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A model based adaptive piecewise linear control scheme for industry processes with specifications on peak overshoots and rise
times is proposed. It is a gain stabilized control technique. Large gain is used for large tracking error to get fast response. Small gain
is used between large and small tracking error for good performance. Large gain is used again for small tracking error to cope with
large disturbance. Parameters of the three-segment piecewise linear controller are found by an automatic regulating time series
which is function of output characteristics of the plant and reference model.The time series will be converged to steady values after
the time response of the considered system matching that of the reference model. The proposed control scheme is applied to four
numerical examples which have been compensated by PID controllers. Parameters of PID controllers are found by optimization
method. It gives an almost command independent response and gives significant improvements for response time and performance.

1. Introduction

Gain and phase stabilized are two conventional design
methods for feedback control systems. They can be analyzed
and designed in gain-phase plots to get wanted gain and
phase margins or gain and phase crossover frequencies [1,
2]. The gain crossover frequency is closely related to the
system bandwidth (or response time). The phase margin
is closely related to performance (or peak overshoot). In
general, fast response time and good performance cannot be
obtained simultaneously for some feedback control systems.
For example, the altitude control system of the airframe
needs large gain for fast response time and low gain for
good performance. It is in conflict with another. Simple and
effective way to solve this problem and provides better results
than those of compensated by linear controllers are generally
expected. This is the motivation of this paper.

Variable structure control is a switching control method
for feedback control systems [3–7]. It gives good performance
and robustness for coping with system uncertainty. But it
suffers from chattering problem and state measurements. In
this paper, a fast response system and a good performance

system are selected for switching. An adaptive switching algo-
rithm is used.There is no discontinuous connection between
two systems. Therefore, there is no chattering problem. Gain
scheduling has been used successfully to control nonlinear
systems for many decades and inmany different applications,
such as autopilots and chemical processes [8–10]. It consisted
of many linear controllers for operating points to cope with
large parameter variations. This concept will be expanded
for response time and performance. Operating points are
replaced by fast response and good performance conditions
and interpolation for gain evaluation is replaced by an
adaptive switching point. It is determined by the filtered
command tracking errors. Nonlinear controller’s syntheses
using inverse describing function for use with hard nonlinear
system have developed for several researchers [11–13]. They
are complicated but effective for nonlinear systems.

In this paper, a simple three-segment piecewise linear
controller is proposed. It is symmetry and has two switching
points. It is equivalent to two quasilinear gains; that is,
there are two equivalent systems. One is the fast but bad
performance system, and the other is the slow but good per-
formance system. Switching points are used to select optimal
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gain. They are functions of the dynamic of tracking error. It
is easy to analyse and design. Based on the information of
the reference model, parameters of three-segment piecewise
linear controller can be tuned in the online manner. An
automatic regulating time series [14] is used for tuning the
parameter. It can be retuned again if the system is needed.
Furthermore, it gives an almost reference input independent
response. It implies that the controlled system is similar to a
linear system.

The proposed control scheme will be illustrated by a 2nd
order altitude control system and applied to four numerical
examples those have been compensated by optimized PID
controllers. Time responses show that the proposed method
gives significant improvements on response time and perfor-
mance than those compensated by PID controllers.

2. The Model Based Control Scheme

Figure 1 shows the proposed model based control scheme
in which reference model represents the wanted system
response, adaptive piecewise linear controller is a gain sta-
bilized compensation, and autotuning process is used to
find the switching point (𝐷

1
) of the adaptive piecewise

linear controller. The piecewise linear controller can get
fast response and performance simultaneously. It is a three-
segment piecewise linear controller.The switching point (𝐷

1
)

is dependent on the filtered dynamic of the tracking error (𝐸).
Parameters 𝐾

1
, 𝐾
2
, 𝐾
𝑛
, and 𝑇

𝑛
are found by the autotuning

process for matching outputs of the reference model. Several
identifying processes will be processed to find them. In
general, the controlled system can be described by peak
overshoot and rise time of step response. The concept of the
proposed control scheme will be discussed by an illustrating
example in next subsections.

