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Thepaper studies the dual riskmodel with a barrier strategy under the concept of bankruptcy, inwhich one has a positive probability
to continue business despite temporary negative surplus. Integrodifferential equations for the expectation of the discounted
dividend payments and the probability of bankruptcy are derived. Moreover, when the gain size distribution is exponential, explicit
solutions for the expected dividend payments and the bankruptcy probability are obtained for constant bankruptcy rate function.
It also provided some numerical examples to illustrate the applications of the explicit solutions.

1. Introduction

In the continuous time dual risk model, the company’s sur-
plus process {𝑈(𝑡), 𝑡 ≥ 0} with initial surplus 𝑈(0) = 𝑢 is
given by

𝑈 (𝑡) = 𝑢 − 𝑐𝑡 + 𝑆 (𝑡) = 𝑢 − 𝑐𝑡 +

𝑁(𝑡)

∑
𝑖=1

𝑋
𝑖
, 𝑡 ≥ 0, (1)

where 𝑐 > 0 is the constant rate of expenses per unit time,
{𝑁(𝑡), 𝑡 ≥ 0} is a Poisson process with intensity 𝜆 > 0, and
the gain size {𝑋

𝑖
, 𝑖 ≥ 1} is a sequence of independent and

identically distributed positive continuous random variables
with finite mean, independent of {𝑁(𝑡), 𝑡 ≥ 0}. Assume all𝑋

𝑖

have the same distribution as a generic random variable 𝑋,
which has probability density function 𝑓(𝑥) and cumulative
distribution function 𝐹(𝑥). Under model (1), the expected
increase in surplus per unit time is 𝜇 = 𝜆𝐸𝑋 − 𝑐, and it is
assumed that 𝜇 > 0.

Since De Finetti [1] proposed dividend strategies for an
insurance risk model, the risk model in the presence of divi-
dend payments has become amore andmore popular topic in
risk theory. In recent years, quite a few interesting papers have

been written on the dual risk model with dividend strategy.
Avanzi et al. [2] studied the expected total discounted
dividends in the dual risk model with barrier strategy. Avanzi
and Gerber [3] studied the optimal dividends in the dual risk
model with diffusion. Ng [4] studied the expected discounted
dividend in dual risk model with threshold dividend strategy.
Dai et al. [5] studied the optimal dividend strategies in the
dual risk model with capital injections.

Albrecher and Lautscham [6]made a distinction between
ruin and bankruptcy, in the traditional actuarial model; if
the surplus is negative, the company is ruined and has to
go out of business; in particular, no dividends are paid after
ruin. They consider a relaxation of the ruin concept to the
concept of bankruptcy, in which the company with a negative
surplus is assumed to be able to continue doing business as
usual until bankruptcy takes place, and bankruptcy means
that the company goes out of business. Concretely, a suitable
bankruptcy rate function 𝜔(𝑢) depending on the size of the
negative surplus, which is defined on −𝑎 ≤ 𝑢 < 0, zero for
𝑢 > 0, and 𝜔(𝑢) = ∞ for 𝑢 < −𝑎. This is a nonincreasing
function; whenever the negative surplus is 𝑢, 𝜔(𝑢)𝑑𝑡 is the
probability of bankruptcy within dt time units. Albrecher
and Lautscham [6] considered the optimal dividend barrier
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in diffusion risk model until bankruptcy. In this paper, we
extend the idea of ruin to more general bankruptcy concept
in dual risk model.

Let us now consider some of the basic definition and
notation for the risk model. Let 𝜏 be the bankruptcy time of
the surplus process with dividend payments and define the
overall probability of bankruptcy as

𝜓 (𝑢, 𝑏) = 𝑃 {𝜏 < ∞ | 𝑈 (0) = 𝑢} . (2)

A barrier dividend strategy is given by a parameter 𝑏 ≥ 0; if at
a potential dividend payment time, the surplus is above 𝑏; the
excess is paid as a dividend and then the aggregate dividends
𝐷(𝑡) till time 𝑡 is

𝐷 (𝑡) = (𝑈 (𝑡
−
) − 𝑏)

+
, (3)

where (𝑈(𝑡
−
) − 𝑏)
+
= max{𝑈(𝑡

−
) − 𝑏, 0}.

