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Let 𝐺 be a simple graph with 𝑛 vertices and let 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
be the eigenvalues of its adjacency matrix; the Estrada index 𝐸𝐸(𝐺)

of the graph 𝐺 is defined as the sum of the terms 𝑒𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑛. The 𝑛-dimensional folded hypercube networks 𝐹𝑄
𝑛
are an

important and attractive variant of the 𝑛-dimensional hypercube networks 𝑄
𝑛
, which are obtained from 𝑄

𝑛
by adding an edge

between any pair of vertices complementary edges. In this paper, we establish the explicit formulae for calculating the Estrada
index of the folded hypercubes networks 𝐹𝑄

𝑛
by deducing the characteristic polynomial of the adjacency matrix in spectral graph

theory. Moreover, some lower and upper bounds for the Estrada index of the folded hypercubes networks 𝐹𝑄
𝑛
are proposed.

1. Introduction

Complex networks have become an important area of
multidisciplinary research involving mathematics, physics,
social sciences, biology, and other theoretical and applied
sciences. It is well known that interconnection networks play
an important role in parallel communication systems. An
interconnection network is usually modelled by a connected
graph 𝐺 = (𝑉, 𝐸), where 𝑉 denotes the set of processors and
𝐸 denotes the set of communication links between processors
in networks. Let𝐺 be a graphwith vertices labelled 1, 2, . . . , 𝑛.
The adjacency matrix 𝐴(𝐺) of 𝐺 is an 𝑛 × 𝑛 matrix with the
(𝑖, 𝑗)-entry equal to 1 if vertices 𝑖 and 𝑗 are adjacent and 0
otherwise.The spectrum of𝐺 is the spectrum of its adjacency
matrix and consists of the numbers 𝜆

1
≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥

𝜆
𝑛
. In this work we are concerned with finite undirected

connected simple graphs (networks). For the underlying
graph theoretical definitions and notations we follow [1].

The energy of the graph 𝐺 [2] is defined as

𝐸 (𝐺) =

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 . (1)

Another graph-spectrum-based invariant, recently put
forward by Ernesto Estrada, is defined as

𝐸𝐸 = 𝐸𝐸 (𝐺) =

𝑛

∑

𝑖=1

𝑒
𝜆𝑖 . (2)

This graph invariant appeared for the first time in the year
2000, in a paper by Estrada [3], dealing with the folding of
protein molecules. Estrada and Rodŕıguez-Velázquez showed
that 𝐸𝐸 provides a measure of the centrality of complex
(communication, social, metabolic, etc.) networks [4, 5].

Denote by 𝑀
𝑘
= 𝑀
𝑘
(𝐺) = ∑

𝑛

𝑖=1
(𝜆
𝑖
)
𝑘 the 𝑘th spectral

moment of the graph 𝐺. From the Taylor expansion of 𝑒𝑥,
we have the following important relation between the Estrada
index and the spectral moments of 𝐺:

𝐸𝐸 (𝐺) =

∞

∑

𝑘=0

𝑀
𝑘
(𝐺)

𝑘!
. (3)

At this point one should recall [4] that𝑀
𝑘
(𝐺) is equal to

the number of self-returning walks of length 𝑘 of the graph
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𝐺. The first few spectral moments of an (𝑛,𝑚)-graph with 𝑚
edges and 𝑡 triangles satisfy the following relations [4]:

𝑀
0
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
0

= 𝑛; 𝑀
1
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
1

= 0;

𝑀
2
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

= 2𝑚; 𝑀
3
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
3

= 6𝑡.

(4)

For 1 ≤ 𝑖 ≤ 𝑛, let𝑑
𝑖
be the degree of vertex V

𝑖
in𝐺.The first

Zagreb index [6] of the graph𝐺 is defined as𝑍𝑔(𝐺) = ∑
𝑛

𝑖=1
𝑑
2

𝑖
:

𝑀
4
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
4

= 2𝑍𝑔 (𝐺) − 2𝑚 + 8𝑞;

𝑀
5
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
5

= 30𝑡 + 10𝑝 + 10𝑟,

(5)

where 𝑝 and 𝑞 are the numbers of pentagons and quadrangles
in𝐺, and 𝑟 is the number of subgraphs consisting of a triangle
with a pendent vertex attached [7].

