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A recent research indicated that the corticocortical connectivity network of the cat possesses cluster structure and that each cluster in
the network is scale-free andhas amost connected hub.Motivated by that research, we slightlymodify the networkmodel and derive
sufficient conditions for cluster synchronization of themodified network based on Lyapunov functionmethod.The obtained results
indicate that cluster synchronization can be induced by the hubs of the scale-free networks. In our opinion, the concept of hub-
induced synchronization provides a better understanding of cluster synchronization in scale-free networks. Numerical examples
are provided to demonstrate the effectiveness of the theoretical results.

1. Introduction

In order to better understand the brain functions of mam-
mals such as memory, language, and consciousness, many
researches have been carried out to explore the organization
and structure of the cerebral cortex [1–3]. These researches
indicated that neurons in the surface of the cerebral cortex
usually split into functional units (cortical areas) in the
process of spreading information [1]. From a network point of
view, these functional units form the nodes, linked by fibers,
which form the network connections. For instance, there are
1139 corticocortical connections between 65 functional units
in the cat cerebral cortex [2]. Recently, a network model was
proposed to mimic the corticocortical connectivity of the cat
andmake clear the principles of organization and functioning
of the cerebral cortex [3]. Based on statistical analysis,
the network model is shown to exhibit a cluster structure
with each cluster being scale-free, neither fully regular, nor
completely random [4, 5]. Each of these clusters composed
by cortical areas forms an organization playing common
functional roles. Previous evidences indicated that each
cluster possesses a cluster hub with the following major
features: (1) each cluster possessing only one hub, (2) every

hub possessing a large density of connections, and (3) all
hubs being connected among themselves in a strong fashion
[3, 6]. Therefore, the network model is called a rich-club
clustered network. Under the assumption that all the hubs are
all-to-all coupled, it was shown that the scale-free structure
of the network contributes a great deal to suppress bursting
synchronization [3].

Not coincidentally, it has been demonstrated that many
real world large-scale networks display a scale-free feature,
such as biological networks, World Wide Webs, and inter-
bank payment networks. Generally speaking, the scale-free
feature of real networks is believed to stem from preferential
attachment growth [4, 5]. In the event, the degree distribution
of the networks obeys a power-law form: a large number
of nodes are connected sparsely, while a small number of
nodes (hubs) are connected densely. In the past decades,
synchronization in coupled oscillator networks has attracted
much attention [7, 8]. Obviously, these hubs will play a key
role in the process of synchronization. It has been shown
that the synchronizability of a scale-free network is fragile to
specific removal of hubs and robust against the removal of
nonhub nodes [9]. Recently, in scale-free networks composed
of Kuramoto oscillators, explosive synchronization has been
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studied based on mean-field approximations [10, 11]. A
prerequisite for the researches is that the natural frequency
of each oscillator should be equal to its node degree, which
implies that the natural frequencies of the hubs should be
higher than the other oscillators [10, 11]. All in all, for scale-
free networks, there is an intimate relationship between syn-
chronization and the couplings or dynamics of the hubs.

For a general network, cluster structure implies that the
oscillators are divided into clusters, and the connections
within each cluster are dense, while the connections between
different clusters are sparse [12–14]. As the result, cluster syn-
chronization usually occurs in networks with cluster struc-
ture; that is, synchronization occurs in each cluster but may
not occur among different clusters [15–21]. In order to study
cluster synchronization, two control methods have been
proposed. The first one is the pinning control strategy [22–
24], which has been applied to realize an expected cluster syn-
chronization pattern in networks with cluster structure [15]
and in neural networks with stochastic delay [16]. Another
method is to impose suitable constraints on the coupling
matrix [17, 18]. As special cases, it has also been shown that
cluster synchronization can be achieved by constructing non-
trivial coupling matrices [19–21]. To the best of our knowl-
edge, few researches have focused on cluster synchronization
in scale-free networks. However, many researches indicated
that some of scale-free networks possess cluster structure
[25, 26]. Therefore, it is necessary to explore cluster syn-
chronization in scale-free networks, especially to study the
relation between the couplings of cluster hubs and cluster
synchronization.