The dividends are discounted at a constant force of inter-
est 𝛿 ≥ 0, the total discounted dividends until bankruptcy are

𝐷
𝑢,𝑏

= ∫
𝜏

0

𝑒
−𝛿𝑡

𝑑𝐷 (𝑡) , (4)

and the expected discounted value of dividends by 𝑉(𝑢, 𝑏) =

𝐸[𝐷
𝑢,𝑏

].
The purpose of this paper is to present the expected value

of the discounted sum of all dividend payments until bank-
ruptcy and the probability of bankruptcy in the dual risk
model. In Section 2, integrodifferential equations for the
expected dividend payments until bankruptcy are derived;
moreover, explicit solutions are also obtained under constant
bankruptcy rate function and exponential gain size; finally,
we provide some numerical examples with illustrations for
the expected dividend payments under the concept of
bankruptcy. In Section 3, we derive equations for the prob-
ability of bankruptcy 𝜓(𝑢, 𝑏), which are solved explicitly for
constant bankrupt rate function and exponential gain size
andwe also provide numerical examples with illustrations for
the probability of bankruptcy.

2. The Expectation of the Discounted
Dividend Payments

In this section, we derive integrodifferential equations for
𝑉(𝑢, 𝑏); the results are summarized in the following theorem.
At first, we define

𝑉 (𝑢, 𝑏) =

{{

{{

{

𝑉
1 (𝑢, 𝑏) , 𝑢 < 0,

𝑉
2 (𝑢, 𝑏) , 0 ≤ 𝑢 < 𝑏,

𝑢 − 𝑏 + 𝑉
2 (𝑏, 𝑏) , 𝑢 ≥ 𝑏.

(5)

Similarly, we can define 𝜓
𝑖
(𝑢, 𝑏) in next section as𝑉

𝑖
(𝑢, 𝑏)(𝑖 =

1, 2).

2.1. Integrodifferential Equations for 𝑉(𝑢,𝑏)

Theorem 1. 𝑉
1
(𝑢, 𝑏) and 𝑉

2
(𝑢, 𝑏) satisfy the following system

of integrodifferential equations:

𝑐𝑉
󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝛿 + 𝜔 (𝑢)) 𝑉1 (𝑢, 𝑏)

− 𝜆∫
0

𝑢

𝑉
1 (𝑥, 𝑏) 𝑓𝑋 (𝑥 − 𝑢) 𝑑𝑥 − 𝜆∫

𝑏

0

𝑉
2 (𝑥, 𝑏)

⋅ 𝑓
𝑋 (𝑥 − 𝑢) 𝑑𝑥 − 𝜆𝑉

2 (𝑏, 𝑏) 𝐹 (𝑏 − 𝑢)

− 𝜆∫
∞

𝑏−𝑢

(1 − 𝐹
𝑋 (𝑥)) 𝑑𝑥 = 0, 𝑢 < 0,

(6)

𝑐𝑉
󸀠

2
(𝑢, 𝑏) + (𝜆 + 𝛿)𝑉2 (𝑢, 𝑏)

− 𝜆∫
𝑏

𝑢

𝑉
2 (𝑥, 𝑏) 𝑓𝑋 (𝑥 − 𝑢) 𝑑𝑥 − 𝜆∫

∞

𝑏−𝑢

(1 − 𝐹
𝑋 (𝑥)) 𝑑𝑥

− 𝜆𝑉
2 (𝑏, 𝑏) 𝐹 (𝑏 − 𝑢) = 0, 0 ≤ 𝑢 < 𝑏.

(7)

In addition, 𝑉
1
(𝑢, 𝑏) and 𝑉

2
(𝑢, 𝑏) satisfy

𝑉
1
(0
−
, 𝑏) = 𝑉

2
(0
+
, 𝑏) , (8)

lim
𝑢→−∞

𝑉
1 (𝑢, 𝑏) = 0, (9)

𝑉
󸀠

2
(0
+
, 𝑏) − 𝑉

󸀠

1
(0
−
, 𝑏) =

𝜔 (0
−
)

𝑐
𝑉
1
(0
−
, 𝑏) . (10)

Proof. When 𝑢 > 𝑏, the surplus drops to level 𝑏 immediately
due to the initial payment of dividends and thus

𝑉
2 (𝑢, 𝑏) = 𝑢 − 𝑏 + 𝑉

2 (𝑏, 𝑏) ; (11)

when 𝑢 < 0, conditioning on the first occurrence time of
either a gain or an event of bankruptcy up to time 𝑡 yields
that

𝑉
1 (𝑢, 𝑏) = (1 − 𝜆𝑡) (1 − 𝜔 (𝑢) 𝑡) 𝑒

−𝛿𝑡
𝑉
1 (𝑢 − 𝑐𝑡, 𝑏)

+ (1 − 𝜆𝑡) 𝜔 (𝑢) 𝑡 ⋅ 0 + (1 − 𝜔 (𝑢) 𝑡) 𝜆𝑡

⋅ [∫
−𝑢+𝑐𝑡

0

𝑉
1 (𝑢 − 𝑐𝑡 + 𝑥, 𝑏) 𝑓𝑋 (𝑥) 𝑑𝑥

+ ∫
𝑏−𝑢+𝑐𝑡

−𝑢+𝑐𝑡

𝑉
2 (𝑢 − 𝑐𝑡 + 𝑥, 𝑏) 𝑓𝑋 (𝑥) 𝑑𝑥

+∫
∞

𝑏−𝑢+𝑐𝑡

(𝑢 − 𝑐𝑡 + 𝑥 − 𝑏 + 𝑉
2 (𝑏, 𝑏)) 𝑓𝑋 (𝑥) 𝑑𝑥]

+ 𝑜 (𝑡) = 0.

