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We study some nonlinear gossip algorithms for wireless sensor networks. Firstly, two types of nonlinear single gossip algorithms are
proposed. By using Lyapunov theory, Lagrange mean value theorem, and stochastic Lasalle’s invariance principle, we prove that the
nonlinear single gossip algorithms can converge to the average of initial states with probability one. Secondly, two types of nonlinear
multigossip algorithms are also presented and the convergence is proved by the samemethods. Finally, computer simulation is also
given to show the validity of the theoretical results.

1. Introduction

Wireless sensor networks that are composed of a large num-
ber of unreliable cheap sensors have drawn much attention
from academia to industry in the past decade [1].The sensors
are deployed for the purpose of monitoring and sensing their
environment over time, communicating with each other over
awireless network, and processing information that they have
exchanged with each other [2]. Clearly, the primary purpose
of such networks is to collect and process the sensed informa-
tion by sensors rather than provide efficient communication
[3]. Robustness, scalability, power consumption, memory
resources, and computation ability are the main constraints
of such networks. These constraints naturally lead to gossip
algorithms. Gossiping is a distributed computation, where a
node exchanges and updates information at each time atmost
with one of its neighbors according to some rules [4]. Gossip
algorithms are canonical algorithmic architectural solutions
to wireless sensor networks [2], whose purposes are to make
all the sensors achieve agreement [5–7] or synchronization
[8–11].

Recently, there emerge lots of studies on gossip algo-
rithms in the field of wireless communication [10, 12–14]
and of control systems [15–18]. In wireless sensor networks,
gossip algorithms are used to solve many practical problems
including distributed average, distributed estimation, source

localization, and data compression [10]. These traditional
gossip algorithms reach agreement by exchanging informa-
tionwith neighbor and averaging the exchanged information.
Averaging the exchanged information can be seen as a case
of liner process. However, under many practical conditions,
the processing ability of sensor is nonlinear. Gossip algorithm
can be viewed as a form of consensus protocol, but it differs
from generic consensus protocol greatly [19–22]. The goal
of consensus is to agree on the value of some quantity
whereas the goal of gossiping is to compute the average of the
initial values of net nodes [4]. Though nonlinear consensus
algorithms have been widely investigated [23, 24], to the
best of our knowledge, few studies focus on nonlinear gossip
algorithm. The present study tries to address this question
and proposes some novel nonlinear gossip algorithms to do
the exchanged information. Two types of nonlinear single
gossip algorithms and nonlinear multigossip algorithms are
presented for wireless sensor networks. By using Lyapunov
theory, Lagrangemean value theorem, and stochastic Lasalle’s
invariance principle, we prove that the proposed algorithms
converge to the average of the initial states with probability
one.

The remainder of this paper is organized as follows.
In Section 2, we review some concepts on graph theory
and introduce the linear gossip algorithm. Nonlinear gossip
algorithm is presented in Section 3. We propose two types of
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nonlinear single gossip algorithm and nonlinear multigossip
algorithm and prove their convergence properties. Section 4
gives the computer simulation to show the validity of the
theoretical results. Section 5 offers our concluding remarks
and the possible research line in the future.

Notation. Let 1
𝑁
be the 𝑁 dimension column vector of all

ones, I
𝑁
= {1, 2, . . . , 𝑁}

𝑇, 𝑥(𝑛) = {𝑥
1
(𝑛), 𝑥
2
(𝑛), . . . , 𝑥

𝑁
(𝑛)}
𝑇.

The superscript “𝑇” stands for matrix transposition. 𝐸(⋅)
denotes the expectation of stochastic variable. 𝐼

𝑁
/𝐼
𝑚
= {𝑚 +

1, . . . , 𝑁}. w.p.1 is the shortened form of with probability one.

