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This paper is concerned with the nonlinear Klein-Gordon equation with damping term and nonnegative potentials. We introduce a
family of potential wells anddiscuss the invariant sets and vacuum isolating behavior of solutions.Using the potential well argument,
we obtain a new existence theorem of global solutions and a blow-up result for solutions in finite time.

1. Introduction

In this paper, we consider the nonlinear Klein-Gordon equa-
tion with damping term and a real valued potential 𝑇(𝑥)

𝑢
𝑡𝑡
− Δ𝑢 + 𝑇 (𝑥) 𝑢 + 𝑢 +

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

𝑚−2

𝑢
𝑡
= |𝑢|
𝑝−2
𝑢,

𝑡 > 0, 𝑥 ∈ 𝑅
𝑛
,

𝑢 (0, 𝑥) = 𝑢
0
, 𝑢

𝑡
(0, 𝑥) = 𝑢

1
, 𝑥 ∈ 𝑅

𝑛
,

(1)

where 𝑛 ≥ 2,𝑚 ≥ 2, and

2 < 𝑝 < ∞ if 𝑛 ≤ 2,

2 < 𝑝 <
2𝑛

𝑛 − 2
if 𝑛 ≥ 3.

(2)

𝑢 = 𝑢(𝑡, 𝑥) is a complex-valued function of (𝑡, 𝑥) ∈ 𝑅+ × 𝑅𝑛,
Δ is the Laplace operator on 𝑅𝑛, and 𝑢

𝑡
is called the damping

term [1]. Ha and Nakagiri [1] studied the local existence for
the Cauchy problem (1). Here we are interested in the sharp
criteria for global existence and blow-up of solutions of the
Cauchy problem (1).

The Klein-Gordon equation is a relativistic version of the
Schrödinger equation, which describes relativistic electrons.
Levine [2], Ball [3], Payne and Sattinger [4], Zhang [5], and

Gan and Zhang [6] applied the potential well theory and
studied the blowing up properties of the nonlinear Klein-
Gordon equations. In [7], Huang and Zhang studied the
global existence and blow-up of solutions for the nonlinear
Klein-Gordon equation with linear damping term (𝑚 = 2).
In [8, 9], the authors studied the existence of global solutions
and decay for the energy of solution for the Klein-Gordon
equation.

The case of nonlinear damping and source terms (𝑚 >

2, 𝑝 > 2) is considered by many authors. For instance,
Georgiev and Todorova [10] prove that if 𝑚 ≥ 𝑝, a global
weak solution exists for any initial data; while 2 < 𝑚 < 𝑝 the
solution blows up in finite time when the initial energy is
sufficiently negative. Ikehata [11] considers the solutions of
(1) with small positive initial energy, using the so-called
potential well theory introduced by Payne and Sattinger in
[4]. Todorova and Vitillaro [12] prove that for any given
numbers 𝛼 ≥ 0, 𝜆 ≥ 0 there exist infinitely many data 𝜑(𝑥),
𝜓(𝑥) in the energy space such that the initial energy𝐸(0) = 𝜆,
the gradient norm ‖∇𝜑‖

2
= 𝛼, and the solution of (1) blows

up in finite time.
In this paper, we consider the interaction between the

nonlinear damping and source terms (𝑚 > 2, 𝑝 > 2) for
the Cauchy problem (1). For the local well-posedness of the
Cauchy problem (1), the readers may refer to [13, 14].We have
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considered the global existence and the finite time blowing
up. The potential well theory, which was introduced by Liu
[15] and has been used for Schrödinger equations in [16–18],
was applied to study the Cauchy problem (1). Based on the
results, we show the sharp criteria for global existence and
blowing up of its solutions. Applying the perturbed energy
method we prove the uniform stabilization for 𝑝 ≤ 𝑚.
And using concavity arguments we prove that the blow-up
solutions exist for 𝑝 > 𝑚. The results can be extended to
the case of more general nonlinearities under suitable assum-
ptions. We extend parts of results in [7] and obtain several
new results for system (1).

This paper is organized as follows. In Section 2, a family
of potential wells are introduced and a series of properties
are given. In Section 3, the invariant sets under the flow of
problem (1) and the vacuum isolating behavior of solutions
for 0 < 𝐸(0) < 𝑑 and 𝐸(0) ≤ 0 are discussed. In Section 4, the
global existence and blowing up of solutions for problem (1)
are proved. In Section 5, the theorem on asymptotic behavior
of solutions when𝑚 = 2 is proved.

2. Potential Wells and Their Properties

For the Cauchy problem (1), we define the energy space as

𝐻 := {𝑢 ∈ 𝐻
1
(𝑅
𝑛
) ; ∫
𝑅
𝑛

𝑇 (𝑥) ‖𝑢‖
2
𝑑𝑥 < ∞} . (3)

𝐻 becomes a Hilbert space, continuously embedded in
𝐻
1
(𝑅
𝑛
), which is endowed with the inner product

(𝑢, V)
𝐻
:= ∫
𝑅
𝑛

[∇𝑢∇V + 𝑇 (𝑥) 𝑢V + 𝑢V] 𝑑𝑥, (4)

whose associated norm is denoted by ‖ ⋅ ‖
𝐻
.

Throughout this paper, we make the following assump-
tions on 𝑇(𝑥):

inf
𝑥∈𝑅
𝑛

𝑇 (𝑥) = 𝑇 (𝑥) > 0,

𝑇 (𝑥) is positive and 𝑎𝐶1 bounded

measurable function on 𝑅
𝑛
,

lim
𝑥→∞

𝑇 (𝑥) = ∞.

(5)

We define the energy functions

𝐸 (𝑡) =
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+
1

2
‖∇𝑢‖
2

2
+
1

2
𝑇 (𝑥) ‖𝑢‖

2

2

+
1

2
‖𝑢‖
2

2
−
1

𝑝
‖𝑢‖
𝑝

𝑝
, 𝑡 ∈ [0, 𝑇) ,

(6)

𝐸 (𝑡) + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 = 𝐸 (0) , 𝑡 ∈ [0, 𝑇) , (7)

and two functionals

𝑆 (𝑢) =
1

2
‖∇𝑢‖
2

2
+
1

2
𝑇 (𝑥) ‖𝑢‖

2

2
+
1

2
‖𝑢‖
2

2
−
1

𝑝
‖𝑢‖
𝑝

𝑝
, (8)

𝑅 (𝑢) = ‖∇𝑢‖
2

2
+ 𝑇 (𝑥) ‖𝑢‖

2

2
+ ‖𝑢‖
2

2
− ‖𝑢‖
𝑝

𝑝
. (9)

Then we define the potential well𝑊 as follows:

𝑊 ≡ {𝑢 ∈ 𝐻 (𝑅
𝑛
) | 𝑅 (𝑢) > 0, 𝑆 (𝑢) < 𝑑

𝑀
} ∪ {0} , (10)

and the outside set 𝑉 of the corresponding potential well

𝑉 ≡ {𝑢 ∈ 𝐻 (𝑅
𝑛
) | 𝑅 (𝑢) < 0, 𝑆 (𝑢) < 𝑑

𝑀
} , (11)

where

𝑑
𝑀
= inf
𝑀

𝑆 (𝑢) ,

𝑀 = {𝑢 ∈ 𝐻 (𝑅
𝑛
) \ {0} | 𝑅 (𝑢) = 0, ‖𝑢‖

𝐻
̸= 0} .