(12)
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We differentiate (12) with respect to 𝑡, and by taking the
limit 𝑡 → 0 we can get

𝑐𝑉
󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝛿 + 𝜔 (𝑢)) 𝑉1 (𝑢, 𝑏)

− 𝜆∫
−𝑢

0

𝑉
1 (𝑢 + 𝑥, 𝑏) 𝑓𝑋 (𝑥) 𝑑𝑥

− 𝜆∫
𝑏−𝑢

−𝑢

𝑉
2 (𝑢 + 𝑥, 𝑏)

⋅ 𝑓
𝑋 (𝑥) 𝑑𝑥 − 𝜆∫

∞

𝑏−𝑢

(𝑢 + 𝑥 − 𝑏) 𝑓𝑋 (𝑥) 𝑑𝑥

− 𝜆𝑉
2 (𝑏, 𝑏) 𝐹 (𝑏 − 𝑢) = 0.

(13)

That is,

𝑐𝑉
󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝛿 + 𝜔 (𝑢)) 𝑉1 (𝑢, 𝑏)

− 𝜆∫
0

𝑢

𝑉
1 (𝑥, 𝑏) 𝑓𝑋 (𝑥 − 𝑢) 𝑑𝑥 − 𝜆∫

𝑏

0

𝑉
2 (𝑥, 𝑏)

⋅ 𝑓
𝑋 (𝑥 − 𝑢) 𝑑𝑥 − 𝜆∫

∞

𝑏−𝑢

(1 − 𝐹
𝑋 (𝑥)) 𝑑𝑥

− 𝜆𝑉
2 (𝑏, 𝑏) 𝐹 (𝑏 − 𝑢) = 0.

(14)

When 0 ≤ 𝑢 < 𝑏,

𝑉
2 (𝑢, 𝑏) = (1 − 𝜆𝑡) 𝑒

−𝛿𝑡
𝑉
2 (𝑢 − 𝑐𝑡, 𝑏)

+ 𝜆𝑡 ∫
𝑏−𝑢+𝑐𝑡

0

𝑉
2 (𝑢 − 𝑐𝑡 + 𝑥, b) 𝑓𝑋 (𝑥) 𝑑𝑥

+ 𝜆𝑡∫
∞

𝑏−𝑢+𝑐𝑡

(𝑢 − 𝑐𝑡 + 𝑥 − 𝑏 + 𝑉
2 (𝑏, 𝑏)) 𝑓𝑋 (𝑥) 𝑑𝑥

+ 𝑜 (𝑡) = 0.

(15)

Using a similarmethod of deriving (6), we can also obtain
(7).

Letting 𝑢 ↓ 0 in (12) and 𝑢 ↑ 0 in (15), it follows that
𝑉(𝑢, 𝑏) is continuous at 𝑢 = 0 as long as 𝜔(0) is bounded; that
is,

𝑉
1
(0
−
, 𝑏) = 𝑉

2
(0
+
, 𝑏) ; (16)

the continuity of𝑉(𝑢, 𝑏) at 𝑢 = 0; we can deduce from (6) and
(7) for 𝑢 → 0 that

𝑉
󸀠

2
(0
+
, 𝑏) − 𝑉

󸀠

1
(0
−
, 𝑏) =

𝜔 (0
−
)

𝑐
𝑉
1
(0
−
, 𝑏) ; (17)

we know that if 𝑢 → −∞, the bankruptcy takes place, so
lim
𝑢→−∞

𝑉
1
(𝑢, 𝑏) = 0 is obvious.

