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We investigate the dynamics of a food-chain systemwith digest delay and periodic harvesting for the prey. By using the comparison
theorem, small amplitude skills in the impulsive differential equation, and a special qualitative analysis method in the delay
differential equation, we prove that there exists a predators-eradication periodic solution which is globally attractive and show that
the pest population can be controlled under the economic threshold level and the system can be uniformly permanent when the
harvest period T is long enough or the harvesting rate 𝛿 is not too large. Furthermore, we perform a series of numerical simulations
to display the effects of the digest delay and periodic harvesting on the dynamic behavior of the food-chain system.

1. Introduction

It is now widely believed that pest outbreaks often cause
serious ecological and economic problems. As a result,
ecologists and mathematics acknowledge the importance of
controlling insect pests of agriculture and insect vectors
of plant [1]. Integrated pest management involves choos-
ing appropriate tactics from a range of pest control tech-
niques including biological, cultural, and chemical meth-
ods to suit individual cropping systems, pest complexes,
and local environments [2–4]. For example, as concerning
the chemical control strategy, it seems to be quick and
efficient to decrease the pests population by the chemical
insecticides in a short time. But when we use excess of
chemical insecticides to kill the pest population, not only
is the environment polluted, but also the natural enemies
(or beneficial species) will be killed at the same time,
even leading to the adaptability of the pests and the inef-
fectiveness of the insecticides. And this will lead to the
waste of the manpower and material resources and we
cannot reach our expected results, even bringing negative
effects. And as concerning the biological control strategy,

that is, stocking the natural enemies periodically by arti-
ficial culture or immigration, we can avoid many human
losses caused by environmental pollution in this way, while
it will take us a long time and a complex process for
the culture of the natural enemies. Therefore, it is impor-
tant to establish mathematical models to provide valuable
information about how to control pest outbreaks, especially
to study the dynamical behavior of the pests and their natural
enemies.

On the other hand, when the prey-predator system is
referred, sometimes there is a digest and absorption time
(which is the so-called digest delay) during the predation
instead of translating the food into growth rate immediately.
Hence, in order to model the relationship between the
predator and the prey more accurately, it is more reasonable
to introduce time delay into the model. Usually, there are two
kinds of delays in the ecological model, that is, discrete time-
delay and distributed time-delay (continuous time delay).
Recently, it seems that much more attention is paid on the
models with impulsive perturbations and time delay [5–13],
and some of them [5–8] trend to focus on the impulsive
model with distributed time-delay, in which a kernel function
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𝐹(𝑡) = 𝑎𝑒
−𝑎𝑡

, 𝑎 > 0. To the best of our knowledge, the study on
the effect of the discrete time-delay on the impulsive system
seems to be rare.

Recently, in an effort to seek more efficient pest manage-
ment strategies, Yu et al. [14] considered an ecological model
with impulsive control strategy as follows:
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(1)

where 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are the densities of one prey and
two predators at time 𝑡, respectively, andΔ𝑥(𝑡) = 𝑥(𝑡+)−𝑥(𝑡),
Δ𝑦(𝑡) = 𝑦(𝑡
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denote the efficiency with which resources are converted to
new consumers, 𝑘

𝑖

(𝑖 = 1, 2) are carrying capacity in the
absence of predator,𝑚 is the mortality rates for the predator,
𝑇 is the period of the impulsive effect, 𝑛 ∈ 𝑁,𝑁 is the set of
all nonnegative integers, and 𝑝 > 0 is the release amount of
predator at 𝑡 = 𝑛𝑇.

In [14], the authors studied the food-chain prey-predator
model (1)with periodic release on the higher predator (enemy
population) 𝑧(𝑡) and discussed some efficient biological
control strategies for the system. But they had not considered
the affection of the digest delay.

Based on the discussions above, we consider the following
food-chain prey-predatormodel with periodic harvest on the
prey (the pest population) 𝑥(𝑡), but the lower predator 𝑦(𝑡)
only lives on the prey. That is, if the prey 𝑥(𝑡) is extinct, the
lower predator 𝑦(𝑡) has no other food resources, and it is
inevitable to be extinct. Furthermore, we assume that there
is a digest and absorption time 𝜏 during the predation of
the higher predator 𝑧(𝑡) instead of translating the food into
growth rate immediately, and the final model we will study in
this paper is as follows:
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where 𝑑
1

, 𝑑
2

> 0 are the coefficients of density dependence
of 𝑥(𝑡) and 𝑦(𝑡); since the higher predator population always
have stronger ability to migrate, then it is more possible
for them to escape from the inner competition. Thus, the
impact of density dependence is relatively small, so we do
not consider the density dependence of higher predator 𝑧(𝑡)
in the model. Further, 𝑟

1

is the intrinsic increasing rate of the
prey population 𝑥(𝑡), 𝑟

2

is the death rate of the lower predator
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the mortality rates of the higher predator. 0 < 𝛿 < 1 is the
harvesting rate at the periodic time 𝑡 = 𝑛𝑇 (𝑛 ∈ 𝑁
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From the viewpoint of ecological meanings, we only
consider system (2) in the nonnegative region𝐷 = {(𝑥, 𝑦, 𝑧) |

𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0}.
The rest of this paper is organized as follows: in Section 2,

we will give some basic definitions and several useful lemmas
for the proof of our main results. In Section 3, we will state
and prove our main results such as boundedness of the solu-
tion, global attractivity of the predators-eradication periodic
solution, and sufficient conditions for the permanence of the
system. In Section 4, we give some numerical examples to
support our theoretical results. And in the last section, we
provide a brief discussion and the summary of our main
results.
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Definition 1. 𝑉 ∈ 𝑉
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smoothness properties of 𝑓 guarantee the global existence
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be seen in the books [15, 16].
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equation:

𝑑𝑥

𝑑𝑡
= 𝑟
1

𝑥 (𝑡 − 𝜏) − 𝑟
2

𝑥 (𝑡) , (9)

where 𝑟
1

, 𝑟
2

, and 𝜏 are all positive constants and 𝑥(𝑡) > 0 for
all 𝑡 ∈ [−𝜏, 0].

(1) If 𝑟
1

< 𝑟
2

, then lim
𝑡→∞

𝑥(𝑡) = 0.
(2) If 𝑟

1

> 𝑟
2

, then lim
𝑡→∞

𝑥(𝑡) = +∞.

