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We prove that there exists a unique 𝐿0-linear modulus for an a.s. bounded random linear operator on a specifical random normed
module, which generalizes the classical case.

1. Introduction

In 1964, Chacon and Krengel began to study linear modulus
of a linear operator and proved that there exists a unique
linear modulus for a bounded linear operator [1], which plays
an important role in the work of mean ergodicity for linear
operators and linear operators semigroups [2–5]. Recently,
the mean ergodicity for random linear operators has been
investigated in [6–8], and its further developments should
naturally include the study of 𝐿0-linear modulus of a random
linear operator on a random normed module. The purpose
of this paper is to investigate the existence of the 𝐿0-linear
modulus for an a.s. bounded random linear operator on a
specifical random normed module.

The notion of random normed modules (briefly, RN
modules), which was first introduced in [9] and subsequently
elaborated in [10], is a random generalization of ordinary
normed spaces. In the last ten years the theory of RNmodules
together with their random conjugate spaces has obtained
systematic and deep developments [11–17]; in particular, the
recently developed 𝐿0-convex analysis, which has been a
powerful tool for the study of conditional risk measures, is
just based on the theory of RN modules together with their
random conjugate spaces [12, 17–20]. One of the key points in
the process of applying the theory of RN modules to random
analysis and the theory of conditional risk measures is to
properly construct the two classes of RN modules 𝐿0(E, 𝑋)
and 𝐿𝑝

F
(E), where 𝐿0(E, 𝑋) is the RNmodule of equivalence

classes of𝑋-valued random variables defined on a probability
space (Ω,E, 𝑃) and 𝐿𝑝

F
(E) is the 𝐿0(F, 𝑅)-module generated

by 𝐿𝑝(E); see [17], for the construction of 𝐿0(E, 𝑋). In partic-
ular, 𝐿𝑝

F
(E) constructed in [18] will be used in this paper and

thus we give the details of its construction as follows.
Let (Ω,E, 𝑃) be a probability space, F a sub 𝜎-algebra

of E, and 𝐿0(E) (or 𝐿0(E)) the set of equivalence classes
of E-measurable extended real-valued (real-valued) random
variables on Ω. Let 𝐿0

+
(E) = {𝜉 ∈ 𝐿

0

(E) | 𝜉 ≥ 0} and
𝐿
0

+
(E) = {𝜉 ∈ 𝐿0(E) | 𝜉 ≥ 0}. Similarly, one can understand

such notations as 𝐿0(F), 𝐿0(F), 𝐿0
+
(F), and 𝐿0

+
(F). Define

the mapping ||| ⋅ |||
𝑝
: 𝐿
0

(E) → 𝐿
0

+
(F) by

|||𝑥|||𝑝 = [𝐸 (|𝑥|
𝑝
| F)]
1/𝑝 (1)

for any 𝑥 ∈ 𝐿0(E) and 1 ≤ 𝑝 < ∞, where 𝐸(|𝑥|𝑝 | F) =
lim
𝑛→∞

𝐸(|𝑥|
𝑝
∧ 𝑛 | F) denotes the extended conditional

expectation and let

𝐿
𝑝

F (
E) = {𝑥 ∈ 𝐿

0
(E) | |||𝑥|||𝑝 ∈ 𝐿

0

+
(F)} . (2)

Then, (𝐿𝑝
F
(E), ||| ⋅ |||

𝑝
) is an RN module. In fact, 𝐿𝑝

F
(E)

is exactly the 𝐿0(F)-module generated by 𝐿𝑝(E), namely,
𝐿
𝑝

F
(E) = 𝐿0(F) ⋅ 𝐿𝑝(E) := {𝜉𝑥 | 𝜉 ∈ 𝐿0(F) and 𝑥 ∈ 𝐿𝑝(E)},

where 𝐿𝑝(E) = {𝑥 ∈ 𝐿0(E) | 𝐸[|𝑥|𝑝] < ∞}.
The remainder of this paper is organized as follows: in

Section 2 we briefly recall some necessary notions and facts
and in Section 3 we present and prove our main results.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 183197, 4 pages
http://dx.doi.org/10.1155/2014/183197

http://dx.doi.org/10.1155/2014/183197


2 Abstract and Applied Analysis

2. Preliminaries

In the sequel of this paper, (Ω,F, 𝑃) denotes a given pro-
bability space, 𝐾 the scalar field 𝑅 of real numbers or 𝐶
of complex numbers, 𝑁 the set of positive integers, and
𝐿
0
(F, 𝐾) the algebra over 𝐾 of equivalence classes of 𝐾-

valuedF-measurable random variables onΩ under the ordi-
nary scalar multiplication, addition, andmultiplication oper-
ations on equivalence classes.