2. Preliminaries

Suppose there is a connected wireless sensor network which
consists of 𝑁 sensors distributed randomly in an area. We
describe this wireless sensor network by a unidirectional
graph 𝐺 = (𝑉, 𝐸, 𝐴), where 𝑉 = {1, 2, . . . , 𝑁} is the vertex set
with each element denoting a sensor. Let𝐸 ⊂ 𝑉×𝑉 denote the
set of links along which node pairs can communicate. 𝐴 =

[𝑎
𝑖𝑗
] is the adjacency matrix. If sensor 𝑖 can communicate

with sensor 𝑗, 𝑎
𝑖𝑗
= 1; otherwise, 𝑎

𝑖𝑗
= 0. For the purpose

of simplicity, we assume that the network graph is connected
and unchanged over time in terms of 𝑉 and 𝐸.

The gossip algorithm can be described as the following:
without loss of generality, we assume in discrete time slot
(𝑛, 𝑛 + 1] that node 𝑖 can gossip with one of its neighbors 𝑗.
First, node 𝑖 sends its current information 𝑥

𝑖
(𝑛), called gossip

variable, to node 𝑗. After it received this information, node
𝑗 sends its own current gossip variable 𝑥

𝑗
(𝑛) to node 𝑖. Then

node 𝑖 and node 𝑗 set their gossip variables by some rules at
discrete time 𝑛 + 1, respectively. The gossip variables of the
rest nodes remain unchanged, as showed by

𝑥
𝑖 (𝑛 + 1) = 𝑥𝑖 (𝑛) + 𝑓 (𝑥𝑗 (𝑛) , 𝑥𝑖 (𝑛)) ,

𝑥
𝑗 (𝑛 + 1) = 𝑥𝑗 (𝑛) + 𝑓 (𝑥𝑖 (𝑛) , 𝑥𝑗 (𝑛)) ,

𝑥
𝑘 (𝑛 + 1) = 𝑥𝑘 (𝑛) , 𝑘 ∈

𝐼
𝑁

{𝑖, 𝑗}
,

(1)

where 𝑓(𝑥
𝑗
(𝑛), 𝑥
𝑖
(𝑛)) is a function on gossip variables 𝑥

𝑖
(𝑛)

and (or) 𝑥
𝑗
(𝑛). We call 𝑓(𝑥

𝑗
(𝑛), 𝑥
𝑖
(𝑛)) gossip function, which

indicates the change introduced by the cooperation of node 𝑗
to node 𝑖. When the gossip function is a linear function, for
instance,𝑓(𝑥

𝑗
(𝑛), 𝑥
𝑖
(𝑛)) = 𝛽𝑥

𝑗
(𝑛)−𝛼𝑥

𝑖
(𝑛), where𝛼, 𝛽 ∈ (0, 1)

are constant, (1) becomes

𝑥
𝑖 (𝑛 + 1) = (1 − 𝛼) 𝑥𝑖 (𝑛) + 𝛽𝑥𝑗 (𝑛) ,

𝑥
𝑗 (𝑛 + 1) = (1 − 𝛼) 𝑥𝑗 (𝑛) + 𝛽𝑥𝑖 (𝑛) ,

𝑥
𝑘 (𝑛 + 1) = 𝑥𝑘 (𝑛) , 𝑘 ∈

𝐼
𝑁

{𝑖, 𝑗}
.

(2)

This is the traditional gossip algorithm, which is called
linear gossip algorithm. Specially, if 𝛼 = 𝛽 = 1/2, this linear
gossip algorithm is average gossip algorithm [4]. The gossip
process repeats between each pair of nodes; then finally all the

sensors will have the same value as the average of their initial
information, which is showed as

lim
𝑛→∞

𝑥
1 (𝑛) = lim

𝑛→∞
𝑥
2 (𝑛)

= ⋅ ⋅ ⋅ = lim
𝑛→∞

𝑥
𝑁 (𝑛) =

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (0) .

(3)

The proof of conclusion (3) can be found in [22].

3. Nonlinear Gossip Algorithms

In gossip algorithms, different gossip functions denote differ-
ent gossip rules. If𝑓(⋅) is a nonlinear function, then the gossip
algorithm is nonlinear. We call this algorithm nonlinear
gossip algorithm. Two types of nonlinear gossip algorithms
are presented for single gossip algorithm and multigossip
algorithm, respectively.Wewill give a brief statement on these
two types of nonlinear gossip algorithms and deliberate their
convergence properties.

