-1I) > 1 or (ii) B — I is injective but not surjective.

Assume that (ii) occurs. Since 1 € 0,,(B), we have ||B|| = 1
and B < I. So, according to some suitable space decompo-
sition of H,, B has an operator matrix representation of the
form

; 17)

SO T O
o0 ©O2N O
* % ¥ O o=
* ¥ ¥ o O
* % ¥ OO

where a > 1/2 and b,c > 0. To see this, one can first
choose three orthonormal vectors x,, x,, x5 such that 1 —
d < (Bx]-,x]-) < 1 for some sufficiently small d € (0,1/4).

Suppose the compression B of B onto the span of {x,, x,, x;}
has eigenvalues p; > p, > ps. Then

N (4 + 13) S [((3-3d)-1] . % (18)

2= 2 2
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Let y, = a. Then B is similar to

a 0 =
<0 a *> (19)

Thus, there exists a space decomposition such that B has an
operator matrix of the form

al, B,
<BT2 * ) ’ (20)
Clearly, there are unitary U, V such that UB,,V " has operator
matrix of the form
boo
(5990) B)

where b,c > 0. So B has the desired operator matrix form.
Under the same decomposition, take S = (9}) @ 0; then
0,(BS*+S°B) has two different points with 7(BS*+S°B) > 2a >
1 and there exists R € &/, such that ®(R) = S. It follows that
0,(R) ={-1,1}.So [|R|| = 1 and |R°u|| < 1 for all unit vectors
u € H,.Buto,(AR* + R°A) = 0,(x ® xR’ + R°x ® x) is either
a singleton or {+||R°x||} with [|[R°x|| < 1. This contradicts the
fact 7(AR® + R°A) = r(BS* + $°B) > 2a > 1.

So dim ker(B — I) > 1. Assume that dim ker(B — I) =
n > 2. According to the space decomposition H, = ker(B —
I) ® ker(B — I)", B has an operator matrix I, ® N. Under
the same space decomposition, take M = (9 }) @ 0. Similar
to the previous discussion, one gets a contradiction again. So
dim ker(B-1) = 1.

Claim 1.2.2. There exists a unit vector y € H, such that B =
yey.

If it is not true, then, by Claim 1.2.1, there exist a unit
vector y € ker(B —I) and a nonzero B, € &/, with B,y = 0
such that B = y® y + B,. So there exists a unit vector z € [y]*
such that B,z # 0. Let C;, = y ® y and C, = z ® z. Then
0,(BC]+C|B) = 0,(BC,+C,B) = {2},C,C; +C5C; = 0,and
BC; + CB # 0. Since the range of ® contains all rank-one
projections, there exist D; and D, in &/, such that ®(D,) =
C, and ®(D,) = C,. Then 0,,(D,) = 0,(D,) = {1}, 0,,(AD] +
D{A) = 0,(BC; +CB) = {2}, D, D5 + DD, = 0,and AD} +
DA #0.

Since {2} = 0,,(AD] + D]A) = 0,,(x ® xD] + D]x ® x), it
follows from (6) that [(D]x, x)| + | D} x| = 2, which, together
with [|D,|| = 1, implies that Djx = x. So, according to
the space decomposition H, = [x] & [x]*, D} =[lleZ
with 0(Z) < (-1, 1]. If D, has an operator matrix (:’1112 \\22)
accordingly, then

- D s _ 2vyy Vi + Vi, Z
0-Dipse i = (v, ) @

Since I + Z is invertible, we see that V;, = 0. Clearly, v;; = 0.
So, D, = 0 ® V,,. But then it contradicts the fact that AD +
DA # 0. So Claim 1.2.2 holds and ® preserves rank-one
projections.
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Conversely, assume that ®(A) is a rank-one projection;
then a similar discussion shows that A is a rank-one projec-
tion, too.

Case 2 (s > r > 0). Consider the following.