In order to discuss the predators-eradication periodic
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∗, then the trivial periodic solution of system

(10) is globally asymptotically stable.
(2) If 𝛿 < 𝛿
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Hence, the trivial periodic solution 𝑢∗
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= 0 is globally
asymptotically stable.
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initial condition 𝑥(0+) = 𝑥

0

if 𝑢(𝑡) = 𝑢(𝑡, 𝑥
0

) is the solution
of system (20) with initial condition 𝑢(0+) = 𝑢

0

= 1/𝑢
0

.
Let

𝑛 (𝑡, 𝑠) = ∏

𝑠≤𝑛𝑇<𝑡

1

1 − 𝛿
𝑒
−𝑟

1
(𝑡−𝑠)

. (21)

By the Cauchy matrix of the respective homogeneous
equation, we have that

𝑢 (𝑡) = 𝑛 (𝑡, 0) 𝑢 (0
+

) + 𝑟
1

∫

𝑡

0

𝑛 (𝑡, 𝑠) 𝑑𝑠 (22)

is the solution of system (20).
Thus,

󵄨󵄨󵄨󵄨𝑢 (𝑡) − 𝑢
∗

(𝑡)
󵄨󵄨󵄨󵄨 = 𝑛 (𝑡, 0)

󵄨󵄨󵄨󵄨𝑢 (0
+

) − 𝑢
∗

(0
+

)
󵄨󵄨󵄨󵄨 . (23)

On the other hand, when 𝛿 < 𝛿∗,

𝑛 (𝑡, 0) = ∏

0≤𝑛𝑇<𝑡

1

1 − 𝛿
𝑒
−𝑟

1
𝑡

≤ (
𝑒
−𝑟

1
𝑡

1 − 𝛿
)

𝑛

, 𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇] ,

(24)

which leads to

lim
𝑡→∞

𝑛 (𝑡, 0) = lim
𝑡→∞

(
𝑒
−𝑟

1
𝑡

1 − 𝛿
)

𝑛

= 0. (25)

Thus,
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑥

∗

(𝑡)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑢 (𝑡)
−

1

𝑢∗ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
𝑛 (𝑡, 0)

󵄨󵄨󵄨󵄨𝑢 (0
+

) − 𝑢
∗

(0
+

)
󵄨󵄨󵄨󵄨

𝑢 (𝑡) 𝑢∗ (𝑡)
󳨀→ 0, as 𝑡 󳨀→ ∞.

(26)

That is, the positive periodic solution,

𝑥
∗

(𝑡) =
𝑟
1

(1 − 𝛿 − exp (−𝑟
1

𝑇))

𝑑
1

(1 − 𝛿 − exp (−𝑟
1

𝑇)) + 𝛿 exp (−𝑟
1

(𝑡 − 𝑛𝑇))
,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇] ,

(27)

is globally asymptotically stable.

3. Main Results

Theorem 6. If 𝑒
2

≤ 𝑒
1

𝑒
3

, then for each solution 𝑋(𝑡) =

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of system (2), one has

𝑥 (𝑡) ≤ 𝑀
1

≜
(𝑚 + 𝑟

1

)
2

4𝑚𝑑
1

+
(𝑚 − 𝑟

2

)
2

4𝑚𝑒
1

𝑑
2

,

𝑦 (𝑡) ≤ 𝑀
2

≜
𝑒
1

(𝑚 + 𝑟
1

)
2

4𝑚𝑑
1

+
(𝑚 − 𝑟

2

)
2

4𝑚𝑑
2

,

𝑧 (𝑡) ≤ 𝑀
3

≜
𝑒
1

𝑒
3

(𝑚 + 𝑟
1

)
2

4𝑚𝑑
1

+ 𝑒
3

(𝑚 − 𝑟
2

)
2

4𝑚𝑑
2

,

(28)

when 𝑡 is large enough.

Proof. Let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be any solution of system
(2) with initial condition (3), and we define

𝑊(𝑡) = 𝑒
1

𝑒
3

𝑥 (𝑡) + 𝑒
3

𝑦 (𝑡) + 𝑧 (𝑡 + 𝜏) . (29)

Then,

𝑑𝑊

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2)
= 𝑒
1

𝑒
3

𝑥 (𝑡) (𝑟
1

− 𝑑
1

𝑥 (𝑡)) −
𝑎
2

𝑒
1

𝑒
3

𝑥 (𝑡) 𝑧 (𝑡)

𝑏
2

+ 𝑥 (𝑡)

− 𝑟
2

𝑒
3

𝑦 (𝑡) − 𝑑
2

𝑒
3

𝑦
2

(𝑡) +
𝑎
2

𝑒
2

𝑥 (𝑡) 𝑧 (𝑡)

𝑏
2

+ 𝑥 (𝑡)

− 𝑚𝑧 (𝑡 + 𝜏) ,

(30)



Journal of Applied Mathematics 5

which yields

𝑑𝑊

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2)
+ 𝑚𝑊(𝑡)

= 𝑒
1

𝑒
3

𝑥 (𝑡) ((𝑟
1

+ 𝑚) − 𝑑
1

𝑥 (𝑡)) + 𝑒
3

(𝑚 − 𝑟
2

) 𝑦 (𝑡)

− 𝑒
3

𝑑
2

𝑦
2

(𝑡) +
𝑎
2

(𝑒
2

− 𝑒
1

𝑒
3

) 𝑥 (𝑡) 𝑧 (𝑡)

𝑏
2

+ 𝑥 (𝑡)

≤ 𝑒
1

𝑒
3

((𝑟
1

+ 𝑚) 𝑥 (𝑡) − 𝑑
1

𝑥
2

(𝑡))

+ 𝑒
3

((𝑚 − 𝑟
2

) 𝑦 (𝑡) − 𝑑
2

𝑦
2

(𝑡))

≤
𝑒
1

𝑒
3

(𝑚 + 𝑟
1

)
2

4𝑑
1

+
𝑒
3

(𝑚 − 𝑟
2

)
2

4𝑑
2

≜ 𝐿.

(31)

On the other hand, by a simple calculation

𝑊(𝑡
+

) = (1 − 𝛿) 𝑒
1

𝑒
3

𝑥 (𝑡) + 𝑒
3

𝑦 (𝑡) + 𝑧 (𝑡 + 𝜏)

≤ 𝑒
1

𝑒
3

𝑥 (𝑡) + 𝑒
3

𝑦 (𝑡) + 𝑧 (𝑡 + 𝜏)

= 𝑊 (𝑡) .

(32)

Therefore,
𝑑𝑊

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2)
≤ −𝑚𝑊(𝑡) + 𝐿, 𝑡 ̸= 𝑛𝑇,

𝑊 (𝑡
+

) ≤ 𝑊 (𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁
∗

.