(12)

For 𝛿 > 0, we define

𝑅
𝛿
(𝑢) = 𝛿 (‖∇𝑢‖

2

2
+ 𝑇 (𝑥) ‖𝑢‖

2

2
+ ‖𝑢‖
2

2
) − ‖𝑢‖

𝑝

𝑝
,

𝑑
𝑀
(𝛿) = inf

𝑀
𝛿

𝑆 (𝑢) ,

𝑀
𝛿
= {𝑢 ∈ 𝐻 (𝑅

𝑛
) \ {0} | 𝑅

𝛿
(𝑢) = 0, ‖𝑢‖

𝐻
̸= 0} ,

𝑊
𝛿
≡ {𝑢 ∈ 𝐻 (𝑅

𝑛
) | 𝑅
𝛿
(𝑢) > 0, 𝑆 (𝑢) < 𝑑

𝑀
(𝛿)} ∪ {0} ,

0 < 𝛿 <
𝑝

2
,

𝑉
𝛿
≡ {𝑢 ∈ 𝐻 (𝑅

𝑛
) | 𝑅
𝛿
(𝑢) < 0, 𝑆 (𝜙) < 𝑑

𝑀
(𝛿)} ,

0 < 𝛿 <
𝑝

2
.

(13)

Lemma 1. If 0 < ‖𝑢‖
𝐻
< 𝑟(𝛿), then 𝑅

𝛿
(𝑢) > 0. Particularly, if

0 < ‖𝑢‖
𝐻
< 𝑟(1), then 𝑅(𝑢) > 0, where

𝑟 (𝛿) = (
𝛿

𝐶
𝑝

∗

)

1/(𝑝−2)

, (14)

𝐶
∗
is an embedding constant of𝐻(𝑅𝑛) 󳨅→ 𝐿

𝑝
(𝑅
𝑛
).

Proof. If 0 < ‖𝑢‖
𝐻
< 𝑟(𝛿), then

‖𝑢‖
𝑝

𝑝
≤ 𝐶
𝑝

∗
‖𝑢‖
𝑝

𝐻
= 𝐶
𝑝

∗
‖𝑢‖
𝑝−2

𝐻
‖𝑢‖
2

𝐻
< 𝛿‖𝑢‖

2

𝐻
. (15)

It follows that 𝑅
𝛿
(𝑢) > 0.

Lemma 2. If 𝑅
𝛿
(𝑢) < 0, then ‖𝑢‖

𝐻
> 𝑟(𝛿). Particularly, if

𝑅(𝑢) < 0, then ‖𝑢‖
𝐻
> 𝑟(1).

Proof. If 𝑅
𝛿
(𝑢) < 0, then ‖𝑢‖

𝐻
̸= 0. From

𝛿‖𝑢‖
2

𝐻
< ‖𝑢‖
𝑝

𝑝
≤ 𝐶
𝑝

∗
‖𝑢‖
𝑝−2

𝐻
‖𝑢‖
2

𝐻
, (16)

we obtain ‖𝑢‖
𝐻
> 𝑟(𝛿).

Lemma 3. Assume that (2) holds; then

(1) 𝑑
𝑀
(𝛿) ≥ (1/2 − 𝛿/𝑝)𝑟(𝛿) for 0 < 𝛿 < 𝑝. In particular,

we have 𝑑 ≥ 2/𝛼𝐶𝛼
⋆
, 𝛼 = 𝑝/(𝑝 − 2).

(2) 𝑑
𝑀
(𝛿) = 𝛿

2/(𝑝−2)
(1/2 − 𝛿/𝑝)(2𝑝/(𝑝 − 2))𝑑.
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Proof. (1) For 𝑢 ∈ 𝑀
𝛿
, we get ‖𝑢‖2

𝐻
≥ 𝑟(𝛿) and

𝑆 (𝑢) = (
1

2
−
𝛿

𝑝
) ‖𝑢‖
2

𝐻
+
1

𝑝
𝑅
𝛿
(𝑢)

= (
1

2
−
𝛿

𝑝
) ‖𝑢‖
2

𝐻
≥ (

1

2
−
𝛿

𝑝
) 𝑟 (𝛿) ,

(17)

which yields 𝑑
𝑀
(𝛿) ≥ (1/2 − 𝛿/𝑝)𝑟(𝛿) for 0 < 𝛿 < 𝑝/2.

(2) Let 𝑢 ∈ 𝑀 be a minimizer; that is, 𝑑
𝑀
= 𝑆(𝑢). For any

𝛿 > 0, define 𝜆 = 𝜆(𝛿) by

𝛿‖𝜆𝑢‖
2

𝐻
= ‖𝜆𝑢‖

𝑝

𝑝
; (18)

that is,

𝛿‖𝑢‖
2

𝐻
= 𝜆
𝑝−2
‖𝑢‖
𝑝

𝑝
. (19)

Then, for each 𝛿 > 0, there exists a unique

𝜆 (𝛿) = (
𝛿‖𝑢‖
2

𝐻

‖𝑢‖
𝑝

𝑝

)

1/(𝑝−2)

, (20)

satisfying (18) which implies 𝜆(𝛿)𝑢 ∈ 𝑀
𝛿
. Since 𝑢 ∈ 𝑀

implies ‖𝑢‖2
𝐻
= ‖𝑢‖
𝑝

𝑝
, we get 𝜆(𝛿) = 𝛿1/(𝑝−2). Therefore,

𝑑
𝑀
(𝛿) ≤ 𝑆 (𝜆 (𝛿) 𝑢)

=
1

2
𝛿
2/(𝑝−2)

‖𝑢‖
2

𝐻
−
1

𝑝
𝛿
𝑝/(𝑝−2)

‖𝑢‖
𝑝

𝑝

= (
1

2
−
𝛿

𝑝
) 𝛿
2/(𝑝−2)

‖𝑢‖
2

𝐻
.

(21)

Noting that

𝑆 (𝑢) =
1

2
‖𝑢‖
2

𝐻
−
1

𝑝
‖𝑢‖
𝑝

𝑝
=
𝑝 − 2

2𝑝
‖𝑢‖
2

𝐻
, (22)

we have

𝑑
𝑀
(𝛿) ≤ 𝛿

2/(𝑝−2)
(
1

2
−
𝛿

𝑝
)
𝑝 − 2

2𝑝
𝑆 (𝑢)

= 𝛿
2/(𝑝−2)

(
1

2
−
𝛿

𝑝
)
𝑝 − 2

2𝑝
𝑑.

(23)

On the other hand, let 𝛿 > 0, 𝑢 ∈ 𝑀
𝛿
be a minimizer; that

is, 𝑑
𝑀
(𝛿) = 𝑆(𝑢). It follows that

𝑑
𝑀
(𝛿) ≥ 𝛿

2/(𝑝−2)
(
1

2
−
𝛿

𝑝
)
𝑝 − 2

2𝑝
𝑑. (24)

Therefore, the conclusion follows from the above discussion.

Lemma 4. Assume that (2) holds; then

(1) lim
𝛿→0

𝑑
𝑀
(𝛿) = 0, 𝑑

𝑀
(𝑝/2) = 0. 𝑑

𝑀
(𝛿) is continuous

on 0 < 𝛿 ≤ 𝑝/2.
(2) 𝑑
𝑀
(𝛿) is increasing on 0 < 𝛿 ≤ 1, is decreasing on

1 < 𝛿 ≤ 𝑝/2, and takes the maximum 𝑑 = 𝑑
𝑀
(1) at

𝛿 = 1.

Proof. From Lemma 3, we obtain

𝑑
󸀠

𝑀
(𝛿) =

𝑑

𝑝 − 2
[(𝑝 − 2𝛿) 𝛿

2/(𝑝−2)
]
󸀠

=
𝑑

𝑝 − 2
[(𝑝 − 2𝛿)

2

𝑝 − 2
𝛿
(4−𝑝)/(𝑝−2)

− 2𝛿
2/(𝑝−2)

]

=
2𝑑𝑝

(𝑝 − 2)
2
𝛿
(4−𝑝)/(𝑝−2)

(1 − 𝛿) .