Case 2.1 (r + s is even). For any unit vector x € H;, let O(x ®
x) = Band ®(I - x ® x) = T. It follows from {0} = o, ((I -
x0x) (x@x)I-x0x)°+(I-x0x)°(x@x)(I-x®x)") =
0,(T"BT® + T°BT") that T"BT* + T°BT" = 0. Since T*"" > 0
and T"BT'T*" + T"T"BT" = T"BT® + T*BT" = 0, we see
that T°BT" = T"BT® = 0. If ker T = {0}, then ker T" = {0}
and ker T* = {0}, which, together with T"BT* = 0, imply that
BT® = 0, and thus B = 0, a contradiction.

So, kerT" # {0}. Take a unit vector y € kerT and A €
g, such that ®(A) = y ® y. It follows from o, (A"(I - x ®
X)A* + AN(I - x® x)A") = 0,2y ® yTy ® y) = {0} that
AT(I-x®x)A’+ A*(I - x® x)A" = 0, which, together with
A" >0, implies that A"(I - x® x)A® = A*(I —x®x)A" = 0.
Hencewehave A=x®xand P(x®x) = y® y.

Case 2.2 (r + s is odd). For any unit vectors x € H,, let
A = x ® x and ®(A) = B. We will prove that B is a rank-
one projection.

Claim 2.2.1 (dim ker(B —I) = 1). Note that 0,.(B) = 0,,(A) =
{1}. Then 1 € o(B) < (-1,1]. It follows that either (i)
dim ker(B-1I) > 1 or (ii) B — I is injective but not surjective.

Assume that (ii) occurs. Since 1 € ¢,,(B), we have || B|| = 1
and B < I. So, like shown in Case 1.2.1, with respect to some
suitable space decomposition of H,, B has an operator matrix
representation of the form

; (23)

SO T OV
on O3 O
* % ¥ O o=
* ¥ ¥ o O
* % ¥ OO

where a > 1/2 and b,¢ > 0. Under the same decomposition,
take S = (9}) @0, and then {+2a} = 0,(S'BS’ + $’BS"). As
S has rank-two and zero trace, there exists R € &/, such that
®(R) = S. It follows that 0, (R) = {-1,1}. So [|R|| = 1 and
[R°u[|[R"u| < 1 for all unit vectors u € H;. But 0,,(R"AR® +
R°AR") =0, (R'x® xR’ + R°x ® xR") = {£||[R"x[|[| R x|}}. This
contradicts the fact 7(AR® + R°A) = r(BS® + S°B) > 2a > 1.

So dim ker(B — I) > 1. Assume that dim ker(B — I) =
n > 2. According to the space decomposition H, = ker(B -
I) @ ker(B — I)*, B has an operator matrix I, & N. Under
the same space decomposition, take M = (9 1) & 0. Similar
to the previous discussion, one gets a contradiction again. So
dim ker(B-1) = 1.

Claim 2.2.2. There exists a unit vector y € H, such that B =
yey.

If it is not true, then, by Claim 2.2.1, there exist a unit
vector y € ker(B —I) and a nonzero B, € &/, with B,y = 0
such that B = y® y +B,. So there exists a unit vector z € [y]*
such that Bjz # 0 and Bjz # 0. Let C; = y® yand C, =
z ® z. Since the range of ® contains all rank-one projections,

there exist D, and D, in &/, such that ®(D,) = C; and
®(D,) = C,. Then 0,(D]AD; + D]AD]) = 0,(C{BC] +
CiBC]) = 0,2y ® yBy ® y) = {2}, which, together with
(6), implies that (D]"x,x) + [[D]x[[|Djx[| = 2. It follows
from (D]"x,x) < |D{x[[Djx| < 1 that (D]"x,x) = 1.
So Di"x = x, and according to the space decomposition
H, = [x] ® [x]", D™ = [1] ® Z with 0(Z) < (-1,1]. Thus
under the same space decomposition we have D, = [1] @ Y
with o(Y) € (-1, 1]. Write D, in the operator matrix ( " Via )

Via Vo
accordingly; then ’
0 = D{D,D’ + D'D,D}
- 2y Vip (Y7 +Y7) (24)
T\ YV YV, Y 4 YV,Y )

Clearly, v;; = 0. So, A"D,A’ + A°D,A” = 0. But then this
contradicts the fact thato,(A"D,A*+A°D,A") = 0, (B'C,B’+
B°C,B") # {0}. So Claim 2.2.2 holds and @ preserves rank-
one projections.