(33)

By Lemma 2.2 in [14] we have

𝑊(𝑡) = 𝑊(0
+

) 𝑒
−𝑚𝑡

+ ∫

𝑡

0

𝐿𝑒
−𝑚(𝑡−𝑠)

𝑑𝑠

≤ 𝑊(0
+

) 𝑒
−𝑚𝑡

+
𝐿

𝑚
󳨀→

𝐿

𝑚
, as 𝑡 󳨀→ ∞,

(34)

which leads to

𝑥 (𝑡) ≤
𝐿

𝑚𝑒
1

𝑒
3

= 𝑀
1

, 𝑦 (𝑡) ≤
𝐿

𝑚𝑒
3

= 𝑀
2

,

𝑧 (𝑡) ≤
𝐿

𝑚
= 𝑀
3

.

(35)

This completes the proof of this theorem.

Nowwe begin to study the global attractivity of predators-
eradication periodic solution (𝑥∗(𝑡), 0, 0) of system (2), which
is the circumstance when both of the predator individuals are
entirely absent from the system ultimately; that is, 𝑦(𝑡) = 0

and 𝑧(𝑡) = 0.

Theorem 7. If system (2) satisfies 𝛿 < 𝛿
∗and the following

condition (H1):

𝑇 < 𝑇
∗

1

≜ min{ 1
𝑟
1

ln 𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑑
1

𝑏
1

𝑟
2

(1 − 𝛿)

(1 − 𝛿) (𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑑
1

𝑏
1

𝑟
2

)
;

1

𝑟
1

ln 𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑑
1

𝑏
1

(1 − 𝛿)

(1 − 𝛿) (𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑑
1

𝑏
1

)
} ,

(36)

then the predators-eradication periodic solution (𝑥∗(𝑡), 0, 0) of
system (2) is globally attractive.

Proof. By the first equation and the impulsive effect, we have

𝑑𝑥

𝑑𝑡
≤ 𝑥 (𝑡) (𝑟

1

− 𝑑
1

𝑥 (𝑡)) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁
∗

,

𝑥 (𝑡
+

) = (1 − 𝛿) 𝑥 (𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁
∗

,

𝑥 (0
+

) = 𝑥
0

,

(37)

whose comparison system is (10).
Then, by comparison theorem (Lemma 3) of impulsive

differential equations, there exists an arbitrarily small positive
𝜀 > 0 such that

𝑥 (𝑡) < 𝑥
∗

(𝑡) + 𝜀, (38)

when 𝑡 is large enough.
This yields

lim
𝑡→∞

sup𝑥 (𝑡) ≤
𝑟
1

(1 − 𝛿 − exp (−𝑟
1

𝑇))

𝑑
1

(1 − 𝛿 − exp (−𝑟
1

𝑇) + 𝛿 exp (−𝑟
1

𝑇))
.

(39)

Hence, there exists a positive integer 𝑛
1

∈ 𝑁 and
arbitrarily small positive 𝜀

1

> 0 such that

𝑥 (𝑡) ≤
𝑟
1

(1 − 𝛿 − exp (−𝑟
1

𝑇))

𝑑
1

(1 − 𝛿 − exp (−𝑟
1

𝑇) + 𝛿 exp (−𝑟
1

𝑇))
+ 𝜀
1

≜ 𝜂
1

,

(40)

for all 𝑡 ≥ 𝑛
1

𝑇.
On the other hand, since condition (H1) holds, then

𝑒
1

𝑎
1

𝜂
1

/(𝑏
1

+ 𝜂
1

) < 𝑟
2

for above 𝜀
1

> 0 small enough.
At the moment, from the second equation of the system

(2) we have

𝑑𝑦

𝑑𝑡
≤
𝑒
1

𝑎
1

𝜂
1

𝑏
1

+ 𝜂
1

𝑦 (𝑡) − 𝑟
2

𝑦 (𝑡) − 𝑑
2

𝑦
2

(𝑡)

= (
𝑒
1

𝑎
1

𝜂
1

𝑏
1

+ 𝜂
1

− 𝑟
2

)𝑦 (𝑡) − 𝑑
2

𝑦
2

(𝑡) < 0.

(41)

Then,

lim
𝑡→∞

𝑦 (𝑡) = 0. (42)

Then there exist 𝑇
1

> 0 and 𝜀
2

> 0 small enough, such
that

0 < 𝑦 (𝑡) < 𝜀
2

, ∀𝑡 > 𝑇
1

, (43)

and it follows from the last equation of system (2) that

𝑑𝑧

𝑑𝑡
≤ (

𝑒
2

𝑎
2

𝜂
1

𝑏
2

+ 𝜂
1

+
𝑒
3

𝑎
3

𝜀
2

𝑏
3

+ 𝜀
2

)𝑧 (𝑡 − 𝜏) − 𝑚𝑧 (𝑡) , (44)

when 𝑡 > max{𝑇
1

, 𝑛
1

𝑇} + 𝜏.
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For above arbitrarily small positive 𝜀
1

, 𝜀
2

small enough,
since condition (H1) holds, then

𝑒
2

𝑎
2

𝜂
1

𝑏
2

+ 𝜂
1

+
𝑒
3

𝑎
3

𝜀
2

𝑏
3

+ 𝜀
2

< 𝑚. (45)

By Lemma 4, we have

lim
𝑡→∞

𝑧 (𝑡) = 0. (46)

Then for above 𝜀
2

> 0 small enough, there exists a𝑇
2

> 𝑇
1

such that

0 < 𝑧 (𝑡) < 𝜀
2

, ∀𝑡 > 𝑇
2

. (47)

On the other hand, combining the first equation of system
(2) with (43) and (47), we have

𝑑𝑥

𝑑𝑡
≥ 𝑥 (𝑡) (𝑟

1

− 𝑑
1

𝑥 (𝑡)) − (
𝑎
1

𝜀
2

𝑏
1

+
𝑎
2

𝜀
2

𝑏
2

)

= 𝑥 (𝑡) (𝛾
1

− 𝑑
1

𝑥 (𝑡)) ,

(48)

for 𝑡 > 𝑇
2

, where

𝛾
1

≜ 𝑟
1

− (
𝑎
1

𝑏
1

+
𝑎
2

𝑏
2

) 𝜀
2

. (49)

Note that the corresponding comparison system of (48) is

𝑑𝑢

𝑑𝑡
= 𝑢 (𝑡) (𝛾

1

− 𝑑
1

𝑢 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑢 (𝑡
+

) = (1 − 𝛿) 𝑢 (𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁
∗

,

𝑢 (0
+

) = 𝑥
0

.