In this paper, we aim to model the cat cortex structure
through building a coupled oscillator network with a scale-
free feature and to study cluster synchronization in such a
network. In contrast with the statistical analysis in previous
researches, this paper carries out rigorous theoretical investi-
gations on collective dynamics of the cerebral cortex of cats
or other mammals. At first, we build a network model with
cluster structure, in which each cluster has a most connected
cluster hub. The obtained network model fully reflects the
characteristics of the cerebral cortex of cats. Secondly, we
derive the error systems between each node and its cluster
hub. Based on stability analysis of the error systems, we obtain
the criterion for cluster synchronization of the network.
Motivated by the recent researches on synchronization in
scale-free networks [9–11], we focus on analyzing the key
role of the cluster hubs in process of cluster synchronization.
The obtained criterion shows that the couplings from the
cluster hubs are of great significance for realizing cluster
synchronization. In other words, cluster synchronization can
be induced by the cluster hubs. Therefore, we call this type
of synchronization as hub-induced synchronization, which
provides a better understanding of cluster synchronization in
scale-free networks.

The rest of this paper is organized as follows. In Section 2,
the model of a clustered scale-free network with cluster hubs
is introduced, and some preliminaries are introduced. In
Section 3, the main result on hub-induced synchronization
in the network model is obtained. In Section 4, numerical
examples are given to show the effectiveness of the theoretical

results. Finally, the paper is concluded by a brief discussion in
Section 5.

2. Preliminaries

2.1. A Scale-Free Network with Cluster Hubs. Consider the
following network with cluster structure:

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
, 𝑡) + 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑐
𝑖𝑗
𝐻𝑥
𝑗
, (1)

where 𝑥
𝑖
= (𝑥1
𝑖
, . . . , 𝑥𝑛

𝑖
)
⊤ is the coordinate of the 𝑖th oscillator,

𝑓 : 𝑅𝑛 × [0, +∞) → 𝑅𝑛 is a continuous map, 𝜀 > 0 is
the coupling strength, 𝐻 = diag(ℎ

1
, . . . , ℎ

𝑛
) is a nonnegative

matrix, and 𝐶 = (𝑐
𝑖𝑗
)
𝑚×𝑚

is the coupling matrix satisfying
∑
𝑚

𝑗=1
𝑐
𝑖𝑗
= 0, 𝑖 = 1, . . . , 𝑚. Without loss of generality, suppose

that 𝑃
1

= {1, . . . , 𝜎
1
}, . . ., 𝑃

𝑑
= {𝜎
𝑑−1

+ 1, . . . , 𝜎
𝑑
}, and 𝑃 =

{𝑃
1
, . . . , 𝑃

𝑑
}. Then the coupling matrix 𝐶 is partitioned into

blocks:

𝐶 = [

[

𝐶
11

⋅ ⋅ ⋅ 𝐶
1𝑑

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐶
𝑑1

⋅ ⋅ ⋅ 𝐶
𝑑𝑑

]

]

, (2)

where 𝐶
𝑘𝑙

∈ 𝑅𝑝𝑘×𝑝𝑙 , 𝑝
𝑘
= 𝜎
𝑘
− 𝜎
𝑘−1

, 𝑝
0
= 0. Assume that each

cluster has a single most connected node, which is called a
cluster hub. That is to say, the following assumption holds.
(𝐻
1
) Each cluster 𝑃

𝑘
has a cluster hub 𝜎

𝑘
, and there holds

𝑐
𝜎
𝑖̂
𝑗
+ 𝑐
𝜎
𝑗
𝑖
≤ 𝑐
𝑖𝑗
+ 𝑐
𝑗𝑖
, (3)

where 𝑖̂ = 𝑘 if 𝑖 ∈ 𝑃
𝑘
, 𝑖, 𝑗 = 1, . . . , 𝑚, 𝑖̂ ̸= 𝑗.