The hypercubes 𝑄
𝑛
is one of the most popular and

efficient interconnection networks due to its many excellent
performances for some practical applications. There is a
large amount of literature on the properties of hypercubes
networks [8–11]. As an important variant of 𝑄

𝑛
, the folded

hypercubes networks 𝐹𝑄
𝑛
, proposed by Amawy and Latifi

[8], are the graphs obtained from 𝑄
𝑛
by adding an edge

between any pair of vertices complementary addresses. The
folded hypercubes 𝐹𝑄

𝑛
obtained considerable attention due

to its perfect properties, such as symmetry, regular structure,
strong connectivity, small diameter, and many of its proper-
ties which have been explored [12–19].

The remainder of the present paper is organized as
follows. In Section 2, we present some basic notations and
some preliminaries in our discussion.The proofs of our main
results are in Section 3 and some conclusions are given in
Section 4, respectively.

2. Notations and Some Preliminaries

In this section, we introduce some basic properties which will
be used in the proofs of our main results.

Let 𝑃
𝐹𝑄𝑛

(𝑥) be the characteristic polynomial of the adja-
cency matrix of the folded hypercube 𝐹𝑄

𝑛
; the following

results were shown in [12].

Lemma 1 (see [12]). The characteristic polynomial of the
adjacency matrix of the 𝐹𝑄

𝑛
(𝑛 ≥ 3) is

𝑃 (𝐹𝑄
𝑛
; 𝜆) = [𝜆 − (𝑛 − 7)] [𝜆 − (𝑛 − 3)]

3
𝑃 (𝐹𝑄

𝑛−1
; 𝜆 − 1)

×

𝑛−2

∏

𝑖=2

𝑃 (𝐹𝑄
𝑛−𝑖
; 𝜆 − (𝑖 − 4)) .

(6)

Lemma 2 (see [12]). For 𝐹𝑄
𝑛
with 𝑛 ≥ 3, the spectrum of

adjacency matrix is as follows:
(1) If 𝑛 ≡ 0 (mod 2),

𝑆𝑝𝑒𝑐 (𝐹𝑄
𝑛
) = (

−𝑛 + 1 −𝑛 + 5 −𝑛 + 9 ⋅ ⋅ ⋅ 𝑛 − 7 𝑛 − 3 𝑛 + 1

𝐶
0

𝑛
+ 𝐶
1

𝑛
𝐶
2

𝑛
+ 𝐶
3

𝑛
𝐶
4

𝑛
+ 𝐶
5

𝑛
⋅ ⋅ ⋅ 𝐶

𝑛−4

𝑛
+ 𝐶
𝑛−3

𝑛
𝐶
𝑛−2

𝑛
+ 𝐶
𝑛−1

𝑛
𝐶
𝑛

𝑛

) , (7)

(2) if 𝑛 ≡ 1 (mod 2),

𝑆𝑝𝑒𝑐 (𝐹𝑄
𝑛
) = (

−𝑛 − 1 −𝑛 + 3 −𝑛 + 7 ⋅ ⋅ ⋅ 𝑛 − 7 𝑛 − 3 𝑛 + 1

𝐶
0

𝑛
𝐶
1

𝑛
+ 𝐶
2

𝑛
𝐶
3

𝑛
+ 𝐶
4

𝑛
⋅ ⋅ ⋅ 𝐶

𝑛−4

𝑛
+ 𝐶
𝑛−3

𝑛
𝐶
𝑛−2

𝑛
+ 𝐶
𝑛−1

𝑛
𝐶
𝑛

𝑛

) , (8)

where 𝐶𝑖
𝑛
are the binomial coefficients and the elements in

the first and second rows are the eigenvalues of the adjacency
matrix of 𝐹𝑄

𝑛
and the corresponding multiplicities, respec-

tively.

Lemma 3 (see [20]). The eigenvalues of a bipartite graph
satisfy the pairing property: 𝜆

𝑛−𝑖+1
= 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Therefore, if the graph 𝐺 is bipartite and if 𝜂
0
is nullity (the

multiplicity of its eigenvalue zero), then

𝐸𝐸 (𝐺) = 𝜂
0
+ 2∑

+

cosh (𝑖) , (9)

where cosh stands for the hyperbolic cosine cosh(𝑥) =

(𝑒
𝑥
+ 𝑒
−𝑥
)/2, whereas ∑

+
denotes summation over all positive

eigenvalues of the corresponding graph.