(50)

By Lemma 5, if 𝛿 < 𝛿∗, system (50) also has the following
positive periodic solution:

𝑢
∗

(𝑡) =
𝛾
1

(1 − 𝛿 − exp (−𝛾
1

𝑇))

𝑑
1

(1 − 𝛿 − exp (−𝛾
1

𝑇) + 𝛿 exp (−𝛾
1

(𝑡 − 𝑛𝑇)))
,

(51)

which is globally asymptotically stable.
Thus, by Lemma 3 again we have

𝑥 (𝑡) > 𝑢
∗

(𝑡) − 𝜀, (52)

for above arbitrarily small 𝜀 > 0 as 𝑡 is large enough.
Let 𝜀
2

→ 0, and then

𝛾
1

≜ 𝑟
1

− (
𝑎
1

𝑏
1

+
𝑎
2

𝑏
2

) 𝜀
2

󳨀→ 𝑟
1

, (53)

that is, 𝑢∗(𝑡) → 𝑥
∗

(𝑡).
At this time, it follows from (38) and (52) that

𝑥
∗

(𝑡) − 𝜀 < 𝑥 (𝑡) < 𝑥
∗

(𝑡) + 𝜀. (54)

Thus, for 𝑡 > 𝑇
2

large enough, we have

lim
𝑡→∞

𝑥 (𝑡) = 𝑥
∗

(𝑡) . (55)

Combined with (42), (46), and (55), we have proved that
the predators-eradication periodic solution (𝑥

∗

(𝑡), 0, 0) of
system (2) is globally attractive.

Corollary 8. If system (2) satisfies 𝛿 < 𝛿∗ and

𝛿 > Δ
∗

= max{
(𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑟
2

𝑏
1

𝑑
1

) 𝛿
∗

𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑟
2

𝑏
1

𝑑
1

𝛿∗
,

(𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

) 𝛿
∗

𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

𝛿∗
} ,

(56)

then the predators-eradication periodic solution (𝑥∗(𝑡), 0, 0) of
system (2) is globally attractive.

In fact, if the conditions of Corollary 8 hold, then

𝛿 >
(𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

) 𝛿
∗

𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

𝛿∗
, (57)

𝛿 >
(𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑟
2

𝑏
1

𝑑
1

) 𝛿
∗

𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑟
2

𝑏
1

𝑑
1

𝛿∗
. (58)

It follows from (57) that

(𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

) 𝛿
∗

+ 𝑚𝑑
1

𝑏
1

𝛿𝛿
∗

< (𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

) 𝛿,

(59)

which yields

𝛿
∗

<
(𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

) 𝛿

𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

(1 − 𝛿)
. (60)

Note that

𝛿
∗

= 1 − 𝑒
−𝑟

1
𝑇

, (61)

and then

𝑒
−𝑟

1
𝑇

>
(1 − 𝛿) (𝑟

1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

)

𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑏
1

𝑑
1

(1 − 𝛿)
. (62)

That is,

𝑇 <
1

𝑟
1

ln 𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑑
1

𝑏
1

𝑟
2

(1 − 𝛿)

(1 − 𝛿) (𝑟
1

𝑒
1

𝑎
1

− 𝑟
1

𝑟
2

− 𝑑
1

𝑏
1

𝑟
2

)
. (63)

In the same way, from (58), we have another inequality:

𝑇 <
1

𝑟
1

ln 𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑑
1

𝑏
1

(1 − 𝛿)

(1 − 𝛿) (𝑟
1

𝑒
2

𝑎
2

− 𝑚𝑟
1

− 𝑚𝑑
1

𝑏
1

)
. (64)

Therefore, all the conditions ofTheorem 7 hold, and then
the predators-eradication periodic solution (𝑥

∗

(𝑡), 0, 0) of
system (2) is globally attractive.

Remark 9. From Theorem 7 and its sufficient condition
Corollary 8, if 𝛿 < 𝛿

∗, 𝑇 < 𝑇
∗

1

, or Δ∗ < 𝛿 < 𝛿
∗, then

the natural enemies (both of the predators’ population) in
the model are extinct while the pest population is still not
controlled when the pest population is poisoned exclusively.
From the viewpoint of ecosystem and protecting the variety
of the rare species, we only need to control the pest population
under a certain threshold level and should not eradicate the
enemy population.That is, the pest population and the enemy
population can coexist when the pest cannot cause immense
economic losses, so it is more important to consider the
uniform persistence for the system.
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Theorem 10. If system (2) satisfies 𝑒
2

≤ 𝑒
1

𝑒
3

, 𝛿 < 𝛿, and the
following condition (H2):

𝑇 > 𝑇
∗

2

≜ max{ 1

𝜃
1

ln
𝜃
1

(𝑒
2

𝑎
2

− 𝑚) − 𝑚𝑑
1

𝑏
2

𝜃
1

(1 − 𝛿) (𝑒
2

𝑎
2

− 𝑚) − 𝑚𝑑
1

𝑏
2

;

1

𝜃
2

ln ( (𝜃
2

(𝑏
3

𝑒
1

𝑎
1

− 𝑏
3

𝑟
2

− 𝑎
3

𝑀
3

)

− 𝑏
1

𝑑
1

(𝑏
3

𝑟
2

+ 𝑎
3

𝑀
3

))

× (𝜃
2

(1 − 𝛿) (𝑏
3

𝑒
1

𝑎
1

− 𝑏
3

𝑟
2

− 𝑎
3

𝑀
3

)

−𝑏
1

𝑑
1

(𝑏
3

𝑟
2

+ 𝑎
3

𝑀
3

))
−1

) } ,

(65)

where 𝛿 = 1− 𝑒−𝛾
∗
𝑇, 𝛾∗ = 𝑟

1

− (𝑎
1

𝑀
2

/𝑏
1

+𝑎
2

𝑀
3

/𝑏
2

), 𝜃
1

= 𝑟
1

−

𝑎
1

𝑀
2

/𝑏
1

, and 𝜃
2

= 𝑟
2

−𝑎
2

𝑀
3

/𝑏
2

, then system (2) is permanent.

Proof. From Theorem 6, we have obtained the upper bound
of each solution𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of the system (2) with
𝑡 large enough. Thus, we only need to search for the lower
bound of the solution in the following.

In fact, from the first equation of system (7), we have

𝑑𝑥

𝑑𝑡
≥ 𝑥 (𝑡) (𝑟

1

− 𝑑
1

𝑥 (𝑡)) − (
𝑎
1

𝑀
2

𝑏
1

+
𝑎
2

𝑀
3

𝑏
2

)𝑥 (𝑡)

= 𝑥 (𝑡) (𝛾
∗

− 𝑑
1

𝑥 (𝑡)) .