2.2. Explicit Expressions for 𝑉(𝑢,𝑏). We assume in this sub-
section that 𝜔(𝑢) is constant; the positive constant is denoted
as 𝜔; that is,

𝜔 (𝑢) = 𝜔, −𝑎 ≤ 𝑢 < 0. (18)

For simplicity, we will assume throughout the rest of the
paper that the gain size is exponentially distributed 𝐹(𝑥) =

1 − 𝑒
−𝛼𝑥.
In this case, (6) can be rewritten as

𝑐𝑉
󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝛿 + 𝜔)𝑉1 (𝑢, 𝑏)

− 𝜆∫
0

𝑢

𝑉
1 (𝑥, 𝑏) 𝛼𝑒

−𝛼(𝑥−𝑢)
𝑑𝑥

− 𝜆∫
𝑏

0

𝑉
2 (𝑥, 𝑏) 𝛼𝑒

−𝛼(𝑥−𝑢)
𝑑𝑥

− 𝜆𝑉
2 (𝑏, 𝑏) 𝑒

−𝛼(𝑏−𝑢)
− 𝜆∫
∞

𝑏−𝑢

𝑒
−𝛼𝑥

𝑑𝑥 = 0.

(19)

That is,

𝑐𝑉
󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝛿 + 𝜔)𝑉1 (𝑢, 𝑏)

− 𝜆∫
0

𝑢

𝑉
1 (𝑥, 𝑏) 𝛼𝑒

−𝛼𝑥
𝑒
𝛼𝑢

𝑑𝑥 − 𝜆∫
𝑏

0

𝑉
2 (𝑥, 𝑏) 𝛼𝑒

−𝛼𝑥

⋅ 𝑒
𝛼𝑢

𝑑𝑥 − 𝜆𝑉
2 (𝑏, 𝑏) 𝑒

−𝛼(𝑏−𝑢)
−

𝜆

𝛼
𝑒
−𝛼(𝑏−𝑢)

= 0.

(20)

Applying the operator (𝑑/𝑑𝑢 − 𝛼) to (20), we obtain the
differential equation

𝑐𝑉
󸀠󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝛿 + 𝜔 − 𝑐𝛼)𝑉

󸀠

1
(𝑢, 𝑏)

− 𝛼 (𝛿 + 𝜔)𝑉1 (𝑢, 𝑏) = 0.
(21)

Hence the solution of (21) is of the form

𝑉
1 (𝑢, 𝑏) = 𝐴

1
𝑒
−𝑟
1
𝑢
+ 𝐵
1
𝑒
𝑠
1
𝑢
, (22)

where𝐴
1
, 𝐵
1
are arbitrary coefficients and −𝑟

1
< 0 and 𝑠

1
> 0

are the two solutions to the characteristic equation about 𝜂:

𝑐𝜂
2
+ (𝜆 + 𝛿 + 𝜔 − 𝑐𝛼) 𝜂 − 𝛿 (𝛼 + 𝜔) = 0. (23)

From lim
𝑢→−∞

𝑉
1
(𝑢, 𝑏) = 0, it follows that 𝐴

1
= 0.

Analogously, we rewrite (7) as

𝑐𝑉
󸀠

2
(𝑢, 𝑏) + (𝜆 + 𝛿)𝑉2 (𝑢, 𝑏)

− 𝜆∫
𝑏

𝑢

𝑉
2 (𝑥, 𝑏) 𝛼𝑒

−𝛼(𝑥−𝑢)
𝑑𝑥 −

𝜆

𝛼
𝑒
−𝛼(𝑏−𝑢)

− 𝜆𝑉
2 (𝑏, 𝑏) 𝑒

−𝛼(𝑏−𝑢)
= 0.

(24)

That is,

𝑐𝑉
󸀠

2
(𝑢, 𝑏) + (𝜆 + 𝛿 − 𝑐𝛼)𝑉

󸀠

2
(𝑢, 𝑏) − 𝛼𝛿𝑉

2 (𝑢, 𝑏) = 0. (25)

The solution of (25) is of the form

𝑉
2 (𝑢, 𝑏) = 𝐴

2
𝑒
𝑟
2
𝑢
+ 𝐵
2
𝑒
𝑠
2
𝑢
, (26)

where 𝐴
2
, 𝐵
2
are constants and 𝑟

2
, 𝑠
2
are the solutions of the

equation about 𝜂󸀠

𝑐(𝜂
󸀠
)
2

+ (𝜆 + 𝛿 − 𝑐𝛼) 𝜂
󸀠
− 𝛿𝛼 = 0. (27)
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From (8), we obtain that

𝐵
1
= 𝐴
2
+ 𝐵
2
. (28)

The condition (10) gives the equation

𝐴
2
𝑟
2
+ 𝐵
2
𝑠
2
− 𝐵
1
𝑠
1
=

𝜔

𝑐
𝐵
1
. (29)

Substituting (26) into (7), we have

𝐴
2
(𝑐𝑟
2
+ 𝛿) 𝑒

𝑟
2
𝑏
+ 𝐵
2
(𝑐𝑠
2
+ 𝛿) 𝑒

𝑠
2
𝑏
=

𝜆

𝛼
. (30)