The assumption (𝐻
1
) means that, for any pair of nodes

𝑖, 𝑗 belonging to different clusters, the sum of the coupling
from 𝑗 to 𝜎

𝑖̂
(the cluster hub of 𝑖) and the coupling from 𝑖

to 𝜎
𝑗
(the cluster hub of 𝑗) should be less than the sum of

the couplings between 𝑖 and 𝑗. That is to say, each cluster
hub should not be influenced more greatly by the nodes in
other clusters. Otherwise, it should be regarded as the cluster
hub of these nodes. In order to understand the assumptions
more clearly, we can refer to Figure 1 in Section 4. As can be
seen from Figure 1, each cluster hub is coupled densely with
the nodes belonging to its cluster and coupled sparsely with
the nodes belonging to other clusters. Therefore, it is natural
to propose the assumption (𝐻

1
). In a particular case, when

each cluster hub is only coupled with the nodes belonging
to its cluster, not coupled with the nodes belonging to other
clusters, the assumption (𝐻

1
) is satisfied because the left hand

of the inequality is equal to zero.

2.2. The Cluster Synchronization Manifold. Now, we intro-
duce the concept of the cluster synchronizationmanifold and
its attractiveness.

Definition 1. The set

M (𝑃) = {(𝑥
⊤

1
, . . . , 𝑥

⊤

𝑚
)
⊤

: 𝑥
𝑖
= 𝑥
𝑗
∈ 𝑅
𝑛 if 𝑖̂ = 𝑗} (4)

is called the cluster synchronization manifold corresponding
to the partition 𝑃.
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Definition 2. The cluster synchronization manifold M(𝑃) is
globally attractive for the system (1), or cluster synchroniza-
tion corresponding to the partition 𝑃 occurs, if

lim
𝑡→+∞

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝜎𝑘

󵄩󵄩󵄩󵄩󵄩
= 0 (5)

holds for any initial condition (𝑥⊤
1
(0), . . . , 𝑥⊤

𝑚
(0))
⊤, where ‖ ⋅ ‖

denotes the 2-norm of vectors.

Before studying the attractiveness of the manifold M(𝑃),
a sufficient and necessary condition for its invariance is
introduced as follows.

Lemma 3 (see [17]). The cluster synchronization manifold
M(𝑃) is an invariant manifold of the system (1) if and only
if every submatrix 𝐶

𝑘𝑙
in the form (2) has equal-row-sums,

𝑘, 𝑙 = 1, . . . , 𝑑.

According to Lemma 3, the following assumption [17, 18]
is supposed to hold throughout this paper.

(𝐻
2
) Every submatrix 𝐶

𝑘𝑙
∈ 𝑅𝑝𝑘×𝑝𝑙 in the form (2) has

equal-row-sums, 𝑘, 𝑙 = 1, . . . , 𝑑.

In the next section, we will derive sufficient conditions
for cluster synchronization of the system (1) induced by the
cluster hubs based on the preliminaries mentioned above.

3. Cluster Synchronization Induced by
Cluster Hubs

Defining the synchronization errors as 𝑋
𝜎
𝑖̂
𝑖
= 𝑥
𝑖
− 𝑥
𝜎
𝑖̂
, 𝑖 =

1, . . . , 𝑚, we get the error system

𝑋̇
𝜎
𝑖̂
𝑖
= 𝑥̇
𝑖
− 𝑥̇
𝜎
𝑖̂

= 𝑓 (𝑥
𝑖
, 𝑡) + 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑐
𝑖𝑗
𝐻𝑥
𝑗
− 𝑓 (𝑥

𝜎
𝑖̂
, 𝑡) − 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑐
𝜎
𝑖̂
𝑗
𝐻𝑥
𝑗

= 𝑓 (𝑥
𝑖
, 𝑡) − 𝑓 (𝑥

𝜎
𝑖̂
, 𝑡) + 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑐
𝑖𝑗
𝐻𝑋
𝜎
𝑗
𝑗

− 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑐
𝜎
𝑖̂
𝑗
𝐻𝑋
𝜎
𝑗
𝑗
+ 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑐
𝑖𝑗
𝐻𝑥
𝜎
𝑗
− 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑐
𝜎
𝑖̂
𝑗
𝐻𝑥
𝜎
𝑗

= 𝑓 (𝑥
𝑖
, 𝑡) − 𝑓 (𝑥

𝜎
𝑖̂
, 𝑡) + 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

(𝑐
𝑖𝑗
− 𝑐
𝜎
𝑖̂
𝑗
)𝐻𝑋
𝜎
𝑗
𝑗

+ 𝜀

𝑑

∑
𝑙=1

[

[

∑
𝑗∈𝑃𝑙

(𝑐
𝑖𝑗
− 𝑐
𝜎
𝑖̂
𝑗
)]

]

𝐻𝑥
𝜎𝑙
.