2.1. The Adaptive Piecewise Linear Controller. Figure 1 shows
the three-segment piecewise linear nonlinearity. Now, the
problem is to find values of 𝐾

𝑛
and 𝑇

𝑛
for switching points

+𝐷
1
and−𝐷

1
and gains (𝐾

1
, 𝐾
2
) for two selected systems; that

is, one is the fast but bad performance system and the other is
the slow but good performance system. Note that switching
points +𝐷

1
and −𝐷

1
are not fixed and will be determined by

the absolute value of the command tracking error.
Consider a 2nd altitude control example described by

𝐺 (𝑠) =
1

𝑠 (𝑠 + 2)
. (1)

The transfer function of the closed-loop system with loop
gain 𝐾 is

𝑇 (𝑠) =
𝐾

𝑠2 + 2𝑠 + 𝐾
. (2)

Poles locations and natural frequency (𝜔
𝑛
) for two loop gains

(𝐾
1
, 𝐾
2
) are

𝐾
1
= 0.500, poles : −0.2929, −1.7071,

𝐾
2
= 10.00, poles : −1.0 ± 𝑗3.0, 𝜔

𝑛
= 3.1623.

(3)

They are overdamped and underdamped systems. Time
responses of them are shown in Figure 2 for 𝐾 = 𝐾

1
(small-

dot-line) and 𝐾 = 𝐾
2
(large-dot-line) in which 𝑅 represents

the reference input and 𝐶 represents the output. The strategy
for gain switching is (1) large gain (𝐾

2
) for large tracking

error to get fast response and (2) small gain (𝐾
1
) for small

tracking error (𝐸) to get good performance. It is a variable
structure system and can be achieved by selecting a proper
switching point 𝐷

1
of the piecewise linear controller. For

example, the optimal switching point 𝐷
1
is selected as 0.525

for 𝑅 = 1 to get fast response and good performance. Large
gain (𝐾

2
) is used for |𝐸| > 𝐷

1
and small gain (𝐾

1
) is used

for |𝐸| ≤ 𝐷
1
. Step response is shown in Figure 2 (solid-line)

also for 𝑅 = 1. It shows that the controlled system using
adaptive gain can give fast response and good performance
simultaneously.

However, it is not true that 𝑅 is equal to 5, 10, and 50,
respectively. Those step responses are shown in Figure 3.
Naturally, another optimal switching point 𝐷

1
for 𝑅 = 5, 10,

and 50 can be selected for getting good performance.They are
2.625, 5.250, and 26.250 for 𝑅 = 5, 10, and 50, respectively.
They are true for step responses from zeros to 5, 10, and 50
only. Another possible way for the switching point can be
dependent on the tracking error (𝐸). A possible switching
rule for 𝐷

1
is found as 𝐷

1
= 0.925|𝐸| for good performance.

Figure 4 shows time responses for 𝑅 = 1, 5, 10, and 50,
respectively. It can be seen that the switching rule gives an
input command (𝑅) independent of results.However, they are
slower than those results shown in Figures 2 and 3.

One possible way to speed up the time response is to
enlarge the large gain phase in the beginning. A low-pass filter
𝐷(𝑠) = 𝐾

𝑛
/(𝑇
𝑛
𝑠 + 1) is used for the absolute tracking error

(𝐸) to get 𝐷
1
. Figure 5 shows that faster response than that

shown in Figure 4 is got for 𝐾
𝑛
= 1.0465 and 𝑇

𝑛
= 1/𝜔

𝑛
. The

switching point 𝐷
1
is shaped for speeding up the responses

while keeping performance unchanged. Figure 5 shows that
the rise time of the controlled system is quite close to that
of the controlled system using 𝐾 = 𝐾

2
; that is, the rise

time of the system is dependent on 𝐾
2
. Note that the natural

frequency (𝜔
𝑛
) for 𝐾 = 𝐾

2
is used to find 𝑇

𝑛
also. Therefore,

it is needed to determine𝐾
𝑛
only.

Figure 6 shows time responses for 𝑅 = 1, 5, 10, and
50, respectively. It shows that almost input independent
responses are got. It implies that the controlled system is
similar to the system controlled by linear controller. This is
the major merit of the proposed method.

2.2. The Automatic Tuning Process. In general, one can use
rise time and peak overshoot of step response to describe the
characteristics of the controlled system. They will be used as
specifications to find parameters of the adaptive piecewise
linear controller, that is, 𝐾

1
, 𝐾
2
,𝐾
𝑛
, and 𝑇

𝑛
.