3.1. Nonlinear Gossip Algorithms Type-1. In this subsection,
we consider the following nonlinear gossip algorithm:

𝑥
𝑖 (𝑛 + 1) = 𝑥𝑖 (𝑛) + 𝑓 (𝑥𝑗 (𝑛) − 𝑥𝑖 (𝑛)) ,

𝑥
𝑗 (𝑛 + 1) = 𝑥𝑗 (𝑛) + 𝑓 (𝑥𝑖 (𝑛) − 𝑥𝑗 (𝑛)) ,

𝑥
𝑘 (𝑛 + 1) = 𝑥𝑘 (𝑛) , 𝑘 ∈

𝐼
𝑁

{𝑖, 𝑗}
.

(4)

In (4), we think of the nonlinear function on the
increment of gossip variables 𝑥

𝑗
(𝑛) and 𝑥

𝑖
(𝑛) as the change

introduced by the cooperation of node 𝑗 to node 𝑖.

Theorem 1. Suppose the gossip function 𝑓(⋅) in gossip rule (4)
can be any 𝐶1 continuous function which satisfies (i) 𝑓(⋅) is
odd; (ii) 0 < 𝑓󸀠(⋅) < 1; then all the gossip variables converge
to the average of their initial values w.p.1.

Proof. First we will prove nonlinear gossip algorithm (4) can
converge w.p.1.

Without loss of generality, in (𝑛, 𝑛 + 1], we randomly
choose node 𝑖 and node 𝑗 for gossiping. Define a Lyapunov
function 𝑉(𝑛) = ∑𝑁

𝑚=1
𝑥
2

𝑚
(𝑛), and we have

𝐸 [Δ𝑉 | 𝑥 (𝑛)]

= 𝐸 [𝑉 (𝑛 + 1) − 𝑉 (𝑛) | 𝑥 (𝑛)]

= 𝐸[

[

𝑥
2

𝑗
(𝑛 + 1) + 𝑥

2

𝑖
(𝑛 + 1) − 𝑥

2

𝑗
(𝑛) − 𝑥

2

𝑖
(𝑛)

+

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

𝑥
2

𝑚
(𝑛 + 1) −

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

𝑥
2

𝑚
(𝑛) | 𝑥 (𝑛)]

]
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= 𝐸 [2𝑥
𝑖 (𝑛) 𝑓 (𝑥𝑗 (𝑛) − 𝑥𝑖 (𝑛))

+ 𝑓
2
(𝑥
𝑗 (𝑛) − 𝑥𝑖 (𝑛))

+ 2𝑥
𝑗 (𝑛) 𝑓 (𝑥𝑖 (𝑛) − 𝑥𝑗 (𝑛))

+𝑓
2
(𝑥
𝑖 (𝑛) − 𝑥𝑗 (𝑛))] .

(5)

Since 𝑓(⋅) is odd, that is, 𝑓(−𝑥) = −𝑓(𝑥), hence 𝑓(0) = 0 and
(5) can be simplified as

𝐸 [Δ𝑉 | 𝑥 (𝑛)] = 𝐸 [2𝑓 (𝑥𝑗 (𝑛) − 𝑥𝑖 (𝑛))

× [𝑓 (𝑥
𝑗 (𝑛) − 𝑥𝑖 (𝑛))

− (𝑥
𝑗 (𝑛) − 𝑥𝑖 (𝑛))]] .

(6)

According to Lagrange mean value theorem

𝑓 (𝑥
𝑖 (𝑛) − 𝑥𝑗 (𝑛)) − 𝑓 (0) = 𝑓

󸀠
(𝜉) [𝑥𝑖 (𝑛) − 𝑥𝑗 (𝑛)] , (7)

and due to 0 < 𝑓
󸀠
(⋅) < 1, we can forward our proof by

considering all three possible cases in terms of the difference
between 𝑥

𝑗
(𝑛) and 𝑥

𝑖
(𝑛):