(6)

It follows from the assumption (𝐻
2
) that

𝑋̇
𝜎
𝑖̂
𝑖
= 𝑓 (𝑥

𝑖
, 𝑡) − 𝑓 (𝑥

𝜎
𝑖̂
, 𝑡) + 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑎
𝑖𝑗
𝐻𝑋
𝜎
𝑗
𝑗
, (7)

where 𝑎
𝑖𝑗

= 𝑐
𝑖𝑗
− 𝑐
𝜎
𝑖̂
𝑗
. Decompose the matrix 𝐴 = (𝑎

𝑖𝑗
) as

follows:

𝐴 = 𝐴
𝛼
+ 𝐴
𝛽
+ 𝐴
𝛾
+ 𝐴
𝜉
, (8)

where

𝐴
𝛼
= {𝛼
𝑖𝑗
} :

{{{{{{{{

{{{{{{{{

{

0, 𝑖̂ ̸= 𝑗;

𝛼
𝑖𝑗
=

(𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
)

2
, 𝑖̂ = 𝑗, 𝑖 ̸= 𝑗;

𝛼
𝑖𝑗
= −

𝑚

∑
𝑞=1, 𝑞 ̸= 𝑖

𝛼
𝑖𝑞
, 𝑖 = 𝑗

𝐴
𝛽
= {𝛽
𝑖𝑗
} :

{{{{{{

{{{{{{

{

𝛽
𝑖𝑗
=

(𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
)

2
, 𝑖̂ ̸= 𝑗;

0, 𝑖̂ = 𝑗, 𝑖 ̸= 𝑗;

𝛽
𝑖𝑗
= −

𝑚

∑
𝑞=1, 𝑞 ̸= 𝑖

𝛽
𝑖𝑞
, 𝑖 = 𝑗,

(9)

are symmetric and zero-row-sum matrices, and

𝐴
𝛾
= {𝛾
𝑖𝑗
} :

{{

{{

{

𝛾
𝑖𝑗
=

(𝑎
𝑖𝑗
− 𝑎
𝑗𝑖
)

2
, 𝑖 ̸= 𝑗;

𝛾
𝑖𝑗
= 0, 𝑖 = 𝑗

(10)

is an antisymmetric matrix, and 𝐴
𝜉

= diag{𝜉
11
, . . . , 𝜉

𝑚𝑚
},

where 𝜉
𝑖𝑖
= 𝑎
𝑖𝑖
− 𝛼
𝑖𝑖
− 𝛽
𝑖𝑖
, 𝑖 = 1, . . . , 𝑚.

Noticing that𝑋
𝜎
𝑖̂
𝜎
𝑖̂
= 0, we introduce the matrices

𝐴
𝑘
= [

[

𝛼
𝜎𝑘−1+1,𝜎𝑘−1+1

⋅ ⋅ ⋅ 𝛼
𝜎𝑘−1+1,𝜎𝑘−1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝛼
𝜎𝑘−1,𝜎𝑘−1+1

⋅ ⋅ ⋅ 𝛼
𝜎𝑘−1,𝜎𝑘−1

]

]

= {𝛼
𝑖𝑗
}
𝑖,𝑗∈𝑃𝑘

, (11)

where 𝑃
𝑘

= {𝜎
𝑘−1

+ 1, . . . , 𝜎
𝑘
− 1}, 𝑘 = 1, . . . , 𝑑. For the

convenience of later use, we denote

𝑋 = (𝑋
⊤

𝜎
1̂
1
, . . . , 𝑋

⊤

𝜎𝑚̂𝑚
)
⊤

∈ 𝑅
𝑚𝑛

,

𝑋
𝑠

𝑘
= (𝑋
𝑠

𝜎𝑘 ,𝜎𝑘−1+1
, . . . , 𝑋

𝑠

𝜎𝑘 ,𝜎𝑘−1
)
⊤

∈ 𝑅
𝑛(𝑝𝑘−1),

(12)

where 𝑠 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑑. Then based on Lyapunov
function method, we obtain the following theorem and the
corresponding proof.