Lemma 4 (see [21]). Let𝐺 be a graph with𝑚 edges. For 𝑘 ≥ 4,
𝑀
𝑘+2

≥ 𝑀
𝑘
, (10)

with equality for all even 𝑘 ≥ 4 if and only if 𝐺 consists of 𝑚
copies of𝐾

2
and possibly isolated vertices and with equality for

all odd 𝑘 ≥ 5 if and only if 𝐺 is a bipartite graph.

The following lemma is an immediate result of the
previous lemma.
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Lemma 5 (see [22]). Let 𝐺 be an (𝑛,𝑚) graph with 𝑚 edges.
For 𝑘 ≥ 4,

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘+2

≥ 4

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘

, (11)

with equality for all even 𝑘 ≥ 4 if and only if 𝐺 consists of 𝑚
copies of𝐾

2
and possibly isolated vertices and with equality for

all odd 𝑘 ≥ 5 if and only if 𝐺 is a bipartite graph.

Lemma 6 (see [23]). Let 𝐺 be a regular graph of degree 𝑟 ̸= 0

and of order 𝑛. Then its Estrada index is bounded by

𝑒
𝑟
+ (𝑛 − 1) 𝑒

−𝑟/(𝑛−1)
≤ 𝐸𝐸 (𝐺) < 𝑛 − 2 + 𝑒

𝑟
+ 𝑒
√𝑟(𝑛−𝑟)−1

.

(12)

Equality holds if and only if 𝜆
2
= 𝜆
3
= ⋅ ⋅ ⋅ = 𝜆

𝑛
= −𝑟/(𝑛 − 1).

Lemma 7 (see [23]). The Estrada index 𝐸𝐸(𝐺) and the graph
energy 𝐸(𝐺) satisfy the following inequality:

1

2
𝐸 (𝐺) (𝑒 − 1) + 𝑛 − 𝑛

+
≤ 𝐸𝐸 (𝐺) ≤ 𝑛 − 1 + 𝑒

𝐸(𝐺)/2
, (13)

and equalities on both sides hold if and only if 𝐸(𝐺) = 0.

3. Main Results

3.1.The Estrada Index of FoldedHypercubes Networks𝐹𝑄
𝑛
. In

this section, we present some explicit formulae for calculating
the Estrada index of 𝐹𝑄

𝑛
. For convenience, we assume that

𝐶
𝑖

𝑛
= 0 if 𝑖 < 0 or 𝑖 > 𝑛.

Theorem 8. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 3, then

(1) 𝐸𝐸(𝐹𝑄
𝑛
) = ∑

𝑛/2

𝑖=0
(𝐶
2𝑖

𝑛
+ 𝐶
2𝑖+1

𝑛
)𝑒
4𝑖−𝑛+1, 𝑖 = 0, 1, . . . , 𝑛/2,

if 𝑛 ≡ 0 (mod 2);

(2) 𝐸𝐸(𝐹𝑄
𝑛
) = ∑
𝑛/2

𝑖=0
(𝐶
2𝑖−1

𝑛
+ 𝐶
2𝑖

𝑛
)𝑒
4𝑖−𝑛−1, 𝑖 = 0, 1, . . . , (𝑛 +

1)/2, if 𝑛 ≡ 1 (mod 2),

where the 4𝑖 − 𝑛 + 1 and 4𝑖 − 𝑛 − 1 (𝑖 = 0, 1, . . . , 𝑛/2 or (𝑛 +
1)/2) are the eigenvalues of the adjacent matrix of 𝐹𝑄

𝑛
and 𝐶𝑖

𝑛

denotes the binomial coefficients.