(i) if 𝑥
𝑗
(𝑛) − 𝑥

𝑖
(𝑛) < 0, we have 𝑓(𝑥

𝑗
(𝑛) − 𝑥

𝑖
(𝑛)) < 0 and

𝑓(𝑥
𝑗
(𝑛) − 𝑥

𝑖
(𝑛)) > 𝑥

𝑗
(𝑛) − 𝑥

𝑖
(𝑛); thus,

𝐸 [Δ𝑉 | 𝑥 (𝑛)] = 𝐸 [𝑉 (𝑛 + 1) − 𝑉 (𝑛) | 𝑥 (𝑛)] < 0; (8)

(ii) if 𝑥
𝑗
(𝑛) − 𝑥

𝑖
(𝑛) > 0, then 𝑓(𝑥

𝑗
(𝑛) − 𝑥

𝑖
(𝑛)) > 0 and

𝑓(𝑥
𝑗
(𝑛) − 𝑥

𝑖
(𝑛)) < (𝑥

𝑗
(𝑛) − 𝑥

𝑖
(𝑛)); therefore, we can

also obtain 𝐸[Δ𝑉 | 𝑥(𝑛)] < 0;
(iii) if 𝑥

𝑗
(𝑛)−𝑥

𝑖
(𝑛) = 0, then 𝐸[Δ𝑉 | 𝑥(𝑛)] = 𝐸[𝑉(𝑛+1)−

𝑉(𝑛) | 𝑥(𝑛)] = 0.

Hence, from (i), (ii), and (iii), we have

𝐸 [Δ𝑉 | 𝑥 (𝑛)] = 𝐸 [𝑉 (𝑛 + 1) − 𝑉 (𝑛) | 𝑥 (𝑛)] ≤ 0. (9)

Invoking the stochastic version of LaSalle’s Theorem [25,
26], we conclude that

lim
𝑛→∞

𝑥 (𝑛) = 𝑐1𝑁, w.p.1, (10)

where 𝑐 is a constant. Equation (10) indicates that the
nonlinear gossip algorithms (4) can converge w.p.1.

Now we will prove that all the gossip variables converge
to the average of their initial values. Consider

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1)

=
1

𝑁

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

[𝑥
𝑚 (𝑛 + 1) + 𝑥𝑖 (𝑛 + 1) + 𝑥𝑗 (𝑛 + 1)]

=
1

𝑁

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

[𝑥
𝑚 (𝑛) + 𝑥𝑖 (𝑛) + 𝑓 (𝑥𝑗 (𝑛) − 𝑥𝑖 (𝑛))

+𝑥
𝑗 (𝑛) + 𝑓 (𝑥𝑖 (𝑛) − 𝑥𝑗 (𝑛))] .

(11)

The gossip function 𝑓(⋅) is an odd function; thus 𝑓(𝑥
𝑗
(𝑛) −

𝑥
𝑖
(𝑛)) + 𝑓(𝑥

𝑖
(𝑛) − 𝑥

𝑗
(𝑛)) = 0. Then, (11) can be simplified as

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1) =

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛) . (12)

Therefore, we have

lim
𝑛→∞

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1) = lim

𝑛→∞

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛)

= ⋅ ⋅ ⋅ =
1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (0) .

(13)

Equation (13) implies that 𝑐 = (1/𝑁)∑𝑁
𝑚=1

𝑥
𝑚
(0), which

in turn implies that all gossip variables converge to the
average of their initial values w.p.1 under nonlinear gossip
rule (4).

3.2. Nonlinear Gossip Algorithms Type-2. We consider the
following nonlinear gossip algorithm:

𝑥
𝑖 (𝑛 + 1) = 𝑥𝑖 (𝑛) + 𝑓 (𝑥𝑗 (𝑛)) − 𝑓 (𝑥𝑖 (𝑛)) ,

𝑥
𝑗 (𝑛 + 1) = 𝑥𝑗 (𝑛) + 𝑓 (𝑥𝑖 (𝑛)) − 𝑓 (𝑥𝑗 (𝑛)) ,

𝑥
𝑘 (𝑛 + 1) = 𝑥𝑘 (𝑛) , 𝑘 ∈

𝐼
𝑁

{𝑖, 𝑗}
.

(14)

In (14), we think of the increment of the nonlinear
function on gossip variables 𝑥

𝑗
(𝑛) and on gossip variables

𝑥
𝑖
(𝑛) as the change introduced by the cooperation of node

𝑗 to node 𝑖.