(66)

By the comparison theorem (Lemma 3) we have 𝑥(𝑡) ≥
V
1

(𝑡) and V
1

(𝑡) → Ṽ
1

(𝑡) as 𝑡 → ∞, where V
1

(𝑡) is the unique
and globally stable positive periodic solution of

𝑑V
1

𝑑𝑡
= V
1

(𝑡) (𝛾
∗

− 𝑑
1

V
1

(𝑡)) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁
∗

V
1

(𝑡
+

) = (1 − 𝛿) V
1

(𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁
∗

,

V
1

(0
+

) = 𝑥
0

> 0,

Ṽ
1

(𝑡) =
𝛾
∗

(1 − 𝛿 − exp (−𝛾∗𝑇))
𝑑
1

(1 − 𝛿 − exp (−𝛾∗𝑇) + 𝛿 exp (−𝛾∗ (𝑡 − 𝑛𝑇)))
.

(67)

Therefore, for sufficiently large 𝑡, there exists a 𝜀
3

> 0

small enough such that

𝑥 (𝑡) ≥ Ṽ
1

(𝑡) − 𝜀
3

>
𝛾
∗

(1 − 𝛿 − exp (−𝛾∗𝑇))
𝑑
1

(1 − exp (−𝛾∗𝑇))
− 𝜀
3

≜ 𝑚
1

.

(68)

In the following, we will show that there exist two positive
constants 𝑚

2

and 𝑚
3

, such that 𝑦(𝑡) ≥ 𝑚
2

and 𝑧(𝑡) ≥ 𝑚
3

for
any 𝑡 large enough.

Step 1. We begin to find an 𝑚
2

> 0 such that 𝑦(𝑡) ≥ 𝑚
2

for
any 𝑡 large enough.

In order to achieve this goal, firstly we claim that the
inequality 𝑦(𝑡) < 𝑚

2

cannot hold for all 𝑡 ≥ 𝑡
1

.
Otherwise, if 𝑦(𝑡) < 𝑚

2

for all 𝑡 ≥ 𝑡
1

, then from the first
equation of (2),

𝑑𝑥

𝑑𝑡
≥ 𝑥 (𝑡) (𝑟

1

− 𝑑
1

𝑥 (𝑡)) − (
𝑎
1

𝑚
2

𝑏
1

+
𝑎
2

𝑀
3

𝑏
2

)𝑥 (𝑡)

= 𝑥 (𝑡) (𝛾
2

− 𝑑
1

𝑥 (𝑡)) ,

(69)

where

𝛾
2

= 𝑟
1

− (
𝑎
1

𝑚
2

𝑏
1

+
𝑎
2

𝑀
3

𝑏
2

) . (70)

Therefore, there exists a 𝜀
4

> 0 small enough and a 𝑇
3

≥

𝑡
1

, such that, for 𝑡 ≥ 𝑇
3

,

𝑥 (𝑡) ≥ Ṽ
2

(𝑡) − 𝜀
4

>
𝛾
2

(1 − 𝛿 − exp (−𝛾
2

𝑇))

𝑑
1

(1 − exp (−𝛾
2

𝑇))
− 𝜀
4

≜ 𝜂
2

, (71)

where

Ṽ
2

(𝑡) =
𝛾
2

(1 − 𝛿 − exp (−𝛾
2

𝑇))

𝑑
1

(1 − 𝛿 − exp (−𝛾
2

𝑇) + 𝛿 exp (−𝛾
2

(𝑡 − 𝑛𝑇)))
.

(72)

When condition (H2) holds, we can choose 𝑚
2

, 𝜀
4

> 0

small enough such that

𝜎
1

= ∫

(𝑛+1)𝑇

𝑛𝑇

(
𝑒
1

𝑎
1

𝜂
2

𝑏
1

+ 𝜂
2

−
𝑎
3

𝑀
3

𝑏
3

− 𝑟
2

− 𝑑
2

𝑚
2

)𝑑𝑡 > 0. (73)

Then at this time, from the second equation of system (2),

𝑑𝑦

𝑑𝑡
≥ (

𝑒
1

𝑎
1

𝜂
2

𝑏
1

+ 𝜂
2

−
𝑎
3

𝑀
3

𝑏
3

− 𝑟
2

− 𝑑
2

𝑚
2

)𝑦 (𝑡) . (74)

Let 𝑛
1

∈ 𝑁
∗, 𝑁
1

𝑇 ≥ 𝑇
3

and integrate (74) on (𝑛𝑇, (𝑛 +
1)𝑇], and we can get

𝑦 ((𝑛 + 1) 𝑇)

≥ 𝑦 (𝑛𝑇
+

)

× exp(∫
(𝑛+1)𝑇

𝑛𝑇

(
𝑒
1

𝑎
1

𝜂
2

𝑏
1

+ 𝜂
2

−
𝑎
3

𝑀
3

𝑏
3

− 𝑟
2

− 𝑑
2

𝑚
2

)𝑑𝑡)

= 𝑦 (𝑛𝑇) exp (𝜎
1

) .

(75)

Then 𝑦((𝑁
1

+ 𝑘)𝑇) ≥ 𝑦(𝑁
1

𝑇) exp(𝑘𝜎
1

) → +∞ as 𝑘 →

+∞, which is contradicted with 𝑦(𝑡) ≤ 𝑀
2

.
Hence, there exists a 𝑡

2

≥ 𝑡
1

> 0, such that 𝑦(𝑡
2

) ≥ 𝑚
2

.
If 𝑦(𝑡) ≥ 𝑚

2

for all 𝑡 ≥ 𝑡
2

, then our aim is obtained.
Otherwise, if 𝑦(𝑡) is oscillatory around𝑚

2

, let

𝑚
2

= min{𝑚2
2
,𝑚
2

exp(−(
𝑎
3

𝑀
3

𝑏
3

+ 𝑟
2

+ 𝑑
2

𝑚
2

)𝑇)} .

(76)
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And we assume that there exists two positive constants
𝑡
1

(> 𝑡
2

) and 𝑤
1

> 0 such that

𝑦 (𝑡
1

) = 𝑦 (𝑡
1

+ 𝑤
1

) = 𝑚
2

,

𝑦 (𝑡) < 𝑚
2

for 𝑡
1

< 𝑡 < 𝑡
1

+ 𝑤
1

.

(77)

Since 𝑦(𝑡) is continuous, bounded, and not affected by
impulses, we conclude that𝑦(𝑡) is uniformly continuous; then
exists a 𝑇

4

> 0 (with 0 < 𝑇
4

< 𝑇 and 𝑇
4

is independent of the
choice of 𝑡

1

) such that 𝑦(𝑡) ≥ 𝑚
2

/2 for all 𝑡
1

< 𝑡 < 𝑡
1

+ 𝑇
4

.
If𝑤
1

≤ 𝑇
4

, then 𝑦(𝑡) ≥ 𝑚
2

/2 ≥ 𝑚
2

for all 𝑡
1

< 𝑡 < 𝑡
1

+𝑤
1

.
If 𝑇
4

< 𝑤
1

≤ 𝑇, then, from the second equation of (2),

𝑑𝑦

𝑑𝑡
≥ −(

𝑎
3

𝑀
3

𝑏
3

+ 𝑟
2

+ 𝑑
2

𝑚
2

)𝑦 (𝑡) , for 𝑡
1

< 𝑡 < 𝑡
1

+ 𝑤
1

.