Therefore, we have a system of linear equations (28)–(30)
for the constants 𝐴

2
, 𝐵
1
, and 𝐵

2
. Solving the system of linear

equations, we have

𝐴
2
=

𝜆

𝛼
(𝑠
2
−

𝜔

𝑐
− 𝑠
1
)

× ((𝑐𝑟
2
+ 𝛿) (𝑠

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑟
2
𝑏

− (𝑐𝑠
2
+ 𝛿) (𝑟

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑠
2
𝑏
)
−1

,

𝐵
1
=

𝜆

𝛼
(𝑠
2
− 𝑟
2
)

× ((𝑐𝑟
2
+ 𝛿) (𝑠

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑟
2
𝑏

− (𝑐𝑠
2
+ 𝛿) (𝑟

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑠
2
𝑏
)
−1

,

𝐵
2
=

𝜆

𝛼
(𝑟
2
−

𝜔

𝑐
− 𝑠
1
)

× ((𝑐𝑠
2
+ 𝛿) (𝑟

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑠
2
𝑏

− (𝑐𝑟
2
+ 𝛿) (𝑠

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑟
2
𝑏
)
−1

.

(31)

So we can obtain

𝑉
1 (𝑢, 𝑏) =

𝜆

𝛼
( (𝑠
2
− 𝑟
2
)

× ((𝑐𝑟
2
+ 𝛿) (𝑠

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑟
2
𝑏

− (𝑐𝑠
2
+ 𝛿) (𝑟

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑠
2
𝑏
)
−1

) 𝑒
𝑠
1
𝑢
,

𝑉
2 (𝑢, 𝑏) =

𝜆

𝛼
(𝑠
2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑟
2
𝑢
− (𝑟
2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑠
2
𝑢

× ((𝑐𝑟
2
+ 𝛿) (𝑠

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑟
2
𝑏

− (𝑐𝑠
2
+ 𝛿) (𝑟

2
−

𝜔

𝑐
− 𝑠
1
) 𝑒
𝑠
2
𝑏
)
−1

.

(32)

2.3. Numerical Examples for 𝑉(𝑢, 𝑏). As an illustration of
the results of the previous subsection, we will give some
numerical examples about the expectation of the discounted
dividend payments 𝑉(𝑢, 𝑏).

Table 1: Influence of 𝑢 and 𝜔 on 𝑉(𝑢, 𝑏) for 𝛿 = 0.1, 𝑐 = 2, 𝜆 = 3,
𝛼 = 1, and 𝑏 = 10.

𝑢 \ 𝜔 1 2 3 4 5 6
−6 1.7969 1.2439 0.9516 0.7707 0.6476 0.5585
−5 1.9620 1.3630 1.0447 0.8471 0.7124 0.6147
−4 2.1422 1.4934 1.1469 0.9311 0.7837 0.6767
−3 2.3390 1.6363 1.2591 1.0234 0.8621 0.7448
−2 2.5539 1.7929 1.3822 1.1249 0.9484 0.8199
−1 2.7885 1.9644 1.5174 1.2364 1.0433 0.9025
0 3.0446 2.1524 1.6658 1.3590 1.1478 0.9934
1 4.4970 4.0197 3.7594 3.5953 3.4823 3.3997
2 5.5086 5.2523 5.1125 5.0243 4.9636 4.9193
3 6.3049 6.1662 6.0905 6.0428 6.0010 5.9860
4 7.0079 6.9317 6.8901 6.8639 6.8458 6.8326
5 7.6841 7.6410 7.6174 7.6026 7.5924 7.5849
6 8.3710 8.3453 8.3313 8.3224 8.3163 8.3119
7 9.0906 9.0739 9.0649 9.0591 9.0552 9.0523
8 9.8568 9.8447 9.8382 9.8340 9.8312 9.8291
9 10.6795 10.6697 10.6643 10.6609 10.6586 10.6569

Example 2. We set 𝛿 = 0.1, 𝑐 = 2, 𝜆 = 3, 𝛼 = 1, and 𝑏 = 10;
it is easy to check that the net profit condition holds; we can
discuss impact of the model parameters 𝑢 and 𝜔 on 𝑉(𝑢, 𝑏).

Example 3. We set 𝛿 = 0.1, 𝑐 = 2, 𝜆 = 3, 𝛼 = 1, and 𝜔 = 1;
it is easy to check that the net profit condition holds; we can
discuss impact of the model parameters 𝑢 and 𝑏 on 𝑉(𝑢, 𝑏).