2.2.1. Automatic Tuning Process for Matching Peak Point.
Parameter 𝐾

𝑛
= 1.0465 of the low-pass filter 𝐷(𝑠) =
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Figure 1: The proposed model based control scheme.
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Figure 2: Time responses of the illustrating example for𝐾 = 0.5, 10
and adaptive gain.

𝐾
𝑛
/(𝑇
𝑛
𝑠 + 1) of the adaptive piecewise linear controller used

in Section 2.1 was found by use of the following equations:

𝐺
𝑛
(𝑘𝑇 + 𝑇) = 𝐺

𝑛
(𝑘𝑇) × {𝛼[

𝑀𝑝

𝑀𝑝𝑠
]

𝑗

+ (1 − 𝛼)} ;

0 < 𝛼 < 1;

(4)

𝐾
𝑛
= 𝐺
𝑛
(𝑘𝑇) , (5)

where 𝐺
𝑛
(𝑘𝑇) is an automatic regulating time series [14]; 𝛼

and 𝑗 are controlling parameters of the regulating property;
𝑀𝑝𝑠 is the specification of the peak value; 𝑀𝑝 is the peak
point found by using 𝐾

𝑛
= 𝐺
𝑛
(𝑘𝑇); 𝑇 is simulation period of

one step response; and 𝑘 is the 𝑘th step responses. Equation
(4) gives that𝐺

𝑛
(𝑘𝑇)will be converged to a steady-state value

after𝑀𝑝𝑠 being matched by𝑀𝑝.
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Figure 3: Time responses of the illustrating example for𝑅 = 1, 5, 10,
and 50 and𝐷

1
= 0.525.

Figure 7 shows the online tuning process for 𝑇 = 30 sec;
𝛼 = 0.9; 𝑀𝑝𝑠 = 1.003; 𝑗 = 3. The values of 𝐺

𝑛
(𝑘𝑇) in each

tuning interval are

𝐺
𝑛
(0) = 0.30, 𝐺

𝑛
(𝑇) = 0.6004,

𝐺
𝑛
(2𝑇) = 0.9580, 𝐺

𝑛
(3𝑇) = 1.0465,

𝐺
𝑛
(0) = 0.50, 𝐺

𝑛
(𝑇) = 0.8678,

𝐺
𝑛
(2𝑇) = 1.0484, 𝐺

𝑛
(3𝑇) = 1.0465,

𝐺
𝑛
(0) = 0.70, 𝐺

𝑛
(𝑇) = 1.0122,

𝐺
𝑛
(2𝑇) = 1.0453, 𝐺

𝑛
(3𝑇) = 1.0465,

(6)

for three initial guesses 𝐺
𝑛
(0). They show that 𝐺

𝑛
(𝑘𝑇) are

converged to 1.0465 quickly. Figure 7 shows also that the final
system matches the peak specification𝑀𝑝𝑠.
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Figure 4: Time responses of the illustrating example for𝑅 = 1, 5, 10,
and 50 and𝐷

1
= 0.925|𝐸|.
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Figure 5: Time responses of the illustrating example for 𝑅 = 1 and
𝐷(𝑠) = 𝐾

𝑛
/(𝑇
𝑛
𝑠 + 1).

2.2.2. Automatic Tuning Process for Matching Peak Point and
Rise Time. In the previous subsection, specification 𝑀𝑝𝑠 is
used to find parameter𝐾

𝑛
. Another specification for rise time

𝑇
𝑐
can be also used to tune high gain 𝐾

2
and 𝑇

𝑛
. Automatic

tuning equations are described as follows:

𝑄
𝑛
(𝑘𝑇 + 𝑇) = 𝑄

𝑛
(𝑘𝑇) × {𝛽[

𝑇
𝑐

𝑇
𝑐𝑠

]

𝑙

+ (1 − 𝛽)} ; (7)