(25)

3. The Invariant Sets of Solutions

Lemma 5. Assume that 𝑢
0
∈ 𝐻(𝑅

𝑛
), 𝑢
1
∈ 𝐿
𝑚
(𝑅
𝑛
), 0 < 𝐸(0) <

𝑑
𝑀
, 𝛿
1
, and 𝛿

2
(𝛿
1
< 𝛿
2
) are the solutions of the function

𝑑
𝑀
(𝛿) = 𝐸(0).
(1) If 𝑅(𝑢

0
) > 0 or ‖𝑢

0
‖
𝐻
= 0, then 𝑢(𝑡) ∈ 𝑊

𝛿
for any

𝛿 ∈ (𝛿
1
, 𝛿
2
).

(2) If 𝑅(𝑢
0
) < 0, then 𝑢(𝑡) ∈ 𝑉

𝛿
for any 𝛿 ∈ (𝛿

1
, 𝛿
2
).

Proof. (1) Let 𝑢(𝑡) be any solution of the Cauchy problem (1)
with

𝐸 (0) =
1

2

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

2
+ 𝑆 (𝑢

0
) + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 = 𝑑

𝑀
(𝛿) < 𝑑

𝑀
,

(26)

which gives 𝑆(𝑢
0
) < 𝑑
𝑀
. If𝑅(𝑢

0
) > 0, then from the definition

of𝑊
𝛿
we obtain 𝑢

0
(𝑥) ∈ 𝑊

𝛿
. If ‖𝑢

0
‖
𝐻
= 0, then 𝑢

0
(𝑥) ∈ 𝑊

𝛿
.

Therefore 𝑢
0
(𝑥) ∈ 𝑊

𝛿
, ∀𝛿 ∈ (𝛿

1
, 𝛿
2
).

Next, we prove 𝑢(𝑡) ∈ 𝑊
𝛿
, ∀𝛿 ∈ (𝛿

1
, 𝛿
2
), 𝑡 ≥ 0. If it is not

true, then there must exist a 𝛿 ∈ (𝛿
1
, 𝛿
2
) and a 𝑡̃ > 0 such that

𝑢(𝑡̃) ∈ 𝜕𝑊
𝛿
; that is,

𝑅
𝛿
(𝑢 (𝑡̃)) = 0,

󵄩󵄩󵄩󵄩𝑢0 (𝑡̃)
󵄩󵄩󵄩󵄩𝐻 ̸= 0, or 𝑆 (𝑢 (𝑡̃)) = 𝑑

𝑀
(𝛿) .

(27)

From the energy inequality, we have

1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ 𝑆 (𝑢) + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 = 𝐸 (0) = 𝑑

𝑀
(𝛿) < 𝑑

𝑀
,

𝛿
1
< 𝛿 < 𝛿

2
, 𝑡 ≥ 0.

(28)

Then 𝑆(𝑢(𝑡̃)) = 𝑑
𝑀

is impossible. On the other hand, if
𝑅
𝛿
(𝑢(𝑡̃)) = 0, ‖𝑢

0
(𝑡̃)‖
𝐻

̸= 0, then we obtain 𝑢(𝑡̃) ∈ 𝑀. By
the definition of𝑀, we have 𝑆(𝑢(𝑡̃)) ≥ 𝑑

𝑀
, which contradicts

(28). Hence 𝑢(𝑡) ∈ 𝑊
𝛿
is true.

(2) First we prove 𝑢
0
∈ 𝑉
𝛿
. From the energy inequality

1

2

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

2
+ 𝑆 (𝑢

0
) + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 = 𝐸 (0) = 𝑑

𝑀
(𝛿) < 𝑑

𝑀
,

(29)

we have

𝑆 (𝑢
0
) < 𝑑
𝑀
(𝛿) , ∀𝛿

1
< 𝛿 < 𝛿

2
. (30)

Using 𝑅(𝑢
0
) < 0 yields 𝑅

𝛿
(𝑢
0
) < 0 for 𝛿

1
< 𝛿 < 𝛿

2
. Therefore

we obtain 𝑢
0
∈ 𝑉
𝛿
.
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Next, we show that 𝑢(𝑡) ∈ 𝑉
𝛿
for 𝛿
1
< 𝛿 < 𝛿

2
and 𝑡 ≥ 0. If

it is false, there exist a 𝛿 ∈ (𝛿
1
, 𝛿
2
) and a 𝑡̃ > 0 such that 𝑢(𝑡̃) ∈

𝜕𝑉
𝛿
; that is,

𝑅
𝛿
(𝑢 (𝑡̃)) = 0,

󵄩󵄩󵄩󵄩𝑢0(𝑡̃)
󵄩󵄩󵄩󵄩𝐻 ̸= 0 or 𝑆 (𝑢 (𝑡̃)) = 𝑑

𝑀
(𝛿) .

(31)

However, from the conservation law we get that 𝑆(𝑢(𝑡̃)) =
𝑑
𝑀
(𝛿) is impossible. If 𝑅

𝛿
(𝑢(𝑡̃)) = 0, then 𝑅

𝛿
(𝑢(𝑡)) < 0 for

0 ≤ 𝑡 < 𝑡̃. At the same time, Lemma 2 yields that ‖𝑢(𝑡)‖
𝐻
>

𝑟(𝛿) > 0, 0 ≤ 𝑡 < 𝑡̃, and ‖𝑢(𝑡̃)‖
𝐻
≥ 𝑟(𝛿). Hence by the defi-

nition of 𝑑
𝑀
(𝛿), we have 𝑆(𝑢(𝑡̃)) ≥ 𝑑

𝑀
(𝛿), which contradicts

𝑆(𝑢(𝑡)) < 𝑑
𝑀
(𝛿). So we obtain

𝑢 (𝑡) ∈ 𝑉
𝛿
, ∀𝛿

1
< 𝛿 < 𝛿

2
, 𝑡 ≥ 0. (32)

Lemma 6. Assume 𝑢
0
∈ 𝐻(𝑅

𝑛
), 𝑢
1
∈ 𝐿
𝑚
(𝑅
𝑛
), 0 < 𝐸(0) <

𝑑
𝑀
(𝛿), 𝛿

1
, and 𝛿

2
(𝛿
1
< 𝛿
2
) are the solutions of the function

𝑑
𝑀
(𝛿) = 𝐸(0). Then 𝑊

𝛿
and 𝑉

𝛿
are invariant sets under the

flow generated by (1), ∀𝛿
1
< 𝛿 < 𝛿

2
.

Proof. Let 𝑢
0
∈ 𝑉
𝛿
and 𝑢(𝑡) satisfy (1). From (6), (7), and (8),

we have
𝑆 (𝑢 (𝑡)) ≤ 𝐸 (𝑡)

= 𝐸 (0) − ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 < 𝑑

𝑀
(𝛿) , 𝑡 ∈ [0, 𝑇) .

(33)

To check 𝑢(𝑡) ∈ 𝑉
𝛿
, we need to prove

𝑅 (𝑢 (𝑡)) < 0, 𝑡 ∈ [0, 𝑇) . (34)

If (34) is not true, by continuity, there would exist a 𝑡 > 0

such that 𝑅(𝑢(𝑡)) = 0 because of 𝑅(𝑢
0
) < 0. It follows that

𝑢(𝑡) ∈ 𝑀
𝛿
. This is impossible for 𝑆(𝑢(𝑡)) < 𝑑

𝑀
(𝛿) and

𝑑
𝑀
(𝛿) = inf

𝑢∈𝑀
𝛿

𝑆(𝑢). Thus (34) is true. So 𝑉
𝛿
is invariant

under the flow generated by (1).
Similarly, we show that𝑊

𝛿
is also invariant under the flow

generated by (1). This completes the proof of Lemma 6.