Proof. By Lemma 1, the characteristic polynomial of the ad-
jacent matrix of 𝐹𝑄

𝑛
is

𝑃 (𝐹𝑄
𝑛
; 𝜆) = [𝜆 − (𝑛 − 7)] [𝜆 − (𝑛 − 3)]

3
𝑃 (𝐹𝑄

𝑛−1
; 𝜆 − 1)

×

𝑛−2

∏

𝑖=2

𝑃 (𝐹𝑄
𝑛−𝑖
; 𝜆 − (𝑖 − 4)) .

(14)

Through calculating eigenvalues of characteristic polyno-
mial and its multiplicities, we obtained that

(1) if 𝑛 ≡ 0 (mod 2), 𝐹𝑄
𝑛
have 𝑛/2 + 1 different eigen-

values 4𝑖 − 𝑛 + 1, with the multiplicities 𝐶2𝑖
𝑛
+ 𝐶
2𝑖+1

𝑛
,

where 𝑖 = 0, 1, . . . , 𝑛/2;

(2) if 𝑛 ≡ 1 (mod 2), 𝐹𝑄
𝑛
have (𝑛 + 1)/2 different

eigenvalues 4𝑖 − 𝑛 − 1, with the multiplicities 𝐶2𝑖−1
𝑛

+

𝐶
2𝑖

𝑛
, where 𝑖 = 0, 1, . . . , (𝑛 + 1)/2.

Combining with the definition of the Estrada index, we
derived the result of Theorem 8.

3.2. Some Bounds for the Estrada Index of Folded Hypercubes
Networks 𝐹𝑄

𝑛
. It is well known that 𝐹𝑄

𝑛
have 2𝑛 vertices.

Let 𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
≥ 𝜆
𝑛+1

≥ ⋅ ⋅ ⋅ ≥ 𝜆
2
𝑛 be the

eigenvalues of 𝐹𝑄
𝑛
with nonincreasing order. In order to

obtain the bounds for the Estrada index of 𝐹𝑄
𝑛
, we prove

some results by utilizing the arithmetic and geometric mean
inequality; in our proof, some techniques in [22] are referred
to.

Theorem 9. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

√4𝑛+(𝑛 + 1) 2𝑛+1+8𝑡+[cosh (2)−3]𝑀4+[cosh (2)−
10

3
]𝑀
5

< 𝐸𝐸 (𝐹𝑄
𝑛
) ,

(15)

where 𝑀
4
= 2𝑍𝑔(𝐺) − 2𝑚 + 8𝑞, 𝑀

5
= 30𝑡 + 10𝑝 + 10𝑟, 𝑝

and 𝑞 are the numbers of pentagons and quadrangles in 𝐹𝑄
𝑛
,

and 𝑟 is the number of subgraphs consisting of a triangle with
a pendent vertex attached.

Proof. In order to obtain the lower bounds for the Estrada
index, consider that

𝐸𝐸
2
(𝐹𝑄
𝑛
) =

2
𝑛

∑

𝑖=1

𝑒
2𝜆𝑖 + 2∑

𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗 . (16)

Noting that 𝑀
0
= 2
𝑛, 𝑀
1
= 0, 𝑀

2
= (𝑛 + 1)2

𝑛−1, and
𝑀
3
= 6𝑡, we obtain

2
𝑛

∑

𝑖=1

𝑒
2𝜆𝑖 =

2
𝑛

∑

𝑖=1

∑

𝑘≥0

(2𝜆
𝑖
)
𝑘

𝑘!

= 2
𝑛
+ (𝑛 + 1) 2

𝑛+1
+ 8𝑡 +

2
𝑛

∑

𝑖=1

∑

𝑘≥4

(2𝜆
𝑖
)
𝑘

𝑘!

= 2
𝑛
+ (𝑛 + 1) 2

𝑛+1
+ 8𝑡 + ∑

𝑘≥2

1

(2𝑘)!

2
𝑛

∑

𝑖=1

(2𝜆
𝑖
)
2𝑘

+ ∑

𝑘≥2

1

(2𝑘 + 1)!

2
𝑛

∑

𝑖=1

(2𝜆
𝑖
)
2𝑘+1

.

(17)

By Lemma 5,

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘+2

≥ 4

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘

, (18)



4 Abstract and Applied Analysis

we can get that

2
𝑛

∑

𝑖=1

𝑒
2𝜆𝑖 ≥ 2

𝑛
+ (𝑛 + 1) 2

𝑛+1
+ 8𝑡

+ ∑

𝑘≥2

1

(2𝑘)!