𝑆
𝐶𝐾2

= 𝑄
𝑛
(𝑘𝑇) , (8)

where 𝛽 is regulating parameter and 𝐾
2
, 𝐾
1
, and 𝑇

𝑛
will

be replaced by 𝐾
2
𝑆
𝐶𝐾2

, 𝐾
1
/𝑆
𝐶𝐾2

, and 𝑇
𝑛
/𝑆
𝐶𝐾2

, respectively.
Figure 8 shows the online automatic tuning process for
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Figure 6: Time responses of the illustrating example for𝑅 = 1, 5, 10,
and 50.
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Figure 7: Online automatic tuning process of the illustrating
example using different initial 𝐺

𝑛
(0).

matching peak point and rise time specifications, simultane-
ously. Specifications used are𝑀𝑝𝑠 = 1.003 and𝑇

𝑐𝑠
= 0.60 sec.

Parameters used in (4) and (7) are 𝛼 = 0.6, 𝛽 = 0.5, 𝑗 = 5,𝑇 =
30 sec, 𝐺

𝑛
(0) = 0.7, and 𝑄

𝑛
(0) = 1.00. Internal values of each

tuning interval are given in Table 1. Table 1 gives that system
response is converged into wanted specification quickly. Note
that system response shown in Figure 8 is faster than that
shown in Figure 7.
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Figure 8: Online automatic tuning process of the illustrating
example for matching peak point and rise time specification.

Table 1: Internal values of each tuning interval.

Time 0 T 2T 3T 4T
𝐺
𝑛
(kT) 0.70 1.101 1.091 1.093 1.091

𝑄
𝑛
(kT) 1.00 0.815 1.979 1.927 1.928

Mps 1.147 1.000 1.004 1.003 1.003
𝑇
𝑐

0.547 0.786 0.594 0.600 0.600

Design procedures for the proposed method using the
proposed adaptive piecewise linear controller can be deduced
as follows.

Step 1. Select two loop gains for fast response and good
performance, respectively. In general, high loop gain (𝐾 =

𝐾
2
) is for fast responses and low gain (𝐾 = 𝐾

1
) is for good

performance.The rise time of the systemwith high gainmeets
the design specification. The peak overshoot of the system
with low gain meets the design specification.

Step 2. Determine parameters of low-pass filter 𝐷(𝑠) =

𝐾
𝑛
/(𝑇
𝑛
𝑠 + 1) to find the optimal switching point 𝐷

1
. The

natural frequency (𝜔
𝑛
) for the high gain system (𝐾 = 𝐾

2
) is

used to find 𝑇
𝑛
. The natural frequency (𝜔

𝑛
) is closely related

to the rise time. Equations (4)–(8) are used to find parameters
𝐾
1
, 𝐾
2
, 𝐾
𝑛
, and 𝑇

𝑛
for given specifications 𝑀𝑝𝑠 and 𝑇

𝑐𝑠
.

Another method for finding parameter𝐾
𝑛
can be used by the

optimizationmethodusing performance index formulated by
integration of the absolute error (IAE) and integration of the
square error (ISE) oronline parameterized method [15, 16].

The proposed control scheme will be applied to four
numerical examples which have been compensated by opti-
mized PID controllers.
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Figure 9: Step responses of Example 1 for constant gains (𝐾 = 0.5

and 2.587) and adaptive gain with𝐷
1
.

3. Numerical Examples

Example 1. Consider a stable plant that has the transfer
function [17]

𝐺 (𝑠) =
𝑒
−𝑠

(𝑠 + 1)
2
. (9)

It is a second order dynamic plus a pure time delay (SOPDT).
In this example, parameters of the PID controller are

𝐾
𝑝
= 1.1953, 𝐾

𝑖
= 0.5942, 𝐾

𝑑
= 0.7338. (10)

It is designed by optimization method first and closed with
it. And then low loop gain 𝐾

1
= 0.50 in cascade is selected

and high loop gain 𝐾
2
= 2.587 in cascade is selected for the

system which is just in the sustaining oscillating condition.
Time responses using low gain (𝐾

1
= 0.50) and high gain

(𝐾
2
= 2.587) are shown in Figure 9.The oscillation frequency

is 𝜔
𝑛
= 1.5708 rad/s. It shows an overdamped system and a

zero-damped system. An optimal parameter𝐾
𝑛
for switching

point 𝐷
1
will be selected to coordinate two systems for

matching system specifications.
Now, apply the proposed control scheme to the system

using

𝐾
1
= 0.5000, 𝐾

2
= 2.587, 𝑇

𝑛
= 0.6366. (11)