(78)

Integrate (78) on [𝑡
1

, 𝑡] (𝑡 ≤ 𝑡 ≤ 𝑇), and we have

𝑦 (𝑡) ≥ 𝑦 (𝑡
1

) exp(−(
𝑎
3

𝑀
3

𝑏
3

+ 𝑟
2

+ 𝑑
2

𝑚
2

) (𝑡 − 𝑡
1

))

≥ 𝑚
2

exp(−(
𝑎
3

𝑀
3

𝑏
3

+ 𝑟
2

+ 𝑑
2

𝑚
2

)𝑇) ≥ 𝑚
2

.

(79)

If 𝑇
4

< 𝑇 < 𝑤
1

, from the second equation of (2), we can
also obtain

𝑦 (𝑡) ≥ 𝑚
2

∀𝑡
1

≤ 𝑡 ≤ 𝑡
1

+ 𝑇. (80)

Proceeding exactly as above analysis, we can conclude
that 𝑦(𝑡) ≥ 𝑚

2

, for 𝑡
1

+ 𝑇 ≤ 𝑡 ≤ 𝑡
1

+ 𝑤
1

.
Thus, no matter which case we have 𝑦(𝑡) ≥ 𝑚

2

for all 𝑡
1

≤

𝑡 ≤ 𝑡
1

+𝑤
1

, since the interval [𝑡
1

, 𝑡
1

+𝑤
1

] is arbitrarily chosen,
then there exist 𝑚

2

> 0, such that 𝑦(𝑡) ≥ 𝑚
2

for 𝑡 is large
enough.

Step 2. Now we try to find an 𝑚
3

> 0 such that 𝑧(𝑡) ≥ 𝑚
3

for
all 𝑡 is large enough.

In the same method, we claim that the inequality 𝑧(𝑡) <
𝑚
3

cannot hold for all 𝑡 > 𝑡
3

.
Otherwise, if there exists a 𝑡

3

> 0 such that 𝑧(𝑡) < 𝑚
3

for
all 𝑡 ≥ 𝑡

3

+ 𝜏, then by the first equation of (2),

𝑑𝑥

𝑑𝑡
≥ 𝑥 (𝑡) (𝑟

1

− 𝑑
1

𝑥 (𝑡)) − (
𝑎
1

𝑀
2

𝑏
1

+
𝑎
2

𝑚
3

𝑏
2

)𝑥 (𝑡)

= 𝑥 (𝑡) (𝛾
3

− 𝑑
1

𝑥 (𝑡)) ,

(81)

where

𝛾
3

= 𝑟
1

− (
𝑎
1

𝑀
2

𝑏
1

+
𝑎
2

𝑚
3

𝑏
2

) . (82)

Therefore, there exists a 𝜀
5

> 0 small enough and a 𝑡
4

≥

𝑡
3

+ 𝜏, such that for 𝑡 ≥ 𝑡
4

,

𝑥 (𝑡) ≥ Ṽ
3

(𝑡) − 𝜀
5

>
𝛾
3

(1 − 𝛿 − exp (−𝛾
3

𝑇))

𝑑
1

(1 − exp (−𝛾
3

𝑇))
− 𝜀
5

≜ 𝜂
3

,

(83)

where

Ṽ
3

(𝑡) =
𝛾
3

(1 − 𝛿 − exp (−𝛾
3

𝑇))

𝑑
1

(1 − 𝛿 − exp (−𝛾
3

𝑇) + 𝛿 exp (−𝛾
3

(𝑡 − 𝑛𝑇)))
.

(84)

Now we define a Liapunov functional

𝑉 (𝑡) = 𝑧 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑒
2

𝑎
2

𝑥 (𝑠) 𝑧 (𝑠)

𝑏
2

+ 𝑥 (𝑠)
𝑑𝑠 + ∫

𝑡

𝑡−𝜏

𝑒
3

𝑎
3

𝑦 (𝑠) 𝑧 (𝑠)

𝑏
3

+ 𝑦 (𝑠)
𝑑𝑠,

(85)

and then

𝑑𝑉

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2)
= (

𝑒
2

𝑎
2

𝑥 (𝑡)

𝑏
2

+ 𝑥 (𝑡)
+
𝑒
3

𝑎
3

𝑦 (𝑡)

𝑏
3

+ 𝑦 (𝑡)
− 𝑚)𝑧 (𝑡)

> (
𝑒
2

𝑎
2

𝜂
3

𝑏
2

+ 𝜂
3

− 𝑚)𝑧 (𝑡) .

(86)

When the condition (H2) holds, we can choose 𝜀
5

> 0

small enough such that

𝑒
2

𝑎
2

𝜂
3

𝑏
2

+ 𝜂
3

− 𝑚

=
𝑒
2

𝑎
2

(𝛾
3

(1 − 𝛿 − exp (−𝛾
3

𝑇)) /𝑑
1

(1− exp (−𝛾
3

𝑇)) − 𝜀
5

)

𝑏
2

+ 𝛾
3

(1 − 𝛿 − exp (−𝛾
3

𝑇)) /𝑑
1

(1− exp (−𝛾
3

𝑇)) − 𝜀
5

− 𝑚 > 0.

(87)

Let 𝑧𝐿 = min
𝑡∈[𝑡

4
,𝑡

4
+𝜏]

𝑧(𝑡), and we claim that

𝑧 (𝑡) ≥ 𝑧
𝐿

, ∀𝑡 ≥ 𝑡
4

. (88)

Otherwise, if there exists a nonnegative constant 𝑡
5

≥ 𝑡
4

+

𝜏 such that

𝑧 (𝑡
5

) = 𝑧
𝐿

, 𝑧 (𝑡) ≥ 𝑧
𝐿 for 𝑡 ∈ [𝑡

4

, 𝑡
5

] ,

𝑧̇ (𝑡
5

) ≤ 0.