Lemma 7. Let the initial data (𝑢
0
, 𝑢
1
) ∈ 𝐻(𝑅

𝑛
)×𝐿
𝑚
(𝑅
𝑛
), and

𝑢(𝑡, 𝑥) be a local solution of the Cauchy problem (1) on [0, 𝑇). If
there exists a 𝑢

0
∈ 𝑉
𝛿
and a 𝐸(0) < 𝑑

𝑀
(𝛿), then the inequality

‖∇𝑢‖
2

2
+ 𝑇 (𝑥) ‖𝑢‖

2

2
+ ‖𝑢‖
2

2
>

2𝑝

𝑝 − 2
𝑑
𝑀
(𝛿) (35)

is fulfilled for 𝑡 ∈ [0, 𝑇).

Proof. By the definition of 𝑑
𝑀
(𝛿), we have

𝑑
𝑀
(𝛿) = inf {

𝑝 − 2

2𝑝
(‖∇𝑢‖

2

2
+ 𝑇 (𝑥) ‖𝑢‖

2

2
+ ‖𝑢‖
2

2
)} . (36)

According to Lemma 6, we have ‖𝑢(𝑡, ⋅)‖𝑝
𝑝
> ‖∇𝑢(𝑡, ⋅)‖

2

2
for

𝑡 ∈ [0, 𝑇). From (36) and the identity (8), we get

𝑑
𝑀
(𝛿) <

𝑝 − 2

2𝑝
(‖∇𝑢‖

2

2
+ 𝑇 (𝑥) ‖𝑢‖

2

2
+ ‖𝑢‖
2

2
) , (37)

which completes the proof of Lemma 7.

In order to extend the case 𝐸(0) > 0 to 𝐸(0) ≤ 0 we give
the following lemma.

Lemma 8. Let 𝑢
0
∈ 𝐻(𝑅

𝑛
), 𝑢
1
∈ 𝐿
𝑚
(𝑅
𝑛
), and (2) hold. Ass-

ume 𝐸(0) = 0; then the solutions of problem (1) satisfy

‖𝑢‖
2

𝐻
≥ 𝑟
0
= 2(

𝑝

𝐶
𝑝

∗

)

1/(𝑝−2)

. (38)

Proof. Let 𝑢 be any solution of problem (1) with 𝐸(0) = 0 and
‖𝑢
0
‖
𝐻

̸= 0, 𝑇max the existence time. From (6), (7), and (9), we
have

𝐸 (𝑡) =
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ 𝑆 (𝑢) ≤ 𝐸 (0) = 0, (39)

and get 𝑆(𝑢) ≤ 0 for 0 ≤ 𝑡 < 𝑇max. Hence, using

1

2
‖𝑢‖
2

𝐻
≤
1

𝑝
‖𝑢‖
𝑝

𝑝
≤ 𝐶
𝑝

∗
‖𝑢‖
2

𝐻
‖𝑢‖
𝑝−2

𝐻
, (40)

we see that either ‖𝑢‖2
𝐻
= 0 or (38) hold. If ‖𝑢‖2

𝐻
= 0, then

‖𝑢‖
2

𝐻
≡ 0 for 0 ≤ 𝑡 < 𝑇max (otherwise there exists a 𝑡0 ∈ [0,

𝑡max) such that 0 < ‖𝑢(𝑡
0
)‖
2

𝐻
< 𝑟
0
), which contradicts the

condition ‖𝑢
0
‖
𝐻

̸= 0.

Theorem 9. Let 𝑢
0
∈ 𝐻(𝑅

𝑛
), 𝑢
1
∈ 𝐿
𝑚
(𝑅
𝑛
), 2 < 𝑚 < 𝑝, and

(2) hold. Assume 𝐸(0) < 0 or 𝐸(0) = 0 and ‖𝑢
0
‖
𝐻

̸= 0. Then
the solutions of problem (1) belong to 𝑉

𝛿
for 0 < 𝛿 < 𝑝/2.

Proof. Let 𝑢 be any solution of problem (1) with 𝐸(0) < 0 or
𝐸(0) = 0 and ‖𝑢

0
‖
𝐻

̸= 0, 𝑇max the existence time. From (6),
we have

𝐸 (𝑡) =
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ (

1

2
−
𝛿

𝑝
) ‖𝑢‖
2

𝐻

+
1

𝑝
𝑅
𝛿
(𝑢) ≤ 𝐸 (0) , 0 < 𝛿 <

𝑝

2
,

(41)

for 0 ≤ 𝑡 < 𝑇max. From (41) we see that if 𝐸(0) < 0, then
𝑆(𝑢) ≤ 𝐸(𝑡) < 0 < 𝑑

𝑀
(𝛿) for 0 ≤ 𝑡 < 𝑇max. If 𝐸(0) = 0 and

‖𝑢
0
‖
𝐻

̸= 0, then by Lemma 8 we obtain ‖𝑢‖2
𝐻
≥ 𝑟
0
> 0.

Therefore, by (41) we have 𝑆(𝑢) ≤ 𝐸(𝑡) ≤ 0 < 𝑑
𝑀
(𝛿) for

0 ≤ 𝑡 < 𝑇max. Hence, for the above two cases, we have 𝑢 ∈ 𝑉𝛿
for 0 < 𝛿 < 𝑝/2.

4. Sharp Condition for
Global Existence and Blow-Up

Definition 10 (weak solution). The function 𝑢(𝑡, 𝑥) ∈ 𝐶([0,

𝑇);𝐻(𝑅
𝑛
)) with 𝑢

𝑡
(𝑡, 𝑥) ∈ 𝐶([0, 𝑇); 𝐿

𝑚
(𝑅
𝑛
)) is called a weak

solution of problem (1), such that 𝑢(0, 𝑥) = 𝑢
0
(𝑥) in 𝐻(𝑅𝑛),

𝑢
𝑡
(0, 𝑥) = 𝑢

1
(𝑥) in 𝐿𝑚(𝑅𝑛) and

⟨𝑢
𝑡𝑡
, V⟩ + ∫

𝑅
𝑛

∇𝑢 ⋅ ∇V𝑑𝑥 + ∫
𝑅
𝑛

𝑇 (𝑥) 𝑢V𝑑𝑥

+ ∫
𝑅
𝑛

𝑢V𝑑𝑥 + ∫
𝑅
𝑛

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

𝑚−2

𝑢
𝑡
V𝑑𝑥 = ∫

𝑅
𝑛

|𝑢|
𝑝−2
𝑢V𝑑𝑥,

(42)

for all V ∈ 𝐻(𝑅𝑛) and 𝑡 ∈ [0, 𝑇).
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Theorem 11. Let (𝑢
0
, 𝑢
1
) ∈ 𝐻(𝑅

𝑛
) × 𝐿
𝑚
(𝑅
𝑛
), 2 < 𝑝 ≤ 𝑚, and

(2) hold. Suppose that 0 < 𝐸(0) < 𝑑
𝑀
, 𝑅(𝑢
0
) > 0, or ‖𝑢

0
‖
𝐻
=

0; then Cauchy problem (1) has a global weak solution 𝑢(𝑡, 𝑥) ∈
𝐶([0, 𝑇);𝐻(𝑅

𝑛
))(𝑢
𝑡
(𝑡, 𝑥) ∈ 𝐶([0, 𝑇); 𝐿

𝑚
(𝑅
𝑛
)) for some

𝑇 ∈ (0,∞) with 𝑢(𝑡) ∈ 𝑊.