Proposition 1 (see [21]). 𝐿0(F, 𝑅) is a complete lattice under
the ordering ≤ : 𝜉 ≤ 𝜂 if and only if 𝜉0(𝜔) ≤ 𝜂0(𝜔), for𝑃-almost
all 𝜔 inΩ (briefly, a.s.), where 𝜉0 and 𝜂0 are arbitrarily chosen
representatives of 𝜉 and 𝜂, respectively, and has the following
nice properties.

(1) Every subset 𝐴 of 𝐿0(F, 𝑅) has a supremum (denoted
by ⋁𝐴) and an infimum (denoted by ⋀𝐴) and there exist two
sequences {𝑎

𝑛
, 𝑛 ∈ 𝑁} and {𝑏

𝑛
, 𝑛 ∈ 𝑁} in𝐴 such that⋁

𝑛≥1
𝑎
𝑛
=

⋁𝐴 and⋀
𝑛≥1
𝑏
𝑛
= ⋀𝐴.

(2) If 𝐴 is directed (dually directed), namely, for any two
elements 𝑐

1
and 𝑐
2
in 𝐴, there exists some 𝑐

3
in 𝐴 such that

𝑐
1
⋁𝑐
2
≤ 𝑐
3
(𝑐
1
⋁𝑐
2
≥ 𝑐
3
); then the above {𝑎

𝑛
, 𝑛 ∈ 𝑁} ({𝑏

𝑛
, 𝑛 ∈

𝑁}) can be chosen as nondecreasing (nonincreasing).
(3) 𝐿0(F, 𝑅), as a sublattice of 𝐿0(F, 𝑅), is complete in the

sense that every subset with an upper bound (a lower bound)
has a supremum (an infimum).

Let 𝜉 and 𝜂 be two elements in 𝐿0(F, 𝑅); then 𝜉 < 𝜂 is
understood as usual, namely, 𝜉 ≤ 𝜂 and 𝜉 ̸= 𝜂. For 𝐴 ∈ F,
𝜉 > 𝜂 on𝐴means 𝜉0(𝜔) > 𝜂0(𝜔) 𝑃-a.s. on𝐴, where 𝜉0 and 𝜂0
are arbitrarily chosen representatives of 𝜉 and 𝜂, respectively.
Specially, we denote 𝐿0

+
(F) = {𝜉 ∈ 𝐿0(F, 𝑅) | 𝜉 ≥ 0} and

𝐿
0

++
(F) = {𝜉 ∈ 𝐿0(F, 𝑅) | 𝜉 > 0 onΩ}.

Definition 2 (see [10, 17]). An ordered pair (𝑆, ‖ ⋅ ‖) is called a
randomnormedmodule (briefly, an RNmodule) over𝐾with
base (Ω,F, 𝑃) if 𝑆 is a left module over the algebra 𝐿0(F, 𝐾)
and ‖ ⋅ ‖ is a mapping from 𝑆 to 𝐿0

+
(F) such that the following

three axioms are satisfied:
(1) ‖𝑥‖ = 0 if and only if 𝑥 = 𝜃 (the null vector of 𝑆);
(2) ‖𝜉𝑥‖ = |𝜉|‖𝑥‖, for all 𝜉 ∈ 𝐿0(F, 𝐾) and 𝑥 ∈ 𝑆;
(3) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, for all 𝑥, 𝑦 ∈ 𝑆.

Cleary, (𝐿0(F, 𝐾), | ⋅ |) is an RNmodule over𝐾 with base
(Ω,F, 𝑃).