2
𝑛

∑

𝑖=1

2
2𝑘−4

(2𝜆
𝑖
)
4

+ ∑

𝑘≥2

1

(2𝑘 + 1)!

2
𝑛

∑

𝑖=1

2
2𝑘−4

(2𝜆
𝑖
)
5

= 2
𝑛
+ (𝑛 + 1) 2

𝑛+1
+ 8𝑡 + [cosh (2) − 3]𝑀4

+ [cosh (2) − 10

3
]𝑀
5
,

(19)

where𝑀
4
= 2𝑍𝑔(𝐺)− 2𝑚+8𝑞, 𝑀

5
= 30𝑡 + 10𝑝+10𝑟, 𝑝 and

𝑞 are the numbers of pentagons and quadrangles in 𝐹𝑄
𝑛
, and

𝑟 is the number of subgraphs consisting of a triangle with a
pendent vertex attached.

As for the terms 2∑
𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗 , by the arithmetic and

geometric mean inequality and the fact that𝑀
1
= 0,

2∑

𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗 ≥ 2

𝑛
(2
𝑛
− 1)(∏

𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗)

2/2
𝑛
(2
𝑛
−1)

= 2
𝑛
(2
𝑛
− 1)[

[

(∏

𝑖=1

𝑒
𝜆𝑖)

2
𝑛
−1

]

]

2/2
𝑛
(2
𝑛
−1)

= 2
𝑛
(2
𝑛
− 1) (𝑒

𝑀1)
2/2
𝑛

= 2
𝑛
(2
𝑛
− 1) ,

(20)

where the equality holds if and only if 𝜆
1
= ⋅ ⋅ ⋅ = 𝜆

2
𝑛 .

Combining with equalities (19) and (20),

√4𝑛+(𝑛 + 1) 2𝑛+1+8𝑡+[cosh (2)−3]𝑀4+[cosh (2)−
10

3
]𝑀
5

≤ 𝐸𝐸 (𝐹𝑄
𝑛
) ,

(21)

where𝑀
4
= 2𝑍𝑔(𝐺)− 2𝑚+8𝑞, 𝑀

5
= 30𝑡 + 10𝑝+10𝑟, 𝑝 and

𝑞 are the numbers of pentagons and quadrangles in 𝐹𝑄
𝑛
, and

𝑟 is the number of subgraphs consisting of a triangle with a
pendent vertex attached.

Notice that the equality of (21) holds if and only if the
equalities of (19) and (20) hold; that is, the equality holds if
and only if 𝜆

1
= ⋅ ⋅ ⋅ = 𝜆

2
𝑛 , which is impossible for any 𝐹𝑄

𝑛

with 𝑛 ≥ 2. Therefore, this implies the results of Theorem 9.

We now consider the upper bound for the Estrada index
of 𝐹𝑄

𝑛
as follows.

Theorem 10. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

𝐸𝐸 (𝐹𝑄
𝑛
) < 2
𝑛
− 1 + 𝑒

√(𝑛+1)2
𝑛

. (22)

Proof. According to the definition of Estrada index we get

𝐸𝐸 (𝐹𝑄
𝑛
) = 2
𝑛
+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

𝜆
𝑘

𝑖

𝑘!
≤ 2
𝑛
+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑘

𝑘!

= 2
𝑛
+ ∑

𝑘≥1

1

𝑘!

2
𝑛

∑

𝑖=1

[(𝜆
𝑖
)
2

]
𝑘/2

.

(23)

Notice the inequality

2
𝑛

∑

𝑖=1

[(𝜆
𝑖
)
2

]
𝑘/2

≤ [

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

; (24)

substituting inequality (24) into (23) we obtain that

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛
+ ∑

𝑘≥1

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

= 2
𝑛
− 1 + ∑

𝑘≥0

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

.

(25)

Since the equality holds in 𝐹𝑄
𝑛
,

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

= (𝑛 + 1) 2
𝑛
. (26)

Hence,

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛
− 1 + ∑

𝑘≥0

1

𝑘!
[(𝑛 + 1) 2

𝑛
]
𝑘/2

= 2
𝑛
− 1 + ∑

𝑘≥0

√(𝑛 + 1)2𝑛
𝑘

𝑘!