Proof. Let {𝑤
𝑗
(𝑥)} be a system of base functions in 𝐻(𝑅𝑛).

Construct the approximate solution 𝑢
𝑚
(𝑡, 𝑥) of problem (1)

𝑢
𝑚
(𝑡, 𝑥) =

𝑚

∑

𝑗=1

𝑔
𝑗𝑚
(𝑡) 𝑤
𝑗
(𝑥) , 𝑚 = 1, 2, . . . , (43)

satisfying

(𝑢
𝑚
𝑡𝑡

, 𝑤
𝑠
) − (Δ𝑢

𝑚
, 𝑤
𝑠
) + 𝑇 (𝑥) (𝑢

𝑚
, 𝑤
𝑠
)

+ (𝑢
𝑚
, 𝑤
𝑠
) + (

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑚
𝑡

󵄨󵄨󵄨󵄨󵄨

𝑚−2

𝑢
𝑚
𝑡

, 𝑤
𝑠
)

= (
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨

𝑝−2

𝑢
𝑚
, 𝑤
𝑠
) ,

(44)

𝑢
𝑚
(𝑥, 0) =

𝑚

∑

𝑗=1

𝑎
𝑗𝑚
𝑤
𝑗
(𝑥) 󳨀→ 𝑢

0
(𝑥) in 𝐻1 (𝑅𝑛) , (45)

𝑢
𝑚
𝑡

(𝑥, 0) =

𝑚

∑

𝑗=1

𝑏
𝑗𝑚
𝑤
𝑗
(𝑥) 󳨀→ 𝑢

1
(𝑥) in 𝐿𝑚 (𝑅𝑛) . (46)

Multiplying (44) by 𝑔󸀠
𝑗𝑚
(𝑡) and summing for 𝑠, we have

𝑑

𝑑𝑡
[
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩

2

𝐻
) −

1

𝑝

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

𝑝

𝑝
] +

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

𝑚

𝑚
= 0. (47)

Integrating with respect to 𝑡, we get

1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩

2

𝐻
) −

1

𝑝

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

𝑝

𝑝
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

(0)
󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑚 (0)

󵄩󵄩󵄩󵄩

2

𝐻
) −

1

𝑝

󵄩󵄩󵄩󵄩𝑢𝑚(0)
󵄩󵄩󵄩󵄩

𝑝

𝑝
.

(48)

For 𝐸(0) < 𝑑
𝑀
and 𝑅(𝑢

0
) > 0 or ‖𝑢‖2

𝐻
= 0, we have

1

2

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑆 (𝑢

𝑚
) + ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 = 𝐸

𝑚
(0) < 𝑑

𝑀
,

0 ≤ 𝑡 < ∞.

(49)

From

1

2

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

2
+ 𝑆 (𝑢

0
) + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 = 𝐸 (0) < 𝑑

𝑀
,

0 ≤ 𝑡 < ∞,

(50)

we have 𝑆(𝑢
0
) < 𝑑
𝑀
. Hence from 𝑅(𝑢

0
) > 0, we obtain 𝑢

0
∈

𝑊.
From (45) and (46), for sufficiently large𝑚, we obtain

1

2

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑆 (𝑢

𝑚
) + ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝜏 = 𝐸

𝑚
(0) < 𝑑

𝑀
,

0 ≤ 𝑡 < ∞,

(51)

and 𝑢
𝑚
(0) ∈ 𝑊. Similar with the proof of Lemma 5, from

(51), for sufficiently large 𝑚 and 0 ≤ 𝑡 < ∞, we can prove
𝑢
𝑚
(𝑡) ∈ 𝑊 and

𝑆 (𝑢
𝑚
) =

1

2

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

2

𝐻
−
1

𝑝

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

𝑝

𝑝

= (
1

2
−
1

𝑝
)
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩

2

𝐻
+
1

𝑝
𝑅 (𝑢
𝑚
) ≥

𝑝 − 2

2𝑝

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

2

𝐻
.

(52)

Thus we obtain

1

2

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

2

2
+
𝑝 − 2

2𝑝

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

2

𝐻
< 𝑑
𝑀
, 0 ≤ 𝑡 < ∞; (53)

then

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑚
𝑡

󵄩󵄩󵄩󵄩󵄩

2

2
≤ 2𝑑
𝑀
, 0 ≤ 𝑡 < ∞,

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

2

𝐻
≤

2𝑝

𝑝 − 2
𝑑
𝑀
, 0 ≤ 𝑡 < ∞,

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

2

𝑝
≤ 𝐶
2

∗

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩

2

𝐻
≤ 𝐶
2

∗

2𝑝

𝑝 − 2
𝑑
𝑀
, 0 ≤ 𝑡 < ∞,

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑢𝑚
󵄨󵄨󵄨󵄨

𝑝−2

𝑢
𝑚

󵄩󵄩󵄩󵄩󵄩

𝑞

𝑞
=
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩

𝑝

𝑝
≤ 𝐶
𝑝

∗
(
2𝑝

𝑝 − 2
𝑑
𝑀
)

𝑝/2

,

𝑞 =
𝑝

𝑝 − 1
,

0 ≤ 𝑡 < ∞.

(54)

Using (54) and the method of compact, we obtain that
𝑢(𝑡, 𝑥) ∈ 𝐶([0, 𝑇);𝐻(𝑅

𝑛
)) is a global weak solution of prob-

lem (1). From Lemma 5, we have 𝑢(𝑡) ∈ 𝑊 for 0 ≤ 𝑡 < ∞.

Theorem 12. Let (𝑢
0
, 𝑢
1
) ∈ 𝐻(𝑅

𝑛
) × 𝐿
𝑚
(𝑅
𝑛
), 2 < 𝑝 ≤ 𝑚, and

(2) hold. Assume that 𝐸(0) < 𝑑, 𝑅
𝛿
(𝑢
0
) > 0, or ‖𝑢

0
‖
𝐻
= 0,

where 𝛿
1
and 𝛿

2
(𝛿
1
< 𝛿
2
) are two roots of equation 𝑑

𝑀
(𝛿) =

𝑒. Then the problem (1) admits a unique global solution 𝑢 ∈

𝐶([0, 𝑇);𝐻(𝑅
𝑛
)) and 𝑢 ∈ 𝑊

𝛿
for 𝛿 ∈ (𝛿

1
, 𝛿
2
) and 0 ≤ 𝑡 < ∞.

Proof. FromTheorem 11, we see that to proveTheorem 12 we
only need to prove 𝑅

𝛿
(𝑢
0
) > 0. Indeed, if it is not true,

then there exists a 𝛿 ∈ [1, 𝛿
2
) such that 𝑅

𝛿
(𝑢
0
) = 0. Since

𝑅
𝛿
(𝑢
0
) > 0 implies ‖𝑢

0
‖
𝐻

̸= 0, we obtain 𝑆(𝑢
0
) ≥ 𝑑

𝑀
(𝛿),

which contradicts 𝑆(𝑢
0
) ≤ 𝐸(0) < 𝑑

𝑀
(𝛿) for 𝛿 ∈ (𝛿

1
, 𝛿
2
).

Theorem 13. Let (𝑢
0
, 𝑢
1
) ∈ 𝐻(𝑅

𝑛
) × 𝐿
𝑚
(𝑅
𝑛
) and (2) hold.

Assume 𝐸(0) < 𝑑
𝑀
.

(1) If 2 < 𝑚 < 𝑝, there exists 𝑡
0
∈ [0, 𝑇) such that 𝑢(𝑡

0
) ∈

𝑉; then the solution 𝑢(𝑥, 𝑡) of Cauchy problem (1) blows
up in a finite time.