Let (𝑆, ‖ ⋅ ‖) be an RNmodule over𝐾with base (Ω,F, 𝑃).
For any 𝜀 > 0, 0 < 𝜆 < 1, denote 𝑁

𝜃
(𝜀, 𝜆) = {𝑥 ∈ 𝑆 |

𝑃{𝜔 ∈ Ω | ‖𝑥‖(𝜔) < 𝜀} > 1 − 𝜆}; then U
𝜃
= {𝑁
𝜃
(𝜀, 𝜆) |

𝜀 > 0, 0 < 𝜆 < 1} is a local base at 𝜃 of some Hausdorff
linear topology, called the (𝜀, 𝜆)-topology induced by ‖ ⋅ ‖. In
this paper, given an RN module (𝑆, ‖ ⋅ ‖) over 𝐾 with base
(Ω,F, 𝑃), it is always assumed that (𝑆, ‖ ⋅ ‖) is endowed with
the (𝜀, 𝜆)-topology. In this paper, it suffices to notice that the
(𝜀, 𝜆)-topology for anRNmodule (𝑆, ‖⋅‖) is ametrizable linear
topology and a sequence {𝑥

𝑛
, 𝑛 ∈ 𝑁} in 𝑆 converges in the

(𝜀, 𝜆)-topology to some 𝑥 ∈ 𝑆 if and only if {‖𝑥
𝑛
− 𝑥‖, 𝑛 ∈ 𝑁}

converges in probability 𝑃 to 0. It should be pointed out that

the (𝜀, 𝜆)-topology for (𝐿0(F, 𝐾), | ⋅ |) is exactly the topology
of convergence in probability.

Example 3. Let 𝑋 be a normed space over 𝐾 and 𝐿0(F, 𝑋)
the linear space of equivalence classes of𝑋-valuedF-random
variables on Ω. The module multiplication operation ⋅ :
𝐿
0
(F, 𝐾) × 𝐿0(F, 𝑋) → 𝐿

0
(F, 𝑋) is defined by 𝜉 ⋅ 𝑥 = the

equivalence class of 𝜉0𝑥0, where 𝜉0 and 𝑥0 are the respective
arbitrarily chosen representatives of 𝜉 ∈ 𝐿0(F, 𝐾) and 𝑥 ∈
𝐿
0
(F, 𝑋), and (𝜉0𝑥0)(𝜔) = 𝜉

0
(𝜔)𝑥
0
(𝜔), for all 𝜔 ∈ Ω.

Furthermore, the mapping ‖ ⋅ ‖ : 𝐿0(F, 𝑋) → 𝐿
0

+
(F) by ‖𝑥‖

= the equivalence class of ‖𝑥0‖, for all 𝑥 ∈ 𝐿0(F, 𝑋), where
𝑥
0 is as above. Then it is easy to see that (𝐿0(F, 𝑋), ‖ ⋅ ‖) is an

RN module over 𝐾 with base (Ω,F, 𝑃).

Definition 4 (see [22]). Let (𝑆1, ‖ ⋅ ‖
1
) and (𝑆2, ‖ ⋅ ‖

2
) be two

RN modules over𝐾 with base (Ω,F, 𝑃). A linear operator 𝑇
from 𝑆1 to 𝑆2 is called a random linear operator; further, the
random linear operator 𝑇 is called a.s. bounded if there exists
some 𝜉 ∈ 𝐿0

+
(F) such that ‖𝑇𝑥‖

2
≤ 𝜉 ⋅ ‖𝑥‖

1
for any 𝑥 ∈ 𝑆1.

Denote by 𝐵(𝑆1, 𝑆2) the linear space of a.s. bounded random
linear operators from 𝑆

1 to 𝑆2; define ‖ ⋅ ‖ : 𝐵(𝑆1, 𝑆2) →
𝐿
0

+
(F) by ‖𝑇‖ := ⋀{𝜉 ∈ 𝐿0

+
(F) | ‖𝑇𝑥‖

2
≤ 𝜉 ⋅ ‖𝑥‖

1
, for

all 𝑥 ∈ 𝑆1} for any 𝑇 ∈ 𝐵(𝑆1, 𝑆2); then it is easy to see that
(𝐵(𝑆
1
, 𝑆
2
), ‖ ⋅ ‖) is an RNmodule over𝐾 with base (Ω,F, 𝑃).

Proposition 5 (see [22]). Let (𝑆1, ‖ ⋅ ‖
1
) and (𝑆2, ‖ ⋅ ‖

2
) be two

RN modules over 𝐾 with base (Ω,F, 𝑃). Then, we have the
following statements:

(1) 𝑇 ∈ 𝐵(𝑆1, 𝑆2) if and only if 𝑇 is a continuous module
homomorphism;

(2) if 𝑇 ∈ 𝐵(𝑆1, 𝑆2), then ‖𝑇‖ = ⋁{‖𝑇𝑥‖
2
| 𝑥 ∈ 𝑆

1 and
‖𝑥‖
1
≤ 1}, where denotes the identity element in𝐿0(F).