The𝐾
𝑛
is found by following online computing rule:

𝐺
𝑛
(𝑘𝑇 + 𝑇) = 𝐺

𝑛
(𝑘𝑇) × {0.9[

𝑀𝑝𝑐

𝑀𝑝𝑠
]

2

+ 0.1} ,

𝐾
𝑛
= 𝐺
𝑛
(𝑘𝑇)

(12)
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with 𝐺
𝑛
(0) = 0.5, 𝑇 = 25 seconds, and 𝑀𝑝𝑠 = 1.001. The

found 𝐺
𝑛
(𝑘𝑇) are

𝐺
𝑛
(0) = 0.5, 𝐺

𝑛
(𝑇) = 1.0794, 𝐺

𝑛
(2𝑇) = 1.1365,

𝐺
𝑛
(3𝑇) = 1.1385, 𝐺

𝑛
(4𝑇) = 1.1385, . . . .

(13)

𝐺
𝑛
(𝑘𝑇) is converged to be 1.1385 within three period simula-

tions. The online autotuning process is shown in Figure 10.
The time response is shown in Figure 9 also. It can

be seen that the proposed method can give fast response
and good performance simultaneously. It is the combination
of overdamped and zero-damped systems with 𝐷

1
. Zero-

damped system is used for fast responses and overdamped
system is used for good performance. Naturally, it is almost
input command (𝑅) independent also.

Simulation results of the proposedmethod and four other
methods are presented for comparisons.They are methods of
Ziegler-Nichols [18, 19] for finding PI and PID compensators,
Tan et al. [20, 21] for finding PID compensator, and Majhi
[17] for finding PI compensator. Parameters of five found
compensators are given as follows.

(1) Proposed method:

𝐾
𝑝
= 1.1953, 𝐾

𝑖
= 0.5942, 𝐾

𝑑
= 0.7338,

𝐾
1
= 0.5000, 𝐾

2
= 2.587, 𝐾

𝑛
= 1.1385,

𝑇
𝑛
= 0.6366.

(14)

(2) ZN(PI): 𝐾
𝑝
= 1.240 and𝐾

𝑖
= 0.251.

(3) ZN(PID): 𝐾
𝑝
= 1.6367, 𝐾

𝑖
= 0.4187, and 𝐾

𝑑
=

0.5972.
(4) Tan’s(PID): 𝐾

𝑝
= 0.620, 𝐾

𝑖
= 0.5636, and 𝐾

𝑑
=

0.1705.
(5) Majhi’s(PI): 𝐾

𝑝
= 0.864 and𝐾

𝑖
= 0.3653.

Time responses are shown in Figure 11. Integral of the square
error (ISE) and integral of the absolute error (IAE) are
given in Table 2. From Table 2 and Figure 11, one can see
that the proposed method gives faster response and better
performance than those of other methods presented.

Example 2. Consider the sixth-order plant [17]

𝐺 (𝑠) =
1

(𝑠 + 1)
6
. (15)

Three parameters of the optimized PID controller are

𝐾
𝑝
= 1.1800, 𝐾

𝑖
= 0.3380, 𝐾

𝑑
= 2.9181. (16)

The performance index 50IAE+ ISE is used for finding them.
The dominate pole for high gain 𝐾

2
= 1.500 is −0.0848 ±

𝑗0.7898. The natural frequency is 𝜔
𝑛
= 0.7943 rad/s. It is an

underdamped system.The low gain𝐾
1
= 0.05 is selected. It is

an overdamped system. Parameters for the proposed control
scheme found are

𝐾
1
= 0.0500, 𝐾

2
= 1.500, 𝐾

𝑛
= 0.5064,

𝑇
𝑛
= 1.259.

(17)
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Figure 10: Online autotuning process of Example 1.
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Figure 11: Comparisons with other methods for Example 1.

Table 2: The ISE and IAE of five methods for Example 1.