Theorem2. Suppose the gossip function𝑓(⋅) in gossip rule (14)
can be any 𝐶1 continuous function and satisfies 0 < 𝑓

󸀠
(⋅) <

1; then all the gossip variables converge to the average of their
initial values w.p.1.

Proof. Similar to the proof of Theorem 1, in (𝑛, 𝑛 + 1], we
randomly choose node 𝑖 and node 𝑗 for gossiping. We define
a Lyapunov function 𝑉(𝑛) = ∑𝑁

𝑚=1
𝑥
2

𝑚
(𝑛). From (14),

𝐸 [Δ𝑉 | 𝑥 (𝑛)]

= 𝐸 [𝑉 (𝑛 + 1) − 𝑉 (𝑛) | 𝑥 (𝑛)]

= 𝐸[

[

𝑥
2

𝑗
(𝑛 + 1) + 𝑥

2

𝑖
(𝑛 + 1) − 𝑥

2

𝑗
(𝑛) − 𝑥

2

𝑖
(𝑛)

+

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

𝑥
2

𝑚
(𝑛 + 1) −

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

𝑥
2

𝑚
(𝑛) | 𝑥 (𝑛)]

]
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= 𝐸 [2𝑥
𝑖 (𝑛) [𝑓 (𝑥𝑗 (𝑛)) − 𝑓 (𝑥𝑖 (𝑛))]

+ 2𝑥
𝑗 (𝑛) [𝑓 (𝑥𝑖 (𝑛)) − 𝑓 (𝑥𝑗 (𝑛))]

+ 2[𝑓 (𝑥
𝑖 (𝑛)) − 𝑓 (𝑥𝑗 (𝑛))]

2

]

= 𝐸 [2 [𝑓 (𝑥
𝑖 (𝑛)) − 𝑓 (𝑥𝑗 (𝑛))]

× [𝑓 (𝑥
𝑖 (𝑛)) − 𝑓 (𝑥𝑗 (𝑛)) − (𝑥𝑖 (𝑛) − 𝑥𝑗 (𝑛))]] .

(15)

According to Lagrange mean value theorem

𝑓 (𝑥
𝑖 (𝑛)) − 𝑓 (𝑥𝑗 (𝑛)) − 𝑓 (0) = 𝑓

󸀠
(𝜉) [𝑥𝑖 (𝑛) − 𝑥𝑗 (𝑛)] ,

(16)

and due to 0 < 𝑓󸀠(⋅) < 1, we have that

(i) if 𝑥
𝑗
(𝑛) − 𝑥

𝑖
(𝑛) < 0, we have 𝑓(𝑥

𝑗
(𝑛)) − 𝑓(𝑥

𝑖
(𝑛)) < 0

and 𝑓(𝑥
𝑗
(𝑛)) − 𝑓(𝑥

𝑖
(𝑛)) > 𝑥

𝑗
(𝑛) − 𝑥

𝑖
(𝑛); thus,

𝐸 [Δ𝑉 | 𝑥 (𝑛)] = 𝐸 [(𝑉 (𝑛 + 1) − 𝑉 (𝑛)) | 𝑥 (𝑛)] < 0; (17)

(ii) if 𝑥
𝑗
(𝑛) − 𝑥

𝑖
(𝑛) > 0, then 𝑓(𝑥

𝑗
(𝑛)) − 𝑓(𝑥

𝑖
(𝑛)) > 0 and

𝑓(𝑥
𝑗
(𝑛)) − 𝑓(𝑥

𝑖
(𝑛)) < 𝑥

𝑗
(𝑛) − 𝑥

𝑖
(𝑛); therefore, we can

also obtain 𝐸[Δ𝑉 | 𝑥(𝑛)] < 0;
(iii) if 𝑥

𝑗
(𝑛) − 𝑥

𝑖
(𝑛) = 0 then 𝐸[Δ𝑉 | 𝑥(𝑛)] = 0.