= 2
𝑛
− 1 + 𝑒

√(𝑛+1)2
𝑛

.

(27)

It is evident that equality of (25) will be attained if and
only if the graph 𝐹𝑄

𝑛
has no nonzero eigenvalues, which, in

turn, happens only in the case of the edgeless graph 𝐾
𝑛
; it is

impossible for any 𝐹𝑄
𝑛
with 𝑛 ≥ 2 that directly leads to the

inequality in (27).
Hence, we can obtain the upper bound for the Estrada

index of 𝐹𝑄
𝑛
:

𝐸𝐸 (𝐹𝑄
𝑛
) < 2
𝑛
− 1 + 𝑒

√(𝑛+1)2
𝑛

. (28)

The proof of Theorem 10 is completed.

Remark 11. In [23], it was proved that

𝑒
𝑟
+ (𝑛 − 1) 𝑒

−𝑟/(𝑛−1)
≤ 𝐸𝐸 (𝐺) < 𝑛 − 2 + 𝑒

𝑟
+ 𝑒
√𝑟(𝑛−𝑟)−1

,

(29)

with equality, holds if and only if 𝜆
2
= 𝜆
3
= ⋅ ⋅ ⋅ = 𝜆

𝑛
=

−𝑟/(𝑛 − 1).
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Notice that the spectral radius of 𝐹𝑄
𝑛
is 𝜆
1
= 𝑛 + 1 and

𝑟 = 𝑛 +1; applying Lemma6, we also give the lower and upper
bounds connecting𝐸𝐸(𝐹𝑄

𝑛
) and its spectral radius by simple

computations, where the equality is impossible for any 𝐹𝑄
𝑛
;

hence

𝑒
𝑛+1

+ (2
𝑛
− 1) 𝑒

(−𝑛−1)/(2
𝑛
−1)

< 𝐸𝐸 (𝐹𝑄
𝑛
) < 2
𝑛
− 2 + 𝑒

𝑛+1
+ 𝑒
√(𝑛+1)[2

𝑛
−(𝑛+1)]−1

.

(30)

3.3. Some Properties on Estrada Index Involving Energy of
𝐹𝑄
𝑛
. In this section, we investigate the relations between the

Estrada index and the energy of 𝐹𝑄
𝑛
. We firstly prove the

lower bounds involving energy for the Estrada index of 𝐹𝑄
𝑛
;

inTheorem 12 proof, some techniques in [23] are referred to.

Theorem 12. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

1

2
(𝑒 − 1) 𝐸 (𝐹𝑄

𝑛
) + (2

𝑛
− 𝑛
𝑖
) < 𝐸𝐸 (𝐹𝑄

𝑛
) . (31)

Proof. Assume that 𝑛
𝑖
denote the number of positive eigen-

values; we begin with the definition of Estrada index
𝐸𝐸(𝐹𝑄

𝑛
):

𝐸𝐸 (𝐹𝑄
𝑛
) =

2
𝑛

∑

𝑖=1

𝑒
𝜆

𝑖
= ∑

𝜆𝑖≤0

𝑒
𝜆

𝑖
+ ∑

𝜆𝑖>0

𝑒
𝜆

𝑖
. (32)

Since 𝑒𝑥 ≥ 1 + 𝑥, with equality, holds if and only if 𝑥 = 0, we
have

∑

𝜆𝑖≤0

𝑒
𝜆

𝑖
≥ ∑

𝜆𝑖≤0

(1 + 𝜆
𝑖
) = (2

𝑛
− 𝑛
𝑖
) + (𝜆

𝑛𝑖+1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛
) .