Proposed ZN(PI) ZN(PID) Tan’s(PID) Majhi’s(PI)
ISE 1.347 2.268 1.770 2.247 2.465
IAE 1.599 4.011 2.876 3.073 4.066

Figure 12 shows time responses using optimization method
and the proposed method for 𝑅 = 1, 5, 10, and 50. It can be
seen that the proposedmethod gives better result than that of
the optimization method.

Simulation results of the proposedmethod and four other
methods are presented for comparisons also.They are rules of
Ziegler-Nichols [18, 19] for finding PI and PID compensators,
Ho et al. [22] for finding PID compensator, and Majhi
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Figure 12: Normalized responses of 𝐶/𝑅 and𝐷/𝑅 of Example 2.
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Figure 13: Comparisons with other methods for Example 2.

[17] for finding PI compensator. Parameters of five found
compensators are given as follows.

(1) The proposed method:

𝐾
𝑝
= 1.1800, 𝐾

𝑖
= 0.3380, 𝐾

𝑑
= 2.9181,

𝐾
1
= 0.0500, 𝐾

2
= 1.5000, 𝐾

𝑛
= 0.5064,

𝑇
𝑛
= 1.259.

(18)

(2) ZN(PI): 𝐾
𝑝
= 1.079 and𝐾

𝑖
= 0.110.

(3) ZN(PID):𝐾
𝑝
= 1.4248,𝐾

𝑖
= 0.1838, and𝐾

𝑑
= 1.360.

(4) Majhi’s(PI): 𝐾
𝑝
= 0.7736 and𝐾

𝑖
= 0.1547.

(5) Ho’s(PID):𝐾(𝑠) = 1.3(1 + 0.189/𝑠 + 1.3𝑠/(0.13𝑠 + 1)).

Time responses are shown in Figure 13. Integral of the square
error (ISE) and integral of the absolute error (IAE) are
given in Table 3. From Table 3 and Figure 13, one can see
that the proposed method gives faster response and better
performance than those of other methods.

Example 3. Consider the very high order plant [17]

𝐺 (𝑠) =
1

(𝑠 + 1)
20
. (19)

Three parameters of the optimized PID controller are

𝐾
𝑝
= 0.666, 𝐾

𝑖
= 0.06015, 𝐾

𝑑
= 4.4119. (20)

The performance index 50IAE+ ISE is used for finding them.
The dominate pole for high gain 𝐾

2
= 2.000 is +0.0089 ±

𝑗0.1965 (𝜔
𝑛
= 0.1967). Note that it is an unstable system.The

low gain 𝐾
1
= 0.200 is selected. It is an overdamped system.

Parameters found for the proposed control scheme are

𝐾
1
= 0.20, 𝐾

2
= 2.000, 𝐾

𝑛
= 0.6851,

𝑇
𝑛
= 5.0839.

(21)

Figure 14 shows time responses using optimization method
and the proposed method for 𝑅 = 1, 5, 10, and 50. It can be
seen that the proposedmethod gives better result than that of
the optimization method. Note that the compensated system
is a combination of an overdamped system and an unstable
system.That is, the proposed control scheme can stabilize the
system and gives fast response and good performance.

Simulation results of the proposedmethod and four other
methods are presented for comparisons. They are methods
of Ziegler-Nichols for finding PI and PID compensators [18,
19], Zhuang and Atherton [23] for finding PI compensator,
andMajhi [17] for finding PI compensator. Parameters of five
found compensators are given as follows.

(1) The proposed method:

𝐾
𝑝
= 0.666, 𝐾

𝑖
= 0.06015, 𝐾

𝑑
= 4.4119,

𝐾
1
= 0.20, 𝐾

2
= 2.000, 𝐾

𝑛
= 0.6851,

𝑇
𝑛
= 5.0839.

(22)

(2) ZN(PI): 𝐾
𝑝
= 0.585 and𝐾

𝑖
= 0.0305.

(3) ZN(PID): 𝐾
𝑝
= 0.77256, 𝐾

𝑖
= 0.05088, and 𝐾

𝐷
=

4.9135.

(4) Zhuang’s(PI): 𝐾
𝑝
= 0.473 and𝐾

𝑖
= 0.058.

(5) Majhi’s(PI): 𝐾
𝑝
= 0.5097 and𝐾

𝑖
= 0.0443.