Theorem 4. Let 𝑄 = diag(𝑞
1
, . . . , 𝑞

𝑛
) be a positive-definite

diagonal matrix, let Δ = diag(𝛿
1
, . . . , 𝛿

𝑛
) be a diagonal matrix

with 𝛿
𝑗

≤ 0 for 𝑗 ∈ {𝑗 : ℎ
𝑗

= 0}, and the function 𝑓(𝑢, 𝑡)

satisfies

(𝑢 − V)⊤𝑄 [𝑓 (𝑢, 𝑡) − 𝑓 (V, 𝑡) − Δ (𝑢 − V)]

≤ −𝜖(𝑢 − V)⊤ (𝑢 − V) ,
(13)

for some 𝜖 > 0, all 𝑢, V ∈ 𝑅𝑛, and all 𝑡 ≥ 0. Then under the
assumptions (𝐻

1
) and (𝐻

2
), cluster synchronization occurs in

the system (1) if

𝛿
𝑠
+ 𝜀max
𝑖∈𝑃𝑘

{𝑎
𝑖𝑖
− 𝛼
𝑖𝑖
− 𝛽
𝑖𝑖
} ℎ
𝑠
+ 𝜀ℎ
𝑠
max 𝜆 (𝐴

𝑘
) ≤ 0,

(14)
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where 𝜆max(𝐴𝑘) is the largest eigenvalue of 𝐴𝑘, 𝑘 = 1, . . . , 𝑑,
𝑠 = 1, . . . , 𝑛.

Proof. Considering the Lyapunov function,

𝑉 (𝑋) =
1

2

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝑋
𝜎
𝑖̂
𝑖
, (15)

we have

𝑉̇ (𝑋) =

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄

× [

[

𝑓 (𝑥
𝑖
, 𝑡) − 𝑓 (𝑥

𝑖̂
, 𝑡) + 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑎
𝑖𝑗
𝐻𝑋
𝜎
𝑗
𝑗
]

]

=

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄[

[

𝑓 (𝑥
𝑖
, 𝑡) − 𝑓 (𝑥

𝑖̂
, 𝑡) − Δ𝑋

𝜎
𝑖̂
𝑖

+ Δ𝑋
𝜎
𝑖̂
𝑖
+ 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑎
𝑖𝑗
𝐻𝑋
𝜎
𝑗
𝑗
]

]

≤ −𝜖

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑋
𝜎
𝑖̂
𝑖

+

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄(Δ𝑋

𝜎
𝑖̂
𝑖
+ 𝜀

𝑑

∑
𝑙=1

∑
𝑗∈𝑃𝑙

𝑎
𝑖𝑗
𝐻𝑋
𝜎
𝑗
𝑗
)

≤ −
2𝜖𝑉 (𝑋)

max
1≤𝑖≤𝑛

𝑞
𝑖

+ 𝑆.

(16)

By the decomposition (8), it is clear that

𝑆 =

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄Δ𝑋
𝜎
𝑖̂
𝑖

+ 𝜀

𝑑

∑
𝑘=1

𝑑

∑
𝑙=1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

(𝛼
𝑖𝑗
+ 𝛽
𝑖𝑗
+ 𝛾
𝑖𝑗
+ 𝜉
𝑖𝑗
)𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻𝑋

𝜎
𝑗
𝑗

= 𝑆
𝛿
+ 𝑆
𝛼
+ 𝑆
𝛽
+ 𝑆
𝛾
+ 𝑆
𝜉
.

(17)

Firstly, noticing the antisymmetry of the matrix 𝐴
𝛾
, we have

𝑆
𝛾
= 𝜀

𝑑

∑
𝑘=1

𝑑

∑
𝑙=1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛾
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻𝑋

𝜎
𝑗
𝑗

= 𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛾
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻𝑋

𝜎
𝑗
𝑗

+ 𝜀

𝑑−1

∑
𝑙=1

𝑑

∑
𝑘=𝑙+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛾
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻𝑋

𝜎
𝑗
𝑗

= 𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛾
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻𝑋

𝜎
𝑗
𝑗

+ 𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑗∈𝑃𝑙

∑
𝑖∈𝑃𝑘

𝛾
𝑗𝑖
𝑋
⊤

𝜎
𝑗
𝑗
𝑄𝐻𝑋

𝜎
𝑖̂
𝑖

= 𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

(𝛾
𝑖𝑗
+ 𝛾
𝑗𝑖
)𝑋
⊤

𝜎
𝑗
𝑗
𝑄𝐻𝑋

𝜎
𝑖̂
𝑖
= 0.