3. Main Results and Proofs

The main result of this paper is Theorem 7, which will be
derived from Lemma 6.

Let 𝑆
𝜀
be the class of simple E-measurable functions and

𝐿
1

F(E)+ = {𝜉 ∈ 𝐿
1

F(E) | 𝜉 ≥ 0}; then Lemma 6 holds.

Lemma 6. 𝐿0(F)(𝑆
𝜀
∩ 𝐿
1

+
(E)) is dense in 𝐿1F(E)+.

Proof. For any 𝑓 ∈ 𝐿1F(E)+, there exist 𝜉 ∈ 𝐿
0
(F) and 𝑔 ∈

𝐿
1
(E) such that

𝑓 = 𝜉 ⋅ 𝑔 = 𝐼
[𝜉>0]∩[𝑔>0]

⋅ 𝜉 ⋅ 𝑔

+ 𝐼
[𝜉<0]∩[𝑔<0]

⋅ 𝜉 ⋅ 𝑔.

(3)

Clearly, 𝐼
[𝑔>0]

⋅𝑔 ∈ 𝐿
1

+
(E); thus there exists a sequence {𝑔

𝑛
, 𝑛 ∈

𝑁} ⊂ 𝑆
𝜀
∩ 𝐿
1

+
(E) such that

𝑔
𝑛
↗ 𝐼
[𝑔>0]

⋅ 𝑔 a.s. on Ω (4)
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as 𝑛 → ∞; that is, 𝐼
[𝑔>0]

⋅ 𝑔 − 𝑔
𝑛
↘ 0 a.s. on Ω as 𝑛 → ∞.

Since 𝐼
[𝜉>0]

⋅ 𝜉 ∈ 𝐿
0
(F), it follows that

𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝐼
[𝜉>0]∩[𝑔>0]

⋅ 𝜉 ⋅ 𝑔 − 𝐼
[𝜉>0]

⋅ 𝜉 ⋅ 𝑔
𝑛

󵄨󵄨󵄨󵄨󵄨
| F]

= 𝐼
[𝜉>0]

⋅ 𝜉 ⋅ 𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝐼
[𝑔>0]

⋅ 𝑔 − 𝑔
𝑛

󵄨󵄨󵄨󵄨󵄨
| F] .

(5)

Furthermore, since 𝐸[𝐼
[𝑔>0]

⋅ 𝑔 − 𝑔
1
] < ∞, it follows that

𝐸[|𝐼
[𝑔>0]

⋅ 𝑔 − 𝑔
𝑛
| | F] converges to 0 a.s. on Ω as 𝑛 → ∞.

Hence,𝐸[|𝐼
[𝑔>0]

⋅𝑔−𝑔
𝑛
| | F] converges to 0 in probability𝑃 as

𝑛 → ∞. Consequently, |||𝐼
[𝜉>0]∩[𝑔>0]

⋅ 𝜉 ⋅ 𝑔 − 𝐼
[𝜉>0]

⋅ 𝜉 ⋅ 𝑔
𝑛
|||
1

converges to 0 in the (𝜀, 𝜆)-topology as 𝑛 → ∞.
Next, observe that 𝐼

[𝜉<0]∩[𝑔<0]
⋅ 𝜉 ⋅ 𝑔 = 𝐼

[−𝜉>0]∩[−𝑔>0]
⋅ (−𝜉) ⋅

(−𝑔); it follows from the above discussion that there exists a
sequence {ℎ

𝑛
, 𝑛 ∈ 𝑁} ⊂ 𝑆

𝜀
∩ 𝐿
1

+
(E) such that 𝐼

[−𝜉>0]
⋅ (−𝜉) ⋅ ℎ

𝑛

converges to 𝐼
[−𝜉>0]∩[−𝑔>0]

⋅ (−𝜉) ⋅ (−𝑔) in the (𝜀, 𝜆)-topology
induced by ||| ⋅ |||

1
as 𝑛 → ∞.