Tables 1 and 2 provide numerical results for 𝑉(𝑢, 𝑏). We
find that, for a fixed 𝜔, as can be expected, 𝑉(𝑢, 𝑏) increases
with 𝑢, The results obtained in Table 1 also illustrate the effect
of the bankruptcy parameter 𝜔 for 𝑉(𝑢, 𝑏). From Table 2,
we find that the expectation of the discounted dividend
payments 𝑉(𝑢, 𝑏) decreases with dividend barrier 𝑏, which
makes sense intuitively.

Figure 1 is plotted to illustrate the impact of bankruptcy
rate function 𝜔(𝑥) to dividend payments 𝑉(𝑢, 𝑏) for various
parameter choices 𝜔. Figure 2 is plotted to illustrate the
impact of dividend barrier 𝑏 to dividend payments𝑉(𝑢, 𝑏) for
various 𝑏.

3. The Probability of Bankruptcy 𝜓(𝑢, 𝑏)

3.1. Integrodifferential Equations for 𝜓(𝑢, 𝑏)

Theorem 4. The probability of bankruptcy 𝜓(𝑢, 𝑏) satisfies the
following integrodifferential equations:

𝑐𝜓
󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝜔 (𝑢)) 𝜓1 (𝑢, 𝑏) − 𝜔 (𝑢)

− 𝜆∫
0

𝑢

𝜓
1 (𝑥, 𝑏) 𝑓𝑋 (𝑥 − 𝑢) 𝑑𝑥 − 𝜆∫

𝑏

0

𝜓
2 (𝑥, 𝑏)

⋅ 𝑓
𝑋 (𝑥 − 𝑢) 𝑑𝑥 − 𝜆𝜓

2 (𝑏, 𝑏) 𝐹 (𝑏 − 𝑢) = 0, 𝑢 < 0,

(33)
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𝑐𝜓
󸀠

2
(𝑢, 𝑏) + 𝜆𝜓

2 (𝑢, 𝑏) − 𝜆∫
𝑏

𝑢

𝜓
2 (𝑥, 𝑏) 𝑓𝑋 (𝑥 − 𝑢) 𝑑𝑥

− 𝜆𝜓
2 (𝑏, 𝑏) 𝐹 (𝑏 − 𝑢) = 0, 𝑢 ≥ 0.

(34)

In addition, 𝜓
1
(𝑢, 𝑏) and 𝜓

2
(𝑢, 𝑏) satisfy

𝜓
1
(0
−
, 𝑏) = 𝜓

2
(0
+
, 𝑏) , (35)

𝜓
󸀠

2
(0
+
, 𝑏) − 𝜓

󸀠

1
(0
−
, 𝑏) =

𝜔 (0
−
)

𝑐
(𝜓
1
(0
−
, 𝑏) − 1) , (36)

lim
𝑢→−∞

𝜓
1 (𝑢, 𝑏) = 1. (37)

Proof. When 𝑢 > 𝑏, the surplus drops to level 𝑏 immediately
due to the initial payment of all dividends and thus

𝜓
2 (𝑢, 𝑏) = 𝜓

2 (𝑏, 𝑏) , 𝑢 > 𝑏. (38)

When 𝑢 < 0, by conditioning on the first occurrence time
and amount of the gain or an event of bankruptcy up to time
𝑡,

𝜓
1 (𝑢, 𝑏) = (1 − 𝜆𝑡) (1 − 𝜔 (𝑢) 𝑡) 𝜓1 (𝑢 − 𝑐𝑡, 𝑏)

+ (1 − 𝜆𝑡) 𝜔 (𝑢) 𝑡 + 𝜆𝑡 (1 − 𝜔 (𝑢) 𝑡)

⋅ [∫
−𝑢+𝑐𝑡

0

𝜓
1 (𝑢 − 𝑐𝑡 + 𝑥, 𝑏) 𝑓𝑋 (𝑥) 𝑑𝑥

+ ∫
𝑏−𝑢+𝑐𝑡

−𝑢+𝑐𝑡

𝜓
2 (𝑢 − 𝑐𝑡 + 𝑥, 𝑏) 𝑓𝑋 (𝑥) 𝑑𝑥

+∫
∞

𝑏−𝑢+𝑐𝑡

𝜓
2 (𝑏, 𝑏) 𝑓𝑋 (𝑥) 𝑑𝑥]

+ 𝑜 (𝑡) = 0.

(39)

Differentiating (39) with respect to 𝑡 and taking the limit 𝑡 →

0 we can obtain (33).
Using a similar argument, we can also derive the corre-

sponding bankruptcy probability 𝜓
2
(𝑢, 𝑏) for 0 ≤ 𝑢 < 𝑏. The

conditions (35)–(37) are also obvious.