(18)

Secondly, noticing the zero-row-sum of the matrix 𝐴
𝛽
, we

have

𝑆
𝛽
= 𝜀

𝑑

∑
𝑘=1

𝑑

∑
𝑙=1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛽
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻(𝑋

𝜎
𝑗
𝑗
− 𝑋
𝜎
𝑖̂
𝑖
)

= 𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛽
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻(𝑋

𝜎
𝑗
𝑗
− 𝑋
𝜎
𝑖̂
𝑖
)

+ 𝜀

𝑑−1

∑
𝑙=1

𝑑

∑
𝑘=𝑙+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛽
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻(𝑋

𝜎
𝑗
𝑗
− 𝑋
𝜎
𝑖̂
𝑖
)

= 𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛽
𝑖𝑗
𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄𝐻(𝑋

𝜎
𝑗
𝑗
− 𝑋
𝜎
𝑖̂
𝑖
)

+ 𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑗∈𝑃𝑙

∑
𝑖∈𝑃𝑘

𝛽
𝑗𝑖
𝑋
⊤

𝜎
𝑗
𝑗
𝑄𝐻(𝑋

𝜎
𝑖̂
𝑖
− 𝑋
𝜎
𝑗
𝑗
)

= −𝜀

𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝑃𝑘

∑
𝑗∈𝑃𝑙

𝛽
𝑖𝑗
(𝑋
𝜎
𝑗
𝑗
− 𝑋
𝜎
𝑖̂
𝑖
)
⊤

× 𝑄𝐻(𝑋
𝜎
𝑗
𝑗
− 𝑋
𝜎
𝑖̂
𝑖
) .

(19)

Based on the assumption (𝐻
1
), we obtain 𝑆

𝛽
≤ 0. Therefore,

𝑆 ≤ 𝑆
𝛿
+ 𝑆
𝛼
+ 𝑆
𝜉

=

𝑑

∑
𝑘=1

∑
𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄[

[

Δ𝑋
𝜎
𝑖̂
𝑖
+ 𝜀∑
𝑗∈𝑃𝑘

𝛼
𝑖𝑗
𝐻𝑋
𝜎
𝑗
𝑗

+ 𝜀 (𝑎
𝑖𝑖
− 𝛼
𝑖𝑖
− 𝛽
𝑖𝑖
)𝐻𝑋
𝜎
𝑖̂
𝑖
]

]

≤

𝑑

∑
𝑘=1

∑

𝑖∈𝑃𝑘

𝑋
⊤

𝜎
𝑖̂
𝑖
𝑄[

[

(Δ + 𝜀max
𝑖∈𝑃𝑘

{𝑎
𝑖𝑖
− 𝛼
𝑖𝑖
− 𝛽
𝑖𝑖
}𝐻)𝑋

𝜎
𝑖̂
𝑖

+𝜀 ∑

𝑗∈𝑃𝑘

𝛼
𝑖𝑗
𝐻𝑋
𝜎
𝑗
𝑗
]

]
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=

𝑑

∑
𝑘=1

𝑛

∑
𝑠=1

𝑞
𝑠
𝑋
𝑠⊤

𝑘
[(𝛿
𝑠
+ 𝜀max
𝑖∈𝑃𝑘

{𝑎
𝑖𝑖
− 𝛼
𝑖𝑖
− 𝛽
𝑖𝑖
} ℎ
𝑠
) 𝐼
𝑝𝑘−1

+ 𝜀ℎ
𝑠
𝐴
𝑘
]𝑋
𝑠

𝑘
.