Integral of the square error (ISE) and integral of the absolute
error (IAE) are given in Table 4. Time responses are shown
in Figure 15. From Table 4 and Figure 15, one can see that
the proposed method gives faster time responses and better
performance than those of other mentioned methods.
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Figure 14: Normalized responses of 𝐶/𝑅 and𝐷/𝑅 of Example 3.
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Figure 15: Comparisons with other methods for Example 3.

Example 4. Consider an electrohydraulic velocity/position
servo control system [24] shown in Figure 16. The relation
between the servo spool position 𝑋V and the input voltage
𝑢 is in the form of

𝑋V

𝑢
= 𝐺V (𝑠) =

𝐾V

𝑠2/𝜔V
2 + 2𝜉V𝑠/𝜔V + 1

, (23)

where𝐾V is the valve gain, 𝜉V is the damping ratio of the servo
valve, and 𝜔V is the natural frequency of the servo valve. In
general, (23) can be approximated by 𝑋V = 𝐾V𝑢 for large 𝜔V.
The relation between the valve displacement𝑋

𝑉
and the load

flow rate 𝑄
𝐿
is governed by the well-known orifice law [24]:

𝑄
𝐿
= 𝑋
𝑉
𝐾
𝐽
√𝑃
𝑆
− sign (𝑋

𝑉
) 𝑃
𝐿
= 𝑋
𝑉
𝐾
𝑠
, (24)

Table 3: The ISE and IAE of five methods for Example 2.

Proposed ZN(PI) ZN(PID) Ho’s(PID) Majhi’s(PI)
ISE 2.836 5.335 4.023 5.215 3.740
IAE 3.586 9.279 6.492 7.219 5.425

Table 4: The ISE and IAE of five methods for Example 3.

Proposed ZN(PI) ZN(PID) Zhuang’s(PID) Majhi’s(PI)
ISE 14.108 21.227 16.216 20.191 21.814
IAE 16.164 32.708 22.971 26.830 32.913

where 𝐾
𝑗
is a constant for specific hydraulic motor; 𝑃

𝑆
is

the supply pressure; 𝑃
𝐿
is the load pressure; and 𝐾

𝑠
is the

valve flow gain which varies at different operating points.The
following continuity property of the servo valve and motor
chamber yields

𝑄
𝐿
= 𝐷
𝑚
𝜔 + 𝐶

𝑡𝑝
𝑃
𝐿
+ (𝑉
𝑡
− 4𝛽
𝑜
) 𝑃̇
𝐿
, (25)

where 𝐷
𝑚

is the volumetric displacement; 𝐶
𝑡𝑝

is the total
leakage coefficient; 𝑉

𝑡
is the total volume of the oil; 𝛽

𝑜
is the

bulk modulus of the oil; and 𝜔 is the velocity of the motor
shaft.The torque balance equation for themotor is in the form
of

𝐷
𝑚
𝑃
𝐿
= 𝐽𝜔̇ + 𝐵

𝑚
𝜔̇ + 𝑇
𝐿
, (26)

where 𝐵
𝑚
is the viscous damping coefficient and 𝑇

𝐿
is the

external load disturbance which is assumed to be dependent
upon the velocity of the shaft.Themathematical model of the
considered system is shown in Figure 17. System parameters
are given as follows:

𝐾
𝑠
= 2.3 × 10

−7
√𝑃
𝑆
− sign (𝑋

𝑉
) 𝑃
𝐿
m2/s,

𝑃
𝑆
= 1.4 × 10

7Nt/m
2
, 𝐾V = 0.5m/v,

𝛽
𝑜
= 3.5 × 10

7Nt/m
2
, 𝑉
𝑡
= 3.3 × 10

−5m2/rad,

𝐶
𝑡𝑝
= 2.3 × 10

−11m5/s/Nt, 𝐷
𝑚
= 1.6 × 10

−5m3/rad,

𝐽 = 5.8 × 10
−3 Kg-m-s2, 𝐵

𝑚
= 0.864Kg ⋅m ⋅ s/rad,

𝜉V = 0.4, 𝜔V = 628 rad/s.
(27)

The control configuration for velocity and position servo
control of the considered system is shown in Figure 18,
in which inner loop and outer loop adaptive nonlinear
controllers are included.

Design results of the velocity control loop are discussed
as follows.