(2) If 2 < 𝑝 ≤ 𝑚, there exists 𝑡
0
∈ [0, 𝑇) such that

𝑢(𝑡
0
) ∈ 𝑊; then the solution 𝑢(𝑥, 𝑡) of problem (1)
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globally exists on [0,∞). Moreover, for 𝑡 ∈ [0,∞),
𝑢(𝑥, 𝑡) satisfies

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+
𝑝 − 2

𝑝

× (∫
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫𝑇 (𝑥)
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥) < 2𝑑
𝑀
.

(55)

Proof. By 𝐸(0) < 𝑑
𝑀
, we have 𝑆(𝑢

0
) ≤ 𝐸(0) < 𝑑

𝑀
.

Firstly, we prove (1) of Theorem 13. From the energy
identity we have

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚
𝑑𝑠 = 𝐸 (0) − 𝐸 (𝑡) ≤ 𝑑

𝑀
, (56)

for all 𝑡 ≥ 0.
Denoting 𝐽(𝑡) = ‖𝑢(𝑡, ⋅)‖2

2
, we have

𝐽
󸀠󸀠
(𝑡) = 2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
− 2𝑅 (𝑢) − 2∫𝑢𝑢

𝑡

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

𝑚−2

𝑑𝑥. (57)

Using the Hölder inequality and the interpolation inequality,
we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ 𝑢𝑢
𝑡

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

𝑚−2

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖𝑢‖

𝑚

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚−1

𝑚

≤ ‖𝑢‖
𝛿

2
‖𝑢‖
1−𝛿

𝑝

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚−1

𝑚
,

(58)

with 𝛿 = (1/𝑚 − 1/𝑝)/(1/2 − 1/𝑝). From 𝑅(𝑢) < 0, we have
∫𝑇 (𝑥) |𝑢|

2
𝑑𝑥 < ‖𝑢‖

𝑝

𝑝
, (59)

which together with Lemma 6 give

‖𝑢‖
𝛿

2
‖𝑢‖
1−𝛿

𝑝

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚−1

𝑚

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚−1

𝑚
‖𝑢‖
1−𝑝/𝑚−𝛿+𝑝𝛿/2

𝑝
‖𝑢‖
𝑝/𝑚

𝑝
.

(60)

Using the Young inequality and 1 − 𝑝/𝑚 − 𝛿 + 𝑝𝛿/2 = 0, we
have

‖𝑢‖
𝛿

2
‖𝑢‖
1−𝛿

𝑝

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚−1

𝑚
≤ 𝐶 (𝜀)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚
+ 𝜀‖𝑢‖

𝑝

𝑝
, (61)

since
−𝑅 (𝑢) ≥ − 𝑅 (𝑢) + 𝛿 (𝐸 (𝑡) − 𝐸 (0))

≥ (1 −
𝛿

𝑝
) ‖𝑢‖
𝑝

𝑝
+
𝛿

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ (

𝛿

2
− 1)

× (‖∇𝑢‖
2

2
+ ∫𝑇 (𝑥) |𝑢|

2
𝑑𝑥 + ‖𝑢‖

2

2
) − 𝛿𝐸 (0) ,

(62)
then
1

2
𝐽
󸀠󸀠
(𝑡) + 𝐶 (𝜀)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚

≥ (1 +
𝛿

2
)
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ (1 −

𝛿

𝑝
− 𝜀) ‖𝑢‖

𝑝

𝑝

+ (
𝛿

2
− 1)(‖∇𝑢‖

2

2
+ ∫𝑇 (𝑥) |𝑢|

2
𝑑𝑥 + ‖𝑢‖

2

2
) − 𝛿𝐸 (0) ,

(63)
where the constant 𝛿 > 2 is chosen as follows.

Since 𝐸(0) < 𝑑
𝑀
, we choose the constant 𝛿 so that

2𝑝𝑑
𝑀

𝑝𝑑
𝑀
− (𝑝 − 2) 𝐸 (0)

< 𝛿 < 𝑝. (64)

This guarantees 𝛿 > 2. Then, using this choice and Lemma 7
we get

(
𝛿

2
− 1)(‖∇𝑢‖

2

2
+ ∫𝑇 (𝑥) |𝑢|

2
𝑑𝑥 + ‖𝑢‖

2

2
) − 𝛿𝐸 (0)

≥ (
𝛿

2
− 1)

2𝑝

𝑝 − 2
𝑑
𝑀
− 𝛿𝐸 (0) ≥ 0.

(65)

If the constant 𝛿 is fixed, we choose the constant 𝜀 such that

𝐶
1
= 1 −

𝛿

𝑝
− 𝜀 > 0. (66)

Finally, using the inequality (60), (63) and Lemma 7 we have

𝐽
󸀠󸀠
(𝑡) + 𝐶 (𝜀)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚
≥ 𝐶
1
‖𝑢‖
𝑝

𝑝

≥ 𝐶
1
(‖∇𝑢‖

2

2
+ ∫𝑇 (𝑥) |𝑢|

2
𝑑𝑥 + ‖𝑢‖

2

2
)

≥ 𝐶
1

2𝑝

𝑝 − 2
𝑑
𝑀
,

(67)

where 𝐶
1
> 0. Since (56), integrating (67) over [0, 𝑡] we have

𝐽
󸀠
(𝑡) ≥ 𝐶

1

𝑝𝑑
𝑀

𝑝 − 2
𝑡 − 𝐶 (𝜀) 𝑑

𝑀
+ 𝐽
󸀠
(0) , (68)

which concludes that there exists a 𝑡
1
such that 𝐽󸀠(𝑡)|

𝑡=𝑡
1

> 0.
Hence, 𝐽(𝑡) is increasing for 𝑡 > 𝑡

1
(which is the interval of

existence). Since 𝑅(𝑢) < 0, there exists a 𝑡
2
such that

‖𝑢(𝑡, 𝑥)‖
𝑝

𝑝
is increasing for 𝑡 > 𝑡

2
. When 𝑡 is large enough, the

quantities ‖𝑢
𝑡
(𝑡, 𝑥)‖

𝑚

𝑚
and ‖∇𝑢(𝑡, 𝑥)‖

2

2
are small enough.

Otherwise, assume that there is 𝑡∗ such that ‖𝑢
𝑡
(𝑡, 𝑥)‖

𝑚

𝑚
>

‖𝑢
𝑡
(𝑡
∗
, 𝑥)‖
𝑚

𝑚
for all 𝑡 > 𝑡

∗. By integrating the inequality, we
obtain a contradiction with (56) and 𝐸(𝑡) ≥ 0.