(20)

It is well known that a symmetric matrix 𝐴
𝑘
has the decom-

position 𝐴
𝑘

= 𝑈
𝑘
Λ
𝑘
𝑈⊤
𝑘
, where 𝑈

𝑘
∈ 𝑅(𝑝𝑘−1)×(𝑝𝑘−1) is a

unitarymatrix andΛ
𝑘
= diag{𝜆

1
(𝐴
𝑘
), . . . , 𝜆

𝑝𝑘−1
(𝐴
𝑘
)} is a real

diagonal matrix. Applying the orthogonal transformations

𝑋
𝑠

𝑘
= 𝑈
𝑘
𝑌
𝑠

𝑘
, 𝑘 = 1, . . . , 𝑑, 𝑠 = 1, . . . , 𝑛, (21)

to (20), we finally get

𝑆 ≤

𝑑

∑
𝑘=1

𝑛

∑
𝑠=1

𝑞
𝑠
𝑌
𝑠⊤

𝑘
[(𝛿
𝑠
+ 𝜀max
𝑖∈𝑃𝑘

{𝑎
𝑖𝑖
− 𝛼
𝑖𝑖
− 𝛽
𝑖𝑖
} ℎ
𝑠
)

× 𝐼
𝑝𝑘−1

+ 𝜀ℎ
𝑠
Λ
𝑘
]𝑌
𝑠

𝑘
.

(22)

Therefore, the conditions in Theorem 4 are sufficient for 𝑆 ≤

0, and then

𝑉̇ (𝑋) ≤
−2𝜖𝑉 (𝑋)

max
1≤𝑖≤𝑛

𝑞
𝑖

. (23)

This completes the proof of Theorem 4.

In order to better understand the condition (14), wemake
the following analysis:

𝑎
𝑖𝑖
− 𝛼
𝑖𝑖
− 𝛽
𝑖𝑖

= 𝑐
𝑖𝑖
− 𝑐
𝑖𝑖
+

1

2

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

(𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
)

= −

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

𝑐
𝑖𝑗
− 𝑐
𝑖𝑖
+

1

2

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

(𝑐
𝑖𝑗
+ 𝑐
𝑗𝑖
− 𝑐
𝑖𝑗
− 𝑐
𝑗𝑖
)

=
1

2

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

(𝑐
𝑗𝑖
− 𝑐
𝑖𝑗
) −

1

2

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

(𝑐
𝑖𝑗
+ 𝑐
𝑗𝑖
) − 𝑐
𝑖𝑖
.

(24)

Combining the definitions of the matrices 𝐴
𝑘
in (11), we

can conclude that cluster synchronization can be realized
by increasing the couplings of the cluster hubs. Therefore,
this type of cluster synchronization is called as hub-induced
synchronization.

4. Numerical Simulations

Consider the system (1) composed of𝑚 neural networks:

𝑥̇
𝑖
= −𝐷𝑥

𝑖
+ 𝑇𝑔 (𝑥

𝑖
) + 𝜀

𝑚

∑
𝑗=1

𝑐
𝑖𝑗
𝐻𝑥
𝑗
, 𝑖 = 1, . . . , 𝑚, (25)

1

2

3
4

5

6

7

8

i

Cluster Pi, i = 1, . . ., 8

Figure 1: Schematic diagram of a network model possessing scale-
free feature and cluster structure. Each cluster has a most connected
hub.

where 𝑥
𝑖
∈ 𝑅
3, 𝐷 = 𝐻 = 𝐼

3
, 𝑔(𝑥
𝑖
) = (𝑔(𝑥

1

𝑖
), 𝑔(𝑥
2

𝑖
), 𝑔(𝑥
3

𝑖
))
⊤,

𝑔(𝑠) = (|𝑠 + 1| − |𝑠 − 1|)/2, and

𝑇 = (

1.25 −3.2 −3.2

−3.2 1.1 −4.4

−3.2 4.4 1.0

) . (26)

By using Matlab LMI Control Toolbox, one can obtain that
𝛿min = 5.685 satisfies the condition (13) [27].

4.1. Simulation 1. Motivated by the “rich-club” clustered
network in [3], we consider a network model possessing
scale-free feature, cluster structure, in which each cluster has
a most connected hub. For example, a schematic diagram of
such a network consisting of 64 nodes is shown in Figure 1.
These nodes split into 8 clusters, and each cluster displays a
scale-free feature.