3.2. Explicit Expressions for 𝜓(𝑢,𝑏). In this subsection, we
assume that 𝜔(𝑢) is also constant 𝜔, and the gain size follows
𝑓(𝑥) = 𝛼𝑒

−𝛼𝑥; then (33) and (34) can be rewritten as

𝑐𝜓
󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝜔)𝜓1 (𝑢, 𝑏) − 𝜔

− 𝜆∫
0

𝑢

𝜓
1 (𝑥, 𝑏) 𝛼𝑒

−𝛼𝑥
𝑒
𝛼𝑢

𝑑𝑥

− 𝜆∫
𝑏

0

𝜓
2 (𝑥, 𝑏) 𝛼𝑒

−𝛼𝑥
𝑒
𝛼𝑢

𝑑𝑥

− 𝜆𝜓
2 (𝑏, 𝑏) 𝑒

−𝛼(𝑏−𝑢)
= 0,

𝑐𝜓
󸀠

2
(𝑢, 𝑏) + 𝜆𝜓

2 (𝑢, 𝑏) − 𝜆∫
𝑏

𝑢

𝜓
2 (𝑥, 𝑏) 𝛼𝑒

−𝛼𝑥
𝑒
𝛼𝑢

𝑑𝑥

− 𝜆𝜓
2 (𝑏, 𝑏) 𝑒

−𝛼(𝑏−𝑢)
= 0.

(40)

Table 2: Influence of 𝑢 and 𝑏 on 𝑉(𝑢, 𝑏) for 𝛿 = 0.1, 𝑐 = 2, 𝜆 = 3,
𝛼 = 1, and 𝜔 = 1.

𝑢 \ 𝑏 10 11 12 13 14 15
−6 1.7969 1.6610 1.5348 1.4179 1.3097 1.2098
−5 1.9620 1.8136 1.6758 1.5481 1.4300 1.3209
−4 2.1422 1.9802 1.8297 1.6903 1.5614 1.4422
−3 2.3390 2.1621 1.9978 1.8456 1.7048 1.5747
−2 2.5539 2.3607 2.1813 2.0151 1.8614 1.7194
−1 2.7885 2.5776 2.3817 2.2002 2.0324 1.8773
0 3.0446 2.8144 2.6005 2.40230 2.2191 2.0497
1 4.4970 4.1569 3.8409 3.5483 3.2777 3.0275
2 5.5086 5.0919 4.7049 4.3465 4.0150 3.7085
3 6.3049 5.8281 5.3851 4.9749 4.5954 4.2447
4 7.0079 6.4779 5.9855 5.5295 5.1078 4.7179
5 7.6841 7.1029 6.5631 6.0631 5.6006 5.1732
6 8.3710 7.7379 7.1498 6.6051 6.1013 5.6356
7 9.0906 8.4030 7.7644 7.1728 6.6257 6.1201
8 9.8568 9.1113 8.4188 7.77740 7.1842 6.6359
9 10.6795 9.8718 9.1215 8.4266 7.7839 7.1898

Applying the operators (𝑑/𝑑𝑥 − 𝛼) to (40), they can be
rewritten as

𝑐𝜓
󸀠󸀠

1
(𝑢, 𝑏) + (𝜆 + 𝜔 − 𝑐𝛼) 𝜓

󸀠

1
(𝑢, 𝑏) − 𝜔𝛼𝜓

1 (𝑢, 𝑏) + 𝜔𝛼 = 0.

(41)

𝑐𝜓
󸀠󸀠

2
(𝑢, 𝑏) + (𝜆 − 𝑐𝛼) 𝜓

󸀠

2
(𝑢, 𝑏) = 0. (42)

We know the solution of (41) is of the form

𝜓
1 (𝑢, 𝑏) = 1 + 𝐴

󸀠

1
𝑒
−𝑟
󸀠

1
𝑢
+ 𝐵
󸀠

1
𝑒
𝑠
󸀠

1
𝑢
, (43)

where 𝐴
󸀠

1
, 𝐵
󸀠

1
are constants and −𝑟

󸀠

1
< 0, 𝑠󸀠

1
> 0 are the

solutions of the equation about 𝑅:

𝑐𝑅
2
+ (𝜆 + 𝜔 − 𝑐𝛼) 𝑅 − 𝜔𝛼 = 0. (44)

From lim
𝑢→−∞

𝜓
1
(𝑢, 𝑏) = 1, 𝐴󸀠

1
= 0 is obvious.