Hence from (i), (ii), and (iii), we have

𝐸 [Δ𝑉 | 𝑥 (𝑛)] = 𝐸 [𝑉 (𝑛 + 1) − 𝑉 (𝑛) | 𝑥 (𝑛)] ≤ 0. (18)

By using the stochastic version of LaSalle’s Theorem, we
have

lim
𝑛→∞

𝑥 (𝑛) = 𝑐1𝑁, w.p.1, (19)

where 𝑐 is a constant. Equation (19) indicates that the
nonlinear gossip algorithms (14) can converge w.p.1.

Consider

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1)

=
1

𝑁

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

[𝑥
𝑚 (𝑛) + 𝑥𝑖 (𝑛 + 1) + 𝑥𝑗 (𝑛 + 1)]

=
1

𝑁

𝑁

∑

𝑚=1,𝑚 ̸=𝑖,𝑗

[𝑥
𝑚 (𝑛) + 𝑥𝑖 (𝑛) + 𝑓 (𝑥𝑗 (𝑛))

− 𝑓 (𝑥
𝑖 (𝑛)) + 𝑥𝑗 (𝑛)

+𝑓 (𝑥
𝑖 (𝑛)) − 𝑓 (𝑥𝑗 (𝑛))]

=
1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛) .

(20)

Hence we have

lim
𝑛→∞

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1)

= lim
𝑛→∞

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛) = ⋅ ⋅ ⋅ =

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (0) .

(21)

Equation (21) implies that 𝑐 = (1/𝑁)∑𝑁
𝑚=1

𝑥
𝑚
(0), which

in turn implies that all gossip variables converge to the
average of their initial values w.p.1 under nonlinear gossip
rule (14).

3.3. Nonlinear Multigossip Algorithms. In aforementioned
gossip algorithms, each sensor is allowed to gossip with at
most one of its neighbors in a fixed time slot, which leads to a
low average convergence rate. For example when sensor 𝑖 and
sensor 𝑗 are gossiping, another sensor 𝑘 ̸= 𝑖, 𝑗 cannot gossip
with others. This gossip algorithm is single gossip algorithm.
In fact, multiple pairs of sensors can gossip at the same time
slot, provided each of two pairs has no common sensor, which
are multigossip algorithms [4]. For example, when sensor 𝑝
and sensor 𝑞 are gossiping, sensor 𝑖 and sensor 𝑗 are also
gossiping; then (𝑖, 𝑗) and (𝑝, 𝑞) should satisfy 𝑖 ̸= 𝑝, 𝑞 and
𝑗 ̸= 𝑝, 𝑞. Obviously, the convergence rate of multigossip
algorithms is faster than one of single gossip algorithms.

It is similar to nonlinear single gossip algorithm that we
present two types of nonlinear multigossip algorithms.

Assume in discrete time slot (𝑛, 𝑛+1] that there are 𝑟 pairs
of sensors, 1 < 𝑟 < 𝑁, (𝑝

1
, 𝑞
1
), (𝑝
2
, 𝑞
2
), . . . , (𝑝

𝑟
, 𝑞
𝑟
) that can

gossip, and if the gossip rules conform to type-1, then we have

𝑥
𝑝𝑖
(𝑛 + 1) = 𝑥𝑝𝑖

(𝑛) + 𝑓 (𝑥𝑞𝑖
(𝑛) − 𝑥𝑝𝑖

(𝑛)) ,

𝑥
𝑞𝑖
(𝑛 + 1) = 𝑥𝑞𝑖

(𝑛) + 𝑓 (𝑥𝑝𝑖
(𝑛) − 𝑥𝑞𝑖

(𝑛)) ,

𝑥
𝑘 (𝑛 + 1) = 𝑥𝑘 (𝑛) , 𝑘 ∈

𝐼
𝑁

{𝑝
1
, . . . , 𝑝

𝑟
, 𝑞
1
, . . . , 𝑞

𝑟
}
.

(22)

Theorem 3. In multigossip algorithm, if nonlinear function
𝑓(⋅) in gossip rule (22) can be any 𝐶1 continuous function
which satisfies that (i) 𝑓(⋅) is odd; (ii) 0 < 𝑓󸀠(⋅) < 1, then all
gossip variables converge to the average of their initial values
w.p.1.