Let

𝑓
𝑛
= 𝐼
[𝜉>0]

⋅ 𝜉 ⋅ 𝑔
𝑛
+ 𝐼
[−𝜉>0]

⋅ (−𝜉) ⋅ ℎ
𝑛
. (6)

Then,

𝑓
𝑛
= [𝐼
[𝜉>0]

⋅ 𝜉 + 𝐼
[−𝜉>0]

⋅ (−𝜉)]

× (𝐼
[𝜉>0]

⋅ 𝑔
𝑛
+ 𝐼
[−𝜉>0]

⋅ ℎ
𝑛
) ∈ 𝐿
0
(F) (𝑆

𝜀
∩ 𝐿
1

+
(E))

(7)

and 𝑓
𝑛
converges to 𝑓 in the (𝜀, 𝜆)-topology induced by

||| ⋅ |||
1
as 𝑛 → ∞, which shows that 𝐿0(F)(𝑆

𝜀
∩ 𝐿
1

+
(E)) is

dense in 𝐿1F(E)+.

Now we can present and prove the main result below.

Theorem 7. Let 𝑇 be an a.s. bounded random linear operator
on 𝐿1F(E). Then there exists a unique positive a.s. bounded
random linear operator T on 𝐿1F(E), called the 𝐿0-linear
modulus of 𝑇, such that

(1) |||T|||
1
≤ |||𝑇|||

1
,

(2) |𝑇𝑓| ≤ T|𝑓| for any 𝑓 ∈ 𝐿1F(E),

(3) T𝑓 = ⋁{|𝑇𝑔| | 𝑔 ∈ 𝐿1F(E) and |𝑔| ≤ 𝑓} for any
𝑓 ∈ 𝐿

1

F(E)+.

Proof. Let P denote the family of all finite measurable
partitions of Ω to E; that is, for any 𝐷 ∈ P, there exists
𝐷
𝑖
∈ E (𝑖 = 1, 2, . . . , 𝑘(𝐷)) such that ∑𝑘(𝐷)

𝑖=1
𝐷
𝑖
= Ω, where

𝑘(𝐷) is a finite number with respect to𝐷. It is known thatP
is partially ordered in the usual way:𝐷 ≤ 𝐷󸀠 inPmeans that
𝐷
󸀠 is a refinement of 𝐷; that is, the sets 𝐷

𝑖
are unions of sets

of𝐷󸀠. For any 𝑓 ∈ 𝐿1F(E)+, define

𝑄 (𝐷, 𝑇, 𝑓) =

𝑘(𝐷)

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐼
𝐷𝑖
⋅ 𝑓)
󵄨󵄨󵄨󵄨󵄨
. (8)

Then, for any fixed 𝑓, 𝑄(𝐷, 𝑇, 𝑓) is monotone increasing on
P. Furthermore,

𝐸 [
󵄨󵄨󵄨󵄨𝑄 (𝐷, 𝑇, 𝑓)

󵄨󵄨󵄨󵄨⋀𝑛 | F]

= 𝐸[(

𝑘(𝐷)

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐼
𝐷𝑖
⋅ 𝑓)
󵄨󵄨󵄨󵄨󵄨
)⋀𝑛 | F]

= 𝐸[

𝑘(𝐷)

∑

𝑖=1

(
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐼
𝐷𝑖
⋅ 𝑓)
󵄨󵄨󵄨󵄨󵄨
⋀𝑛) | F]

=

𝑘(𝐷)

∑

𝑖=1

𝐸[
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐼
𝐷𝑖
⋅ 𝑓)
󵄨󵄨󵄨󵄨󵄨
⋀𝑛 | F] ,

(9)

letting 𝑛 → ∞ in (9), yields that

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑄 (𝐷, 𝑇, 𝑓)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1
=

𝑘(𝐷)

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑇(𝐼
𝐷𝑖
⋅ 𝑓)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨1
. (10)

Observe that

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1
= lim
𝑛→∞

𝐸[
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨⋀𝑛 | F]

= lim
𝑛→∞

𝐸[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘(𝐷)

∑

𝑖=1

(𝐼
𝐷𝑖
⋅ 𝑓)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋀𝑛 | F]

=

𝑘(𝐷)

∑

𝑖=1

lim
𝑛→∞

𝐸[
󵄨󵄨󵄨󵄨󵄨
𝐼
𝐷𝑖
⋅ 𝑓
󵄨󵄨󵄨󵄨󵄨
⋀𝑛 | F]

=

𝑘(𝐷)

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐼
𝐷𝑖
⋅ 𝑓
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨1
.