(33)

The other underlying inequality is 𝑒𝑥 ≥ 𝑒𝑥 and equality
holds if and only if 𝑥 = 1; we get

∑

𝜆𝑖>0

𝑒
𝜆

𝑖
≥ ∑

𝜆𝑖>0

𝑒𝜆
𝑖
= 𝑒 (𝜆

1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
) . (34)

Substituting the inequalities (33) and (34) into (32),

𝐸𝐸 (𝐹𝑄
𝑛
) ≥ (2

𝑛
− 𝑛
𝑖
) + (𝜆

𝑛𝑖+1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛
)

+ 𝑒 (𝜆
1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
)

= (2
𝑛
− 𝑛
𝑖
) + (𝜆

1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
+ 𝜆
𝑛𝑖+1

+ ⋅ ⋅ ⋅ + 𝜆
𝑛
)

+ (𝑒 − 1) (𝜆
1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
)

= (2
𝑛
− 𝑛
𝑖
) + (𝑒 − 1) (𝜆

1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
) .

(35)

Note that

𝜆
1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
=
1

2
𝐸 (𝐹𝑄

𝑛
) . (36)

From the above inequalities (35) and (36), we arrive at

1

2
(𝑒 − 1) 𝐸 (𝐹𝑄

𝑛
) + (2

𝑛
− 𝑛
𝑖
) ≤ 𝐸𝐸 (𝐹𝑄

𝑛
) , (37)

with equality if and only if 𝐹𝑄
𝑛
is an empty graph with 2

𝑛

vertices, which is impossible.
Hence,

1

2
(𝑒 − 1) 𝐸 (𝐹𝑄

𝑛
) + (2

𝑛
− 𝑛
𝑖
) < 𝐸𝐸 (𝐹𝑄

𝑛
) , (38)

as desired.

We now derive the upper bounds involving energy for the
Estrada index of 𝐹𝑄

𝑛
.

Theorem 13. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

𝐸𝐸 (𝐹𝑄
𝑛
) < 𝐸 (𝐹𝑄

𝑛
) + 2
𝑛
− 1 − √(𝑛 + 1) 2𝑛 + 𝑒

√(𝑛+1)2
𝑛

.

(39)

Proof. We consider that

𝐸𝐸 (𝐹𝑄
𝑛
) =

𝑛

∑

𝑖=1

𝑒
𝜆

𝑖
= 2
𝑛
+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

𝜆
𝑘

𝑖

𝑘!

≤ 2
𝑛
+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑘

𝑘!
.

(40)

Taking into account the definition of graph energy equa-
tion (1), we obtain

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛
+ 𝐸 (𝐹𝑄

𝑛
) +

2
𝑛

∑

𝑖=1

∑

𝑘≥2

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑘

𝑘!

= 2
𝑛
+ 𝐸 (𝐹𝑄

𝑛
) + ∑

𝑘≥2

1

𝑘!

2
𝑛

∑

𝑖=1

[(𝜆
𝑖
)
2

]
𝑘/2

.

(41)

In light of the inequality (24) holds for integer 𝑘 ≥ 2, we
obtain that

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛
+ 𝐸 (𝐹𝑄

𝑛
) + ∑

𝑘≥2

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

= 2
𝑛
+ 𝐸 (𝐹𝑄

𝑛
) − 1 − √(𝑛 + 1) 2𝑛

+ ∑

𝑘≥0

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

.

(42)

Substituting (26) into (42), we get

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛
+ 𝐸 (𝐹𝑄

𝑛
) − 1 − √(𝑛 + 1) 2𝑛

+ ∑

𝑘≥0

1

𝑘!
[(𝑛 + 1) 2

𝑛
]
𝑘/2

= 2
𝑛
+ 𝐸 (𝐹𝑄

𝑛
) − 1 − √(𝑛 + 1) 2𝑛 + 𝑒

√(𝑛+1)2
𝑛

,

(43)

with equality if and only if 𝐹𝑄
𝑛
is an empty graph with 2

𝑛

vertices, which is impossible.
From the above argument, we get the result ofTheorem 13.
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4. Conclusions

The main purpose of this paper is to investigate the Estrada
index of 𝐹𝑄

𝑛
with 𝑛 ≥ 2; we established the explicit formulae

for calculating the Estrada index of 𝐹𝑄
𝑛
by deducing the

characteristic polynomial of the adjacency matrix in spectral
graph theory.

Moreover, some lower and upper bounds for Estrada
index of 𝐹𝑄

𝑛
were proposed by utilizing the arithmetic and

geometric mean inequality. The lower and upper bounds for
the Estrada index involving energy of𝐹𝑄

𝑛
were also obtained.
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