(89)

When 𝑡 > 𝑡
5

≥ 𝑡
4

+ 𝜏, from the last equation of (2), we
have

𝑧̇ (𝑡) ≥ (
𝑒
2

𝑎
2

𝜂
3

𝑏
2

+ 𝜂
3

− 𝑚)𝑧 (𝑡) . (90)

Thus,

𝑧̇ (𝑡
5

) ≥ (
𝑒
2

𝑎
2

𝜂
3

𝑏
2

+ 𝜂
3

− 𝑚)𝑧 (𝑡
5

) = (
𝑒
2

𝑎
2

𝜂
3

𝑏
2

+ 𝜂
3

− 𝑚)𝑧
𝐿

, (91)

which is a contradiction.
Therefore,

𝑑𝑉

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2)
= (

𝑒
2

𝑎
2

𝑥 (𝑡)

𝑏
2

+ 𝑥 (𝑡)
+
𝑒
3

𝑎
3

𝑦 (𝑡)

𝑏
3

+ 𝑦 (𝑡)
− 𝑚)𝑧 (𝑡)

> (
𝑒
2

𝑎
2

𝜂
3

𝑏
2

+ 𝜂
3

− 𝑚)𝑧
𝐿

> 0, ∀𝑡 > 𝑡
5

.

(92)
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which implies 𝑉(𝑡) → +∞, as 𝑡 → +∞, and this is
contradicted with

𝑉 (𝑡) ≤ 𝑀
3

+
𝑒
2

𝑎
2

𝑀
1

𝑀
3

𝜏

𝑏
2

+𝑀
1

+
𝑒
3

𝑎
3

𝑀
2

𝑀
3

𝜏

𝑏
3

+𝑀
2

. (93)

Therefore, 𝑧(𝑡) < 𝑚
3

cannot hold for all 𝑡 ≥ 𝑡
3

, and there
are two cases as follows.

If 𝑧(𝑡) ≥ 𝑚
3

for all 𝑡 ≥ 𝑡
3

, then our aim is obtained.
Otherwise, if 𝑧(𝑡) is oscillatory around 𝑚

3

, when 𝑡 is
sufficiently large, let

𝑚
3

= min {
𝑚
3

2
,𝑚
3

exp (−𝑚𝜏)} , (94)

then we can show that 𝑧(𝑡) ≥ 𝑚
3

as 𝑡 is large enough.
In fact, suppose there exist two positive constants 𝑡

2

>

0, 𝑤
2

> 0, such that

𝑧 (𝑡
2

) = 𝑧 (𝑡
2

+ 𝑤
2

) = 𝑚
3

,

𝑧 (𝑡) < 𝑚
3

for 𝑡
2

< 𝑡 < 𝑡
2

+ 𝑤
2

.

(95)

Since 𝑧(𝑡) is continuous, bounded, and not affected by
impulses, we conclude that 𝑧(𝑡) is uniformly continuous; then
exists a 𝑇

5

> 0 (with 0 < 𝑇
5

< 𝜏 and 𝑇
5

is independent of the
choice of 𝑡

2

) such that 𝑧(𝑡) ≥ 𝑚
3

/2 for all 𝑡
2

< 𝑡 < 𝑡
2

+ 𝑇
5

.
If𝑤
2

≤ 𝑇
5

, then 𝑧(𝑡) ≥ 𝑚
3

/2 ≥ 𝑚
3

for all 𝑡
2

< 𝑡 < 𝑡
2

+𝑤
2

.
If 𝑇
5

< 𝑤
2

≤ 𝜏, then from the last equation of (2),

𝑑𝑧

𝑑𝑡
≥ −𝑚𝑧 (𝑡) , for 𝑡

2

≤ 𝑡 ≤ 𝑡
2

+ 𝑤
2

≤ 𝑡
2

+ 𝜏. (96)

Integrate (96) on [𝑡
2

, 𝑡] (𝑡 ≤ 𝑡 ≤ 𝜏), and we have

𝑧 (𝑡) ≥ 𝑧 (𝑡
2

) exp (−𝑚 (𝑡 − 𝑡
2

)) ≥ 𝑚
3

exp (−𝑚𝜏) ,

for 𝑡
2

≤ 𝑡 ≤ 𝑡
2

+ 𝑤
2

.

(97)

If 𝑇
5

< 𝜏 < 𝑤
2

, from the second equation of system (2),
we can also obtain

𝑧 (𝑡) ≥ 𝑚
3

exp (−𝑚𝜏) , for 𝑡
2

≤ 𝑡 ≤ 𝑡
2

+ 𝜏. (98)

Proceeding exactly as the proof for above claim (88), we
can obtain 𝑧(𝑡) ≥ 𝑚

3

exp(−𝑚𝜏) for all 𝑡 > 𝑡
2

, then 𝑧(𝑡) ≥
𝑚
3

exp(−𝑚𝜏) ≥ 𝑚
3

for 𝑡
2

≤ 𝑡 ≤ 𝑡
2

+ 𝑤
2

.
Thus, no matter which case we have 𝑧(𝑡) ≥ 𝑚

3

for all 𝑡
2

≤

𝑡 ≤ 𝑡
2

+𝑤
2

, since the interval [𝑡
2

, 𝑡
2

+𝑤
2

] is arbitrarily chosen,
then there exist 𝑚

3

> 0, such that 𝑧(𝑡) ≥ 𝑚
3

for 𝑡 is large
enough.

Set Ω = {(𝑥, 𝑦, 𝑧) | 𝑚
1

≤ 𝑥(𝑡) ≤ 𝑀
1

, 𝑚
2

≤ 𝑦(𝑡) ≤

𝑀
2

, 𝑚
3

≤ 𝑧(𝑡) ≤ 𝑀
3

}. From above proof, we know that
Ω is the global attractor, and each solution of system (2)
will eventually enter and remain in region Ω. According to
Definition 2, system (2) is permanent.

In a similar way to the discussion of Corollary 8, we
can obtain the following two sufficient conditions for the
permanence.

Corollary 11. If system (2) satisfies 𝑒
2

≤ 𝑒
1

𝑒
3

and

𝛿 < min{1, 𝜃1𝑒2𝑎2 − 𝑚𝜃1 − 𝑚𝑏2𝑑1
𝜃
1

(𝑒
2

𝑎
2

− 𝑚)
,

(𝜃
2

𝑒
1

𝑎
1

𝑏
3

− 𝜃
2

𝑒
3

𝑀
3

− 𝜃
2

𝑏
2

𝑟
2

− 𝑏
1

𝑑
1

𝑒
3

𝑀
3

− 𝑏
1

𝑑
1

𝑏
2

𝑟
2

)

× (𝜃
2

(𝑒
1

𝑎
1

𝑏
3

− 𝑒
3

𝑀
3

− 𝑏
2

𝑟
2

))
−1

}𝛿,

(99)

where, 𝜃
1

, 𝜃
2

, and 𝛾∗, 𝛿 is the same asTheorem 10, then system
(2) is permanent.