Conversely, assume that ®(A) is a rank-one orthogonal
projection; then, a similar discussion implies that A is a rank-
one projection. O

The following lemma was proved in [19].

Lemma?7. Let H be a complex Hilbert space and A, B € B(H)
self-adjoint operators. If |(Ax, x)| + [[Ax|lllx|l = |{Bx,x)| +
| Bx||llx|l holds for all x € H, then A = +B.

Now we are in a position to present our proof of
Theorem 3, except the case r = s.

Proof of Theorem 3. The “if” part is obvious. Let us check the
“only if” part.

By Lemma 6, @ preserves rank-one projections in both
directions. It follows that there exists a bijective map T :
H, — H, such that

O(x®x)=Tx®Tx (25)

for all unit vectors x € H;, where ||Tx|| = |x| and T(Ax) =
ATx forany x € H; and A € C.
We consider the following two cases.

Case 1 (s > r = 0). For any unit vectors x, y € H,, we have
o (ye®y)(xex) +(x®x)(y®y) = 0,(Tye®Ty)(Tx®
Tx)* + (Tx ® Tx)*(Ty ® Ty)). By (6), {x, y) = 0 if and only if
(Tx,Ty) = 0, and when (x, y) # 0,

[(Tx, Ty)[* + [(Tx, Ty)| = [(x ) + [, 9)] . (26)

It follows that

[(Tx, Ty)| = [{x, y)| (27)

holds for all x, y € H;.

Wigner’s theorem [20] states that every bijective map T
between Hilbert spaces H;, H, satisfying (27) must have the
form Tx = ¢(x)Ux for any x € H,, where U is a unitary
or a conjugate unitary (i.e., antiunitary) operator and ¢ is



a so-called phase-function which means that its values are
of modulus one. Thus, by Wigner’s theorem, there exists a
unitary or conjugate unitary operator U : H, — H, such
that ®(x ® x) = Ux ® Ux for every unit vector x € H;.

Assume first that U is unitary. Let A € o/, be arbitrary.
For any unit vector x € H;,

0, (A(x®x)" +(x®x)°A)
(28)
=0, (D (A) (Ux®Ux)’ + (Ux ® Ux)'D (A)).

Applying (6), for any unit vector x € H,, one has

[(Ax, x)| + |Ax|| = |[{U"® (A) Ux, x)| + [U D (A) Ux|,
(29)

and hence Lemma 7 implies that U*®(A)U = *A. Hence,
®(A) = +UAU" for every A € o/,. We claim that ®(A) =
UAU™ for every A € o). Otherwise, there exists some
nonzero B, such that ®(By)) = —-UB,U". Let /4, = {A €
o, : ®(A) =UAU}and M_ ={Be &, : B+ 0,0(B) =
~UBU*}. Then M, NAM_ =0, M VM_=g,and B, € M _.
Note that, as ®(I) = I, I € ,. It follows that, for any
B € Ml _, we have 0,(2B) = 0,(IB + BI) = 0, (O(I)P(B) +
®(B)D(I)) = —0,(2B). Therefore, 0,,(B) = {—||Bl, | Bll} holds

forall Be #_.LetB = ﬂﬂl" AdE, be the spectral resolution

I1BIl
U2IEI dE, # 0. Though

we do notknow if E € ¢/, we can take unit vector x € EH; so
that (Bx, x) > (1/2)||B|| > 0. Thus, {(Bx, x) + ||Bx|| > ||B|| > 0.
By Lemma 4, we have 0, (x®xB+ Bx®x) = {(Bx, x) + [ Bx||}.
Sincex®x € o/, and 0, (x ® x) = {1}, x ® x € . But then,

of B. Then the spectral project E = f(

{(Bx,x) + ||Bx||} = 0, (x ® xB + Bx ® x)
=0, (Px®x)D(B)+P(B)D(x®x))
= -0, (x®xB+ Bx®x)

= {=(Bx, x) — ||Bx|},
(30)
a contradiction. So, ®(A) = UAU" holds for every A € .