(11)

Combining (10) and (11), we have

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑄 (𝐷, 𝑇, 𝑓)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1
≤

𝑘(𝐷)

∑

𝑖=1

|||𝑇|||1 ⋅
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐼
𝐷𝑖
⋅ 𝑓
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨1

= |||𝑇|||1 ⋅
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1
,

(12)

which shows that the net {𝑄(𝐷, 𝑇, 𝑓), 𝐷 ∈ P} is not only
monotone increasing on P but also 𝐿0-norm bounded with
respect to ||| ⋅ |||

1
. Thus, we can defineT by

T𝑓 = ⋁{𝑄 (𝐷, 𝑇, 𝑓) , 𝐷 ∈ P} ∈ 𝐿
1

F(E)+. (13)

Then, T is a positive a.s bounded random linear operator
according to Lemma 6 and from inequality (12) we get
|||T|||

1
≤ |||𝑇|||

1
.

For any 𝑓 ∈ 𝐿1F(E)+, let

𝐿𝑓 = ⋁{
󵄨󵄨󵄨󵄨𝑇𝑔
󵄨󵄨󵄨󵄨 | 𝑔 ∈ 𝐿

1

F (E) ,
󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 ≤ 𝑓} . (14)

For any 𝑔 ∈ 𝐿0(F)(𝑆
𝜀
∩ 𝐿
1
(E)) and |𝑔| ≤ 𝑓, it is clear that

|𝑇𝑔| ≤ T|𝑔|, and further observe thatT|𝑔| ≤ T𝑓 sinceT is
positive. Consequently,

󵄨󵄨󵄨󵄨𝑇𝑔
󵄨󵄨󵄨󵄨 ≤ T

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 ≤ T𝑓, (15)
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which shows that

𝐿𝑓 ≤ T𝑓 (16)

holds. If the converse inequality of (16) does not hold, then
there exists an 𝑓 ∈ 𝐿

1

F(E)+, a 𝐷 ∈ P, an 𝐴
0
∈ E with

𝑃(𝐴
0
) > 0, and an 𝜀 > 0 such that

𝑄 (𝐷, 𝑇, 𝑓) ≥ 𝐿𝑓 + 𝜀 on 𝐴
0
. (17)

Now there exists a set 𝐴
1
⊂ 𝐴
0
with 𝑃(𝐴

1
) > 0 and a

𝜉
1
∈ 𝐿
0
(E, 𝐶) with |𝜉

1
| = 𝐼
𝐴1
such that

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝜉
1
⋅ 𝐼
𝐷1
⋅ 𝑓) −

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐼
𝐷1
⋅ 𝑓)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
<

𝜀

2𝑘 (𝐷)
(18)

on𝐴
1
. Continuing in this way we find𝐴

0
⊃ 𝐴
1
⊃ 𝐴
2
⊃ ⋅ ⋅ ⋅ ⊃

𝐴
𝑘(𝐷)

with 𝑃(𝐴
𝑘(𝐷)
) > 0 and 𝜉

𝑖
∈ 𝐿
0
(E, 𝐶) with |𝜉

𝑖
| = 𝐼
𝐴𝑖

(𝑖 = 1, 2, . . . , 𝑘(𝐷)) such that
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝜉
𝑖
⋅ 𝐼
𝐷𝑖
⋅ 𝑓) −

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐼
𝐷𝑖
⋅ 𝑓)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
<

𝜀

2𝑘 (𝐷)
(19)

on 𝐴
𝑖
. Setting 𝑔 = ∑𝑘(𝐷)

𝑖=1
𝜉
𝑖
⋅ 𝐼
𝐷𝑖
⋅ 𝑓 we have |𝑔| ≤ |𝑓| and this

leads to a contradiction with inequality (17) on 𝐴
𝑘(𝐷)

.
This completes the proof.

If we put F = {Ω,Φ}, then the following classical result
holds.

Corollary 8 (see [1]). Let 𝑇 be a bounded linear operator
on 𝐿1(E). Then, there exists a unique positive bounded linear
operatorT on 𝐿1(E), called the linear modulus of 𝑇, such that

(1) ‖T‖
1
≤ ‖𝑇‖

1
,

(2) |𝑇𝑓| ≤ T|𝑓| for any 𝑓 ∈ 𝐿1(E),
(3) T𝑓 = ⋁{|𝑇𝑔| | 𝑔 ∈ 𝐿1(E) and |𝑔| ≤ 𝑓} for any
𝑓 ∈ 𝐿

1

+
(E).
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