Corollary 12. If system (2) satisfies

𝑅
∗

2

= max{ 𝛿

1 − 𝑒−𝛾∗𝑇
,
𝑒
2

𝑒
1

𝑒
3

} < 1,

𝑅
∗

= min{
𝜃
1

(𝑒
2

𝑎
2

− 𝑚) (𝛿 − 𝛿)

𝑚𝑏
2

𝑑
1

𝛿
,

𝜃
2

(𝑒
1

𝑎
1

𝑏
3

− 𝑒
3

𝑀
3

− 𝑏
2

𝑟
2

) (𝛿 − 𝛿)

𝑏
1

𝑑
1

(𝑒
3

𝑀
3

+ 𝑏
2

𝑟
2

) 𝛿
} > 1,

(100)

where 𝜃
1

, 𝜃
2

and 𝛾∗, 𝛿 is the same as Theorem 10, then system
(2) is permanent.

4. Numerical Simulations and Discussions

In this paper, we consider a food-chain prey-predator system
with digest delay and impulsive harvest on the prey. Ourmain
aim is to investigate how the impulsive harvest and digest
delay affect the dynamical behavior of the system. Especially,
we focus on the suitable impulsive period so that we could
guarantee that the predators will not be extinct before the
prey. Furthermore, we are also concerned when the system
will be permanent and how to control the population of the
prey (pests) under a certain economic threshold level (ETL).

In the following, we will verify our main results by
numerical simulation.

Case 1. If we choose 𝑟
1

= 0.98, 𝑟
2

= 0.05, 𝑑
1

= 0.001,
𝑑
2

= 0.01, 𝑎
1

= 0.02, 𝑎
2

= 0.03, 𝑎
3

= 0.01, 𝑒
1

= 4, 𝑒
2

= 0.8,
𝑒
3

= 2.131, 𝑏
1

= 30, 𝑏
2

= 50, 𝑏
3

= 1.5, 𝑚 = 0.02, 𝜏 = 0.1,
𝛿 = 0.856, and 𝑇 = 2 with initial conditions 𝑥(0) = 5,
𝑦(0) = 3, and 𝑧(0) = 0.5, it is easy to calculate 𝛿∗ = 0.8591,
𝑇
∗

1

= 2.008, and 𝛿 = 0.856 < 𝛿∗, 𝑇 = 2 < 𝑇
∗

1

, which satisfies
the condition ofTheorem 7. From the time-series diagram of
𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) (see Figures 1(a), 1(b), and 1(c)), we can
see that the predators 𝑦(𝑡) and 𝑧(𝑡) become extinct while the
prey population (pests population) is much more than the
initial 𝑥(0) = 5, and Figure 1(d) is the phase portrait of this
circumstance.Thismeans that whenwe capture or poison the
pests more frequently, natural enemies will become extinct
before the pests while the number of pests may increase than
before.
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Figure 1: The dynamics of system (2) with the impulsive control strategy with 𝑥(0) = 5, 𝑦(0) = 3, and 𝑧(0) = 0.5 and 𝑟
1

= 0.98, 𝑟
2

= 0.05,
𝑑
1

= 0.001, 𝑑
2

= 0.01, 𝑎
1

= 0.02, 𝑎
2

= 0.03, 𝑎
3

= 0.01, 𝑒
1

= 4, 𝑒
2

= 0.8, 𝑒
3

= 2.131, 𝑏
1

= 30, 𝑏
2

= 50, 𝑏
3

= 1.5,𝑚 = 0.02, 𝜏 = 0.1, 𝛿 = 0.856, and
𝑇 = 2.

Case 2. If we choose 𝑟
1

= 1.96, 𝑟
2

= 0.05, 𝑑
1

= 0.3, 𝑑
2

= 0.01,
𝑎
1

= 2, 𝑎
2

= 0.05, 𝑎
3

= 0.01, 𝑒
1

= 4, 𝑒
2

= 2, 𝑒
3

= 2.660201,
𝑏
1

= 20, 𝑏
2

= 16, 𝑏
3

= 10, 𝑚 = 0.02, 𝜏 = 0.5, 𝛿 = 0.8,
and 𝑇 = 20 with initial conditions 𝑥(0) = 5, 𝑦(0) = 3, and
𝑧(0) = 0.5, which satisfies the condition of Theorem 10, then
from the time-series diagram of 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) we can
see that the system is permanent, and all of the population
can coexist in this case. From the phase portrait (Figure 2(d))
we can see there is a periodic solution. Moreover, if we set the
economic threshold level ETL = 1.2 (which is much less than
the initial value 𝑥(0) = 5), and from Figure 2(a), we can see
that the pests population is less than ETL ultimately. That is
to say, our control strategy is effective.

On the other hand, the selection of the economic
threshold level (ETL) is closely related to the dynamical
behavior of the pest population, especially to the maximum
population after a period. Therefore, when the conditions
of the permanent theorem (Theorem 10) hold, from the first
equation of system (2), we can change some of the parameters

of system (2) to decrease the economic threshold level, such as
decreasing the value of parameter 𝑟

1

or increasing the value of
parameter 𝑑

1

. To verify this point, we consider the following
Case 3.

Case 3. If we choose 𝑟
1

= 1.86 < 1.96, 𝑑
1

= 0.36 > 0.3

while the other values keep the same as Case 2, and plot
the time-series of the pest population (see Figure 3(a)), it is
obvious to see that the pest population can be controlled
under a new ETL = 1.05, which is lower than the previous
ETL = 1.2. Furthermore, multiple periodic solutions or
periodic oscillations appear from the phase portrait at the
moment (see Figure 3(b)).

5. Conclusions and Discussions

In this paper, we investigate the dynamics of a three-
dimensional food-chain system incorporating digest delay
and periodic harvesting for the prey. The value of our study
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Figure 2: The dynamics of system (2) with the impulsive control strategy with 𝑥(0) = 5, 𝑦(0) = 3, and 𝑧(0) = 0.5 and 𝑟
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Figure 3: The dynamics of system (2) with the impulsive control strategy with 𝑥(0) = 5, 𝑦(0) = 3, and 𝑧(0) = 0.5 and 𝑟
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lies in two aspects: mathematically, we prove the existence
of a predators-eradication periodic solution which is globally
attractive and show that the pest population can be controlled
under the economic threshold level (ETL) and the system
can be uniformly permanent when the harvest period 𝑇

is long enough or the harvesting rate 𝛿 is not too large.
Biologically, we succeed to find some strategies to control the
population of the pests under a certain economic threshold
level (ETL) and provide some reasonable suggestions for
relevant ecological departments by these conclusions.

However, these control conditions are sufficient and
tedious; then how to obtain some simpler andmore extensive
control conditions is desirable in future studies.
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