Now assume that U is conjugate unitary. Take arbi-
trarily an orthonormal basis {e;};c, of H and define ] by
J(Qienie) = Yicp&ie;. Then J © H — H, is conjugate
unitary and J* = I. Let V = UJ. Then V is unitary and a
similar discussion as above implies that ®(A) = VA'V* for
all A € o, and A’ is the transpose of A for the orthonormal
basis {e;};c5 of H;.

Case 2 (s > r > 0). For any unit vectors x, y € H,, we have
21 )} = 0 (x0x) (Yo y) (x®x)
+(x®x) (y®y)(x®x)")
=0, (ITx®Tx)" (Ty®Ty) (Ix®Tx)’
+ (Tx®Tx) (Ty®Ty) (Tx®Tx)")

= fl(re )P}
(31
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Hence

|(Tx, Ty)| = [{x, y)| (32)

holds for all x,y € H,. Thus, by Wigner’s theorem, there
exists a unitary or conjugate unitary operator U : H; — H,
such that ®(x ® x) = Ux ® Ux for every unit vector x € H;.

Now assume that U is unitary. Let A € &/, be arbitrary.
For any unit vector x € Hy, since

2(Ax,x)} =0, (x®x) A(x®x)' + (x®x)'A(x ® x)")
=0, ((Ux® Ux) @ (A) (Ux ® Ux)*
+ (Ux®Ux)'® (A) (Ux ® Ux)")

= {2(0(A) Ux,Ux)},
(33)

we have

(Ax,x) = (D (A)Ux,Ux) Vunit vectors x € H;. (34)
So we get ®(A) = UAU” for every A € ;.

Similar to the case s > r = 0,ifU is conjugate unitary, then
there exists a unitary operator V such that ®(A) = VA'V™* for
allAe d,.

Hence we have shown that, in the case ®(I) = I, there
exists a unitary U such that either ®(A) = UAU" for every
A € d,; or D(A) = UA'U* for every A € g9/,, where
A" is the transpose of A with respect to an arbitrarily given
orthonormal basis of H;.

If ©(I) = —I, considering ¥ = —® gives ®(A) = —-UAU"
for every A € o/ or ®(A) = ~-UA'U” for every A € o . It is
clear that this case does not occur if 7 + s is even. O

3. Generalized Products of Self-Adjoint
Operators on Hilbert Spaces

In this section, we will characterize maps preserving periph-
eral spectrum of generalized products of self-adjoint opera-
tors. Its special case, Theorem 10, makes up for the gap for the
case s = r in the proof of Theorem 3.
Let o/ be a real Jordan algebra in B (H). If a generalized
product T, = T, s - -- % T} defined in (2) satisfies that T = T,
<% Ty e o forany T}, T,,..., T, € o, that is, the general
product is closed in &, we say that T} % T, * --- % T}, is a
generalized product on &. The following lemma was proved
in [3].

Lemma 8. Let T} = T, * ---

generalized product on a standard real Jordan algebra of <
B(H) defined as in (2) of Definition 1. Then there exists a
positive integer n with m = 2n — 1 such that i, = n, and

ij =i2n_jforallj= 1,...,n

# Ty = T, T, -T, bea

1

The following is the main result in this section. Observe
that we do not need the assumption that the range of the map
contains all rank-two self-adjoint operators with zero trace.
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Theorem 9. Let &/, and o/, be standard real Jordan algebras
of self-adjoint operators on complex Hilbert spaces H, and H,,
respectively. Consider the generalized product T; % -+ * T}
on B,(H;) as in Lemma 8 with width m. Assume that © :
o, — 9, isamap the range of which contains all rank-one
projections. Then O satisfies

0, (P(A}) * % D(Ay)) =0, (A %~ Ay)  (35)

forall A}, A,,..
conditions holds.

., Ay € o, if and only if one of the following

(1) There exists a unitary operator U : H, — H, such
that ®(A) = UAU" forall A € o/ ,.

(2) There exists a unitary operator U : H, — H, such
that ®(A) = UA'U” forall A € o,

where A" is the transpose of A for an arbitrarily but fixed
orthonormal basis of H,.

To prove Theorem 9, we consider the special case by
taking A; = Aand A; = Bifq # p. By Lemma 8, there
exists positive integer r(= n) with 2r = m — 1 > 2 such that
A, % A, x---x A= B AB’. It is clear that Theorem 9 is an
immediate consequence of the following result.