For 𝑢 ≥ 0, we obtain the solution of (42) which is of the
form

𝜓
2 (𝑢, 𝑏) = 𝐴

󸀠󸀠

1
𝑒
(𝛼−(𝜆/𝑐))𝑢

+ 𝐵
󸀠󸀠

1
. (45)

When 𝑢 → ∞, we have 𝜓
2
(𝑢, 𝑏) → 0. As 𝜆/𝛼 − 𝑐 > 0, that

is, 𝛼 − 𝜆/𝛼 < 0, so 𝐵
󸀠󸀠

1
= 0 is obvious. Then

𝜓
2 (𝑢, 𝑏) = 𝐴

󸀠󸀠

1
𝑒
(𝛼−𝜆/𝛼)𝑢

. (46)

Similar to deriving 𝑉(𝑢, 𝑏), we have that the conditions
(35) and (36) for 𝜓(𝑢, 𝑏) give that

1 + 𝐵
󸀠

1
= 𝐴
󸀠󸀠

1
, 𝐴

󸀠󸀠

1
(𝛼 −

𝜆

𝑐
) − 𝐵

󸀠

1
𝑠
󸀠

1
=

𝜔

𝑐
𝐵
󸀠

1
. (47)

We have

𝐴
󸀠󸀠

1
=

𝑐𝑠
󸀠

1
+ 𝜔

𝑐𝑠󸀠
1
+ 𝜔 − 𝑐𝛼 + 𝜆

, 𝐵
󸀠

1
=

𝑐𝛼 − 𝜆

𝑐𝑠󸀠
1
+ 𝜔 − 𝑐𝛼 + 𝜆

. (48)
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Figure 1: The expected sum of discounted dividend 𝑉(𝑢, 𝑏) when
𝑏 = 10.
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Figure 2: The expected sum of discounted dividend 𝑉(𝑢, 𝑏) when
𝜔 = 1.

So

𝜓
1 (𝑢, 𝑏) = 1 +

𝑐𝛼 − 𝜆

𝑐𝑠󸀠
1
+ 𝜔 − 𝑐𝛼 + 𝜆

𝑒
𝑠
󸀠

1
𝑢
,

𝜓
2 (𝑢, 𝑏) =

𝑐𝑠
󸀠

1
+ 𝜔

𝑐𝑠󸀠
1
+ 𝜔 − 𝑐𝛼 + 𝜆

𝑒
(𝛼−𝜆/𝛼)𝑢

.

(49)

Example 5. We can perform analysis for the probability of
bankruptcy𝜓(𝑢, 𝑏); againwe choose 𝛿 = 0.1, 𝑐 = 2, 𝜆 = 3, 𝛼 =

1, and 𝑏 = 10.

In Table 3 we find that, for a given 𝑢, the probability
of bankruptcy 𝜓(𝑢, 𝑏) increases with 𝑢. And it also can be
expected, as a large value of bankruptcy rate 𝜔 implies the
large bankruptcy probability 𝜓(𝑢, 𝑏).

Table 3: Influence of 𝑢 and 𝜔 on 𝜓(𝑢, 𝑏) for 𝛿 = 0.1, 𝑐 = 2, 𝜆 = 3,
𝛼 = 1, and 𝑏 = 10.

𝑢 \ 𝜔 1 2 3 4 5 6
−6 0.9593 0.9876 0.9941 0.9965 0.9977 0.9983
−5 0.9413 0.9795 0.9894 0.9934 0.9955 0.9966
−4 0.9153 0.9662 0.9811 0.9876 0.9910 0.9931
−3 0.8779 0.9442 0.9661 0.9765 0.9823 0.9860
−2 0.8240 0.9080 0.9394 0.9555 0.9651 0.9714
−1 0.7462 0.8484 0.8917 0.9158 0.9311 0.9418
0 0.6340 0.7500 0.8063 0.8406 0.8641 0.8813
1 0.3845 0.4549 0.4890 0.5099 0.5241 0.5345
2 0.2332 0.2759 0.2966 0.3092 0.3179 0.3242
3 0.1415 0.1673 0.1799 0.1876 0.1928 0.1966
4 0.0858 0.1015 0.1091 0.1138 0.1169 0.1193
5 0.0520 0.0616 0.0662 0.0690 0.0709 0.0723
6 0.0316 0.0373 0.0401 0.0418 0.0430 0.0439
7 0.0191 0.0226 0.0243 0.0254 0.0261 0.0266
8 0.0116 0.0137 0.0148 0.0154 0.0158 0.0161
9 0.0070 0.0083 0.0090 0.0093 0.0096 0.0098
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Figure 3: The bankruptcy probability 𝜓(𝑢, 𝑏) when 𝑏 = 10.

Figure 3 was produced by the explicit expression in (49);
it is plotted to illustrate the impact of 𝜔 and 𝑢 on bankruptcy
probability 𝜓(𝑢, 𝑏).
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