Thus in these cases, the quantity

(1 −
𝛿

𝑝
− 𝜀) ‖𝑢‖

𝑝

𝑝
+ (

𝛿

2
− 1)

× (‖∇𝑢‖
2

2
+ ∫𝑇 (𝑥) |𝑢|

2
𝑑𝑥 + ‖𝑢‖

2

2
)

− 𝛿𝐸 (0) − 𝐶 (𝜀)
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

𝑚

𝑚

(69)

will eventually become positive.Therefore for 𝑡 large enough,
from (63) and (65) we have

𝐽
󸀠󸀠
(𝑡) ≥ (1 +

𝛿

2
)
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
. (70)

Using the Hölder inequality, we get

𝐽 (𝑡) 𝐽
󸀠󸀠
(𝑡) ≥

2 + 𝛿

8
[𝐽
󸀠
(𝑡)]
2

. (71)
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Since

[𝐽
−(𝛿−6)/8

(𝑡)]
󸀠󸀠

= −
𝛿 − 6

8
𝐽
−(𝛿+10)/8

(𝑡) [𝐽 (𝑡) 𝐽
󸀠󸀠
(𝑡) −

2 + 𝛿

8
[𝐽
󸀠
(𝑡)]
2

] ,

(72)

from (71) we have [𝐽−(𝛿−6)/8(𝑡)]
󸀠󸀠

≤ 0. Therefore 𝐽−(𝛿−6)/8(𝑡) is
concave for sufficiently large 𝑡, and there exists a finite time
𝑇
∗ such that

lim
𝑡→𝑇

∗

𝐽
−(𝛿−6)/8

(𝑡) = 0. (73)

From assumption on 𝑇(𝑥), we obtain

∫𝑇 (𝑥) |𝑢|
2
𝑑𝑥 ≥ 𝑇∫ |𝑢|

2
𝑑𝑥. (74)

Thus one gets 𝑇 < ∞ and

lim
𝑡→𝑇

−

‖𝑢‖
𝐻
= ∞. (75)

We complete the proof of (1) of Theorem 13.
Next, we prove (2) of Theorem 13.
From (6), (7), and (55), we obtain 𝐸(0) < 𝑑

𝑀
. It follows

that 𝑢
0
satisfies

𝑅 (𝑢
0
) = ∫

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫𝑇 (𝑥)
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥 − ∫
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 > 0,

(76)

whichwill be proved by contradiction. If (76) is not true, then
we have 𝑅(𝑢

0
) ≤ 0. Thus there exists 0 < 𝜇 ≤ 1 such that

𝑢
0
̸= 0 and

𝑅 (𝜇𝑢
0
) = 𝜇
2
(∫

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫𝑇 (𝑥)
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

−𝜇
𝑝
∫
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 = 0,

(77)

which implies 𝜇𝑢
0
∈ 𝑀.

On the other hand, for 0 < 𝜇 ≤ 1, 𝑢
0
∈ 𝑊 and (55) yield

𝑆 (𝜇𝑢
0
) < 𝜇
2

× (∫
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫𝑇 (𝑥)
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

≤ 𝑑
𝑀
,

(78)

which is contradictory to Lemma 4.
Therefore, by 𝑅(𝑢

0
) > 0 and Lemma 6, we have 𝑅(𝑢) > 0

and 𝐸(𝑡) ≤ 𝐸(0) < 𝑑
𝑀
. Thus

𝐸 (𝑡) −
1

𝑝
𝑆 (𝑢) ≤ 𝐸 (0) ; (79)

namely,

1

2
∫
󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝑝 − 2

2𝑝

× (∫ |∇𝑢|
2
𝑑𝑥 + ∫𝑇 (𝑥) |𝑢|

2
𝑑𝑥 + ∫ |𝑢|

2
𝑑𝑥) ≤ 𝐸 (0) .

(80)

Therefore we have established the bound of 𝑢(𝑥, 𝑡) in 𝐻 for
𝑡 ∈ [0, 𝑇) and thus the solution 𝑢(𝑥, 𝑡) of (1) exists globally
on 𝑡 ∈ [0,∞).

From (76), 𝐸(0) < 𝑑
𝑀
, and Lemma 4, we have the

estimate (55).
Thus, we complete the proof of Theorem 13.

5. Asymptotic Behaviour of Solutions

We now state and prove the following theorem on asymptotic
behavior of solutions when𝑚 = 2.

Theorem 14. Let 𝑚 = 2 in problem (1). Assume 0 < 𝐸(0) <
𝑑
𝑚
, 𝑅(𝑢
0
) > 0, or ‖𝑢

0
‖
𝐻
= 0. For the global solution of the

problem (1) given in Theorem 13, we have

𝐸 (𝑡) ≤ 𝐶𝑒
−𝑘𝑡
, 0 ≤ 𝑡 < ∞, (81)

for some positive constants 𝐶 and 𝑘.

Proof. Let 𝑢 be a global solution of the problem (1); then by
Theorem 13, we obtain 𝑢 ∈ 𝑊

𝛿
for 𝛿
1
< 𝛿 < 𝛿

2
and 0 ≤ 𝑡 < ∞,

where 𝛿
1
and 𝛿
2
(𝛿
1
< 𝛿
2
) are two roots of equation 𝑑

𝑀
(𝛿) =

𝐸(0). Differentiating (7) with respect to 𝑡 and multiplying the
obtained equality by 𝑒𝛾𝑡 (𝛾 > 0), we have

𝑑

𝑑𝑡
(𝑒
𝛾𝑡
𝐸 (𝑡)) + 𝑒

𝛾𝑡󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
= 𝛾𝑒
𝛾𝑡
𝐸 (𝑡) ,

0 ≤ 𝑡 < ∞.

(82)

Integrating (82) with respect to 𝑡, we get

𝑒
𝛾𝑡
𝐸 (𝑡) + ∫

𝑡

0

𝑒
𝛾𝜏󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩

2

2
𝑑𝜏

= 𝐸 (0) + 𝛾∫

𝑡

0

𝑒
𝛾𝜏
𝐸 (𝜏) 𝑑𝜏.

(83)

It follows from 𝑢(𝑡) ∈ 𝑊 and

𝐸 (𝑡) =
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+
𝑝 − 2

2𝑝
‖𝑢‖
𝑝

𝑝
+
1

2
𝑅 (𝑢) ; (84)

then

𝐸 (𝑡) ≤
1

2

󵄩󵄩󵄩󵄩𝑢𝜏
󵄩󵄩󵄩󵄩

2

2
+
1

2
𝑅 (𝑢) +

𝑝 − 2

2𝑝
‖𝑢‖
2

𝐻
. (85)

Moreover, taking V = 𝑢 in (42), we obtain

𝑑

𝑑𝑡
(𝑢, 𝑢
𝑡
) −

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ ‖𝑢‖
2

𝐻
+
1

2

𝑑

𝑑𝑡
‖𝑢‖
2

2
= ‖𝑢‖
𝑝

𝑝
, (86)
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which implies

𝑅 (𝑢) =
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
−
𝑑

𝑑𝑡
(𝑢, 𝑢
𝑡
) −

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

2
. (87)

From (83), (85), and (87), we get

𝑒
𝛾𝜏
𝐸 (𝜏) 𝑑𝜏 + ∫

𝑡

0

𝑒
𝛾𝜏󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩

2

2
𝑑𝜏

≤ 𝐸 (0) + 𝛾∫

𝑡

0

𝑒
𝛾𝜏
(
1

2

󵄩󵄩󵄩󵄩𝑢𝜏
󵄩󵄩󵄩󵄩

2

2
𝑑𝜏 +

1

2
𝑅 (𝑢) +

𝑝 − 2

2𝑝
‖𝑢‖
2

𝐻
)𝑑𝜏

≤ 𝐸 (0) + 𝛾∫

𝑡

0

𝑒
𝛾𝜏

× (
1

2

󵄩󵄩󵄩󵄩𝑢𝜏
󵄩󵄩󵄩󵄩

2

2
𝑑𝜏 +

𝑝 − 2

2𝑝
‖𝑢‖
2

𝐻
)𝑑𝜏

−
𝛾

4
∫

𝑡

0

𝑒
𝛾𝜏 𝑑

𝑑𝜏
((𝑢, 𝑢

𝜏
) + ‖𝑢‖

2

2
) 𝑑𝜏,

(88)

∫

𝑡

0

𝑒
𝛾𝜏 𝑑

𝑑𝜏
((𝑢, 𝑢

𝑡
) + ‖𝑢‖

2

2
) 𝑑𝜏

= 2 (𝑢
0
, 𝑢
1
) +

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

2
− 𝑒
𝛾𝑡
(2 (𝑢, 𝑢

𝑡
) + ‖𝑢‖

2

2
)

+ 𝛾∫

𝑡

0

𝑒
𝛾𝜏
(2 (𝑢, 𝑢

𝜏
) + ‖𝑢‖

2

2
) 𝑑𝜏

≤ 2
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

2
+ 𝑒
𝛾𝑡
(2‖𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
)

+ 𝛾∫

𝑡

0

𝑒
𝛾𝜏
(2‖𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩

2

2
) 𝑑𝜏.