Theorem 10. Let &/ and o, be standard real Jordan algebras
of delf-adjoint operators on complex Hilbert spaces H, and H,,
respectively. Assume that ® : o/, — 9, is a map the range
of which contains all rank-one projections and r is nonnegative
integer with v > 1. Then O satisfies

0, (B'AB") = 0, (D(B) ® (A) D(B)) VA,Bed, (36)

if and only if one of the following conditions holds.

(1) There exists a unitary operator U : H, — H, such
that ®(A) = UAU" forall A € o .

(2) There exists a unitary operator U : H, — H, such
that ®(A) = UA'U” forall A € o,

where A" is the transpose of A for an arbitrarily but fixed
orthonormal basis of H.

To prove Theorem 10, it suffices to check the “only if”
part. Assume in the following that ® : &, — 4, is
a map satisfying (36) with range containing all rank-one
projections.

Lemma1l. O(I) = I.

Proof. It follows from (36) that r(A) = r(®(A)) holds for
every A € o/,. Let ®(I) = B. For any unit vector y € H,,
there exists A € &, such that P(A) = y ® y. Then

0, (A”) = 0, (P(A) D (D) D(A)) =0, (y® yBy® y),
(37)

which, together with A*" > 0, implies that (By, y) = 1 for all
unit vectors y € H,. So B = I. O

Lemma 12. @ preserves rank-one projections in both direc-
tions.

Proof. For any unit vector x € Hj, let ®(x ® x) = B and
O(I — x® x) = T. It follows from {0} = 0 (x ® x)"(I - x ®
x)(x ® x)") = 0,(B'TB") that B'TB" = 0. Similarly, we have
T'BT" = 0.Ifker T = {0}, then ker T" = {0}, which, together
with T"BT" = 0, implies that BT" = 0, and thus B = 0, a
contradiction.

So, there exist a unit vector y € ker T. Take A € &/, such
that ®(A) = y ® y. It follows from 0,,(A"(I - x ® x)A") =
0,(y®yTy®y) = {0} that A"(I - x®x) A" = 0, which implies
that A = x ® x. Thus ®(x ® x) = y ® y and, therefore, ®
preserves rank-one projections.

Similarly one can show that ®(A) is a rank-one projection
will imply that A is a rank-one projection.

Proof of Theorem 10. By Lemma 12, ® preserves rank-one
projections in both directions. It follows that there exists a
bijective map T : H; — H, such that

O(x®x)=Tx®Tx (38)

for all unit vectors x € H;, where ||Tx|| = |x| and T(Ax) =
ATx forany x € H; and A € C.
For any unit vectors x, y € H,, we have

{1 )} = 0p (x0x) (y® y) (x@x))
0, (Tx®Tx) (Ty®Ty) (Tx®Tx)") (39)

(KT, Ty) [}

Hence

(Tx.Ty)| = [(x. 7)] (40)

holdsforall x, y € H,. Thus, by Wigner’s theorem again, there
exists a unitary or conjugate unitary operator U : H, — H,
such that ®(x ® x) = Ux ® Ux for every unit vector x € H;.

Now assume that U is unitary. Let A € &, be arbitrary.
For any unit vector x € H,, since

{(Ax,x)} = 0, (x® x) Alx @ x)")
=0, (Ux®Ux) ® (A) (Ux® Ux)") (41)
= {(®(A)Ux,Ux)},
we have
(Ax, x) = (O (A) Ux, Ux)

Hence we get ®(A) = UAU™ for every A € &/,.
Similarly, U is conjugate unitary implies that there exists a
unitary operator such that ®(A) = VA'V* forall A € &,. O

Vunit vectors x € H,. (42)

Remark 13. Finally, we remark that if we do not require that
the generalized product is closed in the involved standard
real Jordan algebras &/;, i = 1,2, we can still obtain
a characterization of the maps @ from &, into &/, with
range containing all rank-one projections which preserves
the peripheral spectrum of an arbitrarily given generalized
product. In fact, such maps have the same form stated in
Theorem 2.
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