Define the synchronization errors

𝑒
0
=

64

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
− 𝑥
1

󵄨󵄨󵄨󵄨󵄨

64
, 𝑒

𝑖
= ∑
𝑗∈𝑃𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
− 𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
, 𝑖 = 1, 2, . . . , 8,

(27)

where the time evolutions are plotted in Figure 2. As can
be seen, the system (25) realizes cluster synchronization.
Obviously, the hubs of the system (25) play key roles in
realizing cluster synchronization.

4.2. Simulation 2. It is worth noting that Theorem 4 is also
valid even for a general network without a scale-free feature.
If the oscillators in a network split into several clusters
and each cluster has a most connected cluster hub, cluster
synchronization can be realized by controlling the cluster
hubs. For example, consider the coupling matrix:

𝐶 = (

−𝑐 −1 𝑐 1 0

−1 −𝑐 𝑐 0 1

0 0 −1 1 0

−1 0 1 −𝑐 𝑐

0 −1 1 0 0

). (28)

It is not difficult to verify that the matrix 𝐶 and the partition
𝑃 = {1, 2, 3, 4, 5} satisfy the assumptions (𝐻

1
) and (𝐻

2
).
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10 15 20 25 30

0

10

20

t

×10
−5

e0

e1, . . ., e8

Figure 2: Time evolution of the errors 𝑒
0
and 𝑒

𝑖
, 𝑖 = 1, 2, . . . , 8.

The third node is the cluster hub of 𝑃
1
, and the fifth node is

the cluster hub of 𝑃
2
. And the matrices corresponding to (11)

are

𝐴
1
= (

−𝑐 −1

−1 −𝑐
) , 𝐴

2
= (−𝑐) . (29)

Then we can conclude fromTheorem 4 that the threshold for
cluster synchronization of the system (25) with the coupling
matrix (28) is 𝜀 ≥ 𝛿min/(𝑐 − 1).

By taking 𝜀 = 𝛿min/24, 𝑐 = 25, and defining

𝑒
0
=

5

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥
1

󵄨󵄨󵄨󵄨

5
,

𝑒
1
=

3

∑
𝑖=2

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥
1

󵄨󵄨󵄨󵄨 , 𝑒
2
=

󵄨󵄨󵄨󵄨𝑥5 − 𝑥
4

󵄨󵄨󵄨󵄨 ,

(30)

the time evolution of the synchronization errors is plotted in
Figure 3. In order to study synchronization induced by the
hubs, we fix 𝜀 = 0.04 and increase the parameter 𝑐 from 5

to 100 gradually. Figure 4 is plotted to show the variations
of the synchronization errors. As can be seen, the errors 𝑒

1

and 𝑒
2
tend to zero when 𝑐 ≥ 20, which implies that cluster

synchronization occurs. Therefore, the validity of Theorem 4
is confirmed.

5. Conclusion

In order to mimic the topology structure of the cortico-
cortical connectivity network, this paper has proposed a
network model with a scale-free feature, cluster structure,
and the property that each cluster has a cluster hub. Then we
decompose the couplingmatrix into fourmatrices and derive
an error system of the network. By a detailed stability analysis
of the error system, we have obtained sufficient conditions to
achieve cluster synchronization.The obtained result indicates
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−8
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Figure 3: Time evolution of the errors 𝑒
0
, 𝑒
1
, and 𝑒

2
.
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Figure 4: Dependence of the synchronization errors on 𝑐 ∈ [0, 40],
where 𝜀 = 0.04.

that cluster synchronization can be guaranteed by increasing
the coupling strength of the cluster hubs.

Many previous researches have shown that bursting syn-
chronization can also be suppressed by imposing an external
controlling intervention [3, 6]. It may be an interesting chal-
lenge to discuss cluster synchronization of themodified “rich-
club” network (1) with an external controlling intervention
applied to cluster hubs. The controlling intervention could
be a time-delayed feedback signal, a constantly applied pulse,
or an alternating on-off pulse. Further exploration into this
topic will help us better understand the relation between the
couplings of cluster hubs and cluster synchronization.
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