Proof. In (𝑛, 𝑛 + 1], we randomly choose 𝑟 pairwise nodes
(𝑝
1
, 𝑞
1
), (𝑝
2
, 𝑞
2
), . . . , (𝑝

𝑟
, 𝑞
𝑟
) for gossiping. By defining a Lya-

punov function 𝑉(𝑛) = ∑𝑁
𝑚=1

𝑥
2

𝑚
(𝑛), we have

𝐸 [Δ𝑉 | 𝑥 (𝑛)]

= 𝐸 [𝑉 (𝑛 + 1) − 𝑉 (𝑛) | 𝑥 (𝑛)]

= 𝐸[

𝑟

∑

𝑖=1

[𝑥
2

𝑝𝑖
(𝑛 + 1) + 𝑥

2

𝑞𝑖
(𝑛 + 1)

− 𝑥
2

𝑝𝑖
(𝑛) − 𝑥

2

𝑞𝑖
(𝑛)] | 𝑥 (𝑛) ]
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= 𝐸[

𝑟

∑

𝑖=1

[2𝑥
𝑝𝑖
(𝑛) 𝑓 (𝑥𝑞𝑖

(𝑛) − 𝑥𝑝𝑖
(𝑛))

+ 𝑓
2
(𝑥
𝑞𝑖
(𝑛) − 𝑥𝑝𝑖

(𝑛))

+ 2𝑥
𝑞𝑖
(𝑛) 𝑓 (𝑥𝑝𝑖

(𝑛) − 𝑥𝑞𝑖
(𝑛))

+𝑓
2
(𝑥
𝑝𝑖
(𝑛) − 𝑥𝑞𝑖

(𝑛))] ] .

(23)

Similar to the proof of Theorem 1, if 𝑥
𝑞𝑖
(𝑛) − 𝑥

𝑝𝑖
(𝑛) ̸= 0,

then 𝐸[Δ𝑉 | 𝑥(𝑛)] = 𝐸[𝑉(𝑛 + 1) − 𝑉(𝑛) | 𝑥(𝑛)] < 0; if
𝑥
𝑞𝑖
(𝑛) − 𝑥

𝑝𝑖
(𝑛) = 0, then 𝐸[Δ𝑉 | 𝑥(𝑛)] = 0.

Therefore we have

𝐸 [Δ𝑉 | 𝑥 (𝑛)] = 𝐸 [𝑉 (𝑛 + 1) − 𝑉 (𝑛) | 𝑥 (𝑛)] ≤ 0. (24)

Hence, we get

lim
𝑛→∞

𝑥 (𝑛) = 𝑐1𝑁, w.p.1, (25)

where 𝑐 is a constant. Equation (25) indicates that the
nonlinear gossip algorithms (14) can converge w.p.1.

Consider

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1)

=
1

𝑟

𝑟

∑

𝑖=1

[𝑥
𝑝𝑖
(𝑛 + 1) + 𝑥𝑞𝑗

(𝑛 + 1)] +
1

𝑁

𝑁

∑

𝑚=𝑟+1

𝑥
𝑚 (𝑛)

=
1

𝑟

𝑟

∑

𝑖=1

[𝑥
𝑝𝑖
(𝑛) + 𝑓 (𝑥𝑞𝑖

(𝑛) − 𝑥𝑝𝑖
(𝑛))

+𝑥
𝑞𝑗
(𝑛) + 𝑓 (𝑥𝑝𝑖

(𝑛) − 𝑥𝑞𝑗
(𝑛))]

+
1

𝑁 − 𝑟

𝑁

∑

𝑚=𝑟+1

𝑥
𝑚 (𝑛) .

(26)

Because the gossip function 𝑓(⋅) is an odd function, (26) is
simplified as

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1)

=
1

𝑁 − 𝑟

𝑁

∑

𝑚=𝑟+1

𝑥
𝑚 (𝑛) +

1

𝑟

𝑟

∑

𝑖=1

[𝑥
𝑝𝑖
(𝑛) + 𝑥𝑞𝑗

(𝑛)]

=
1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛) .

(27)

Therefore we have

lim
𝑛→∞

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛 + 1) = lim

𝑛→∞

1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (𝑛)

= ⋅ ⋅ ⋅ =
1

𝑁

𝑁

∑

𝑚=1

𝑥
𝑚 (0) .