(a) Inner Loop PI Controller. The PI controller is first found
by the optimization toolbox of MATLAB for minimizing the
integration of absolute errors (IAE), integration of square
errors (ISE), and zero peak overshoot. Parameters of the
PI controller are 𝐾

𝑝
= 1.127 × 10

−3 and 𝐾
𝑖
= 3.9632.
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Time responses of the controlled system using the found PI
controller are shown in Figure 19.

(b) Parameters of Inner Loop Adaptive Nonlinear Controller.
Low gain (𝐾

1
= 1) and high gain (𝐾

2
= 9.223) are selected.

The low gain case is the optimized result and the high gain
case is the controlled system in the sustaining condition (𝜔

𝑛
=

312.71 rad/s). The 𝜔
𝑛
= 312.71 rad/s gives 𝑇

𝑛
= 0.003182.

𝐾
𝑛
= 2.2889 is found by (12) using 𝑀𝑝𝑠 = 1.001. Time

responses for low gain, high gain, and adaptive gain are
shown in Figure 19. Rise times of the optimization method
and the proposed method are 0.0202 sec and 0.0124 sec,
respectively. It shows that the proposed method can give
faster response than that controlled by the optimizedmethod.
The gain/phase margins, phase/gain crossover frequencies,
and rise times are given also in Table 5. It gives that con-
trolled system using two methods has the same robustness
while Figure 19 shows that the proposed method gives faster
response.

Design results of the position control loop are discussed
as follows.

(a) Outer Loop PI Controller. The PI controller is first found
by the optimizations toolbox of MATLAB for minimizing
the integration of absolute errors (IAE), integration of square
errors (ISE), and zero peak overshoot. Parameters of the PI
controller are 𝐾

𝑝
= 18.506 and 𝐾

𝑖
= 0.3666. Time responses

of the controlled system using the found PI controller are
shown in Figure 20.

(b) Parameters of Outer Adaptive Nonlinear Controller. Low
gain (𝐾

1
= 1) and high gain (𝐾

2
= 7.877) are selected. The

low gain case is the optimized result and the high gain case
is the controlled system in the sustaining condition (𝜔

𝑛
=

91.95 rad/s). The 𝜔
𝑛
= 91.95 rad/s gives 𝑇

𝑛
= 0.0010875.

𝐾
𝑛
= 13.5 is found by (12) using 𝑀𝑝𝑠 = 1.001. Time re-

sponses for low gain, high gain, and adaptive gain are shown
in Figure 20. Rise times of the optimization method and the
proposed method are 0.0513 sec and 0.0334 sec, respectively.
It shows that the proposed method can give faster response
than that controlled by the optimized method. Gain/phase
margins, phase/gain crossover frequencies, and rise times are
given also in Table 6. It gives that controlled system using two
methods has same robustness while Figure 20 shows that the
proposed method gives faster response.

4. Conclusions

The proposed adaptive piecewise linear controller has shown
that controlled systems were reference input independent
and both good performance and fast response were obtained
simultaneously. Three-segment piecewise linear controller
provided a switching algorithm for low gain and high sys-
tems, that is, low gain for performance and high gain for
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Table 5:Gain/phasemargins, phase/gain crossover frequencies, and
rise times.

Method GM 𝜔cp (Hz) PM (deg.) 𝜔cg (Hz) Rise time
(sec)

Optimization 9.05 50.03 69.35 8.13 0.0202
Adaptive gain 9.19 49.73 69.35 8.13 0.0124

Table 6: Gain/phase margins, phase/gain crossover frequencies,
and rise times.

Method GM 𝜔cp (Hz) PM (deg.) 𝜔cg (Hz) Rise time
(sec)

Optimization 8.35 47.19 52.14 8.91 0.0513
Adaptive gain 8.39 47.22 51.09 8.71 0.0334

response time. There are zero-damped, underdamped, and
unstable systems used in Examples 1, 2, and 3 individually to
get fast responses in large tracking phases.

Four numerical examples were designed and compar-
isons were made with six famous online computing and
control methods. They have illustrated better performance
and faster response provided by the proposed method than
those of other mentioned methods.
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Figure 20: Time responses of position control system for 𝐾
1
= 1,

𝐾
2
= 7.