(89)

From (88) and (89), it follows that

𝑒
𝛾𝜏
𝐸 (𝜏) 𝑑𝜏 + ∫

𝑡

0

𝑒
𝛾𝜏󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩

2

2
𝑑𝜏

≤ 𝐸 (0) + 𝛾∫

𝑡

0

𝑒
𝛾𝜏

× (
1

2

󵄩󵄩󵄩󵄩𝑢𝜏
󵄩󵄩󵄩󵄩

2

2
𝑑𝜏 +

𝑝 − 2

2𝑝
‖𝑢‖
2

𝐻
)𝑑𝜏

+
𝛾

4
(2
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

2
)

+
𝛾

4
𝑒
𝛾𝑡
(2‖𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
)

+
𝛾
2

4
∫

𝑡

0

𝑒
𝛾𝜏
(2‖𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩

2

2
) 𝑑𝜏

≤ 𝐸 (0) + 𝐶
0
+
𝛾

4
𝑒
𝛾𝑡
(2‖𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
)

+
𝛾
2

4
∫

𝑡

0

𝑒
𝛾𝜏
{(2 +

2 (𝑝 − 2)

𝛾𝑝
) ‖𝑢‖
2

2
+ (1 +

𝛾

4
)
󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩

2

2
}𝑑𝜏,

(90)

where 𝐶
0
= (𝛾/4)(2‖𝑢

0
‖
2

2
+ ‖𝑢
1
‖
2

2
); then

𝑒
𝛾𝑡
𝐸 (𝑡) ≤ 𝐸 (0) + 𝐶

0
+
𝛾

4
𝑒
𝛾𝑡
(2‖𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
)

+
𝛾
2

4
∫

𝑡

0

𝑒
𝛾𝜏
{(2 +

2 (𝑝 − 2)

𝛾𝑝
) ‖𝑢‖
2

2

+(1 +
4 (𝛾 − 1)

𝛾2
)
󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩

2

2
}𝑑𝜏.

(91)

Furthermore, from

𝐸 (𝑡) =
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+
𝑝 − 2

2𝑝
‖𝑢‖
2

𝐻
+
1

𝑝
𝑅 (𝑢)

>
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+
𝑝 − 2

2𝑝
‖𝑢‖
2

𝐻
>
𝑝 − 2

2𝑝
(
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ ‖𝑢‖
2

𝐻
) ,

(92)

we obtain

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
+ ‖𝑢‖
2

𝐻
<

2𝑝

𝑝 − 2
𝐸 (𝑡) . (93)

Let 𝛿
1
= max{2 + (2(𝑝 − 2))/𝛾𝑝, 1 + (4(𝛾 − 1))/𝛾2}; then

𝑒
𝛾𝑡
𝐸 (𝑡) ≤ 𝐸 (0) + 𝐶

0
+
2𝛾

4
𝑒
𝛾𝑡
(2‖𝑢‖

2

𝐻
+
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
)

+
𝛾
2
𝛿
1

4
∫

𝑡

0

𝑒
𝛾𝜏
(2‖𝑢‖

2

𝐻
+
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

2
) 𝑑𝜏

≤ 𝐸 (0) + 𝐶
0
+

2𝛾𝑝

2 (𝑝 − 2)
𝑒
𝛾𝑡
𝐸 (𝑡)

+
𝛾
2
𝛿
1
𝑝

2 (𝑝 − 2)
∫

𝑡

0

𝑒
𝛾𝜏
𝐸 (𝜏) 𝑑𝜏.

(94)

From (93), we obtain

𝑒
𝛾𝑡
𝐸 (𝑡) ≤ 𝐶

1
+ 𝐶
2
∫

𝑡

0

𝑒
𝛾𝜏
𝐸 (𝜏) 𝑑𝜏, (95)

where𝐶
1
= (𝐸(0)+𝐶

0
)/(1−2𝛾𝑝/2(𝑝−2)),𝐶

2
= 𝛾
2
𝛿
1
𝑝/2(𝑝−

2)(1 − 2𝛾𝑝/2(𝑝 − 2)). Choosing 𝑘 sufficiently small and
together with Gronwall inequality, we have

𝐸 (𝑡) ≤ 𝐶
1
𝑒
−𝑘𝑡
, (96)

where 𝑘 = 𝛾(1 − 𝛾𝛿
1
𝑝/2(𝑝 − 2)(1 − 2𝛾𝑝/2(𝑝 − 2))) > 0.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



Abstract and Applied Analysis 9

References

[1] J. Ha and S. Nakagiri, “Identification problems for the damped
Klein-Gordon equations,” Journal of Mathematical Analysis and
Applications, vol. 289, no. 1, pp. 77–89, 2004.

[2] H. A. Levine, “Instability and nonexistence of global solutions
of nonlinear wave equations of the form 𝑃𝑢

𝑡𝑡
= −𝐴𝑢 + 𝐹 (𝑢),”

Transactions of the American Mathematical Society, vol. 192, pp.
1–12, 1974.

[3] J. M. Ball, “Finite time blow-up in nonlinear problems,” in
Nonlinear Evolution Equations, pp. 189–205, Academic Press,
New York, NY, USA, 1978.

[4] L. E. Payne and D. H. Sattinger, “Saddle points and instability of
nonlinear hyperbolic equations,” Israel Journal of Mathematics,
vol. 22, no. 3-4, pp. 273–303, 1975.

[5] J. Zhang, “Sharp conditions of global existence for nonlinear
Schrödinger and Klein-Gordon equations,” Nonlinear Analysis:
Theory, Methods &Applications, vol. 48, no. 2, pp. 191–207, 2002.

[6] Z. H. Gan and J. Zhang, “Sharp conditions for global existence
for nonlinear Klein-Gordon equations,” Acta Mathematica
Sinica. Chinese Series, vol. 48, no. 2, pp. 311–318, 2005.

[7] W. Huang and J. Zhang, “Instability of the standing waves
for nonlinear Klein-Gordon equations with damping term,”
Applied Mathematics and Computation, vol. 213, no. 2, pp. 522–
528, 2009.

[8] T. G. Ha and J. Y. Park, “Global existence and uniform decay of
a damped Klein-Gordon equation in a noncylindrical domain,”
Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no.
2, pp. 577–584, 2011.

[9] M. Nakao, “Existence of global decaying solutions to the exte-
rior problem for the Klein-Gordon equation with a nonlinear
localized dissipation and a derivative nonlinearity,” Journal of
Differential Equations, vol. 255, no. 11, pp. 3940–3970, 2013.

[10] V. Georgiev and G. Todorova, “Existence of a solution of the
wave equation with nonlinear damping and source terms,”
Journal of Differential Equations, vol. 109, no. 2, pp. 295–308,
1994.

[11] R. Ikehata, “Some remarks on the wave equations with non-
linear damping and source terms,” Nonlinear Analysis. Theory,
Methods & Applications, vol. 27, no. 10, pp. 1165–1175, 1996.

[12] G. Todorova and E. Vitillaro, “Blow-up for nonlinear dissipative
wave equations in 𝑅𝑛,” Journal of Mathematical Analysis and
Applications, vol. 303, no. 1, pp. 242–257, 2005.

[13] F. Gazzola and M. Squassina, “Global solutions and finite time
blow up for damped semilinear wave equations,” Annales de
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