(28)
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Figure 1: The topology of wireless sensor networks.

Equation (28) implies that 𝑐 = (1/𝑁)∑
𝑁

𝑚=1
𝑥
𝑚
(0),

which in turn implies that all gossip variables converge
to the average of their initial values w.p.1 under nonlinear
multigossip rule (22).

Assume in discrete time slot (𝑛, 𝑛 + 1], 𝑟 pairs of sensors,
1 < 𝑟 < 𝑁, (𝑝

1
, 𝑞
1
), (𝑝
2
, 𝑞
2
), . . . , (𝑝

𝑟
, 𝑞
𝑟
) that are gossiping,

and if the gossip rules conform to type-2, then we have

𝑥
𝑝𝑖
(𝑛 + 1) = 𝑥𝑝𝑖

(𝑛) + 𝑓 (𝑥𝑞𝑖
(𝑛)) − 𝑓 (𝑥𝑝𝑖

(𝑛)) ,

𝑥
𝑞𝑖
(𝑛 + 1) = 𝑥𝑞𝑖 (𝑛) + 𝑓 (𝑥𝑝𝑖

(𝑛)) − 𝑓 (𝑥𝑞𝑖
(𝑛)) ,

𝑥
𝑘 (𝑛 + 1) = 𝑥𝑘 (𝑛) , 𝑘 ∈

𝐼
𝑁

{𝑝
1
, . . . , 𝑝

𝑟
, 𝑞
1
, . . . , 𝑞

𝑟
}
.

(29)

Theorem 4. In multigossip algorithm, if nonlinear function
𝑓(⋅) in gossip rule (29) can be any 𝐶1 continuous function and
satisfies 0 < 𝑓󸀠(⋅) < 1, then all gossip variables converge to the
average of their initial values w.p.1.

Proof. The analysis is similar to the proofs ofTheorems 2 and
3, and it is thus omitted here.

4. Numerical Simulation

In this section, we give several computer simulation examples
for the presented nonlinear gossip algorithms. A connected
wireless sensor network is considered which is composed
of 𝑁 = 5 sensors and whose network is showed as in
Figure 1. No matter what the distribution of the sensors’
gossip variables is, the proposed nonlinear algorithms can
converge w.p.1. We assume the initial gossip variables of these
five sensors are 0.9, 0.1, 0.5, 0.3, and 0.7, respectively. In the
proposed nonlinear gossip algorithms, we require that the
gossip function in type-1 satisfy two conditions: (i) 𝑓(⋅) is
odd and (ii) 0 < 𝑓

󸀠
(⋅) < 1; the gossip function in type-

2 should only satisfy 0 < 𝑓
󸀠
(⋅) < 1. We give a function

𝑓(𝑥) = (1/2) arctan(𝑥) which satisfies the above conditions.
We simulate two different gossip types of nonlinear single
gossip algorithms and nonlinear multigossip algorithms.The
simulation results are showed in Figures 2 and 3.

Figure 2 is the simulations of nonlinear single gossip
algorithms for type-1 and type-2. Figure 3 is the simulations
of nonlinear multigossip algorithms for type-1 and type-2.
It can be seen from Figures 2 and 3 that the proposed
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Figure 2: Simulations of the single gossip algorithm for type-1 and
type-2.
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Figure 3: Simulations of the multigossip algorithm for type-1 and
type-2.

nonlinear gossip algorithms can converge and the convergent
value is the sensors’ average of their initial values. Figures 2
and 3 also illustrate that different gossip rules have different
convergence rates of nonlinear gossip algorithms.

5. Conclusion

Nonlinear gossip algorithms for wireless sensor networks are
considered. It is proved that the proposed algorithms can
converge to the average of the initial values with probability
one. The proposed algorithm is a general approach to the
gossip algorithm, while the traditional linear gossip algo-
rithm can be viewed as a special case of the nonlinear gossip
algorithm. In the simulation, we find that different gossip
functions bring about different convergence rates. How to
determine and accelerate the convergence rate of nonlinear
gossip algorithms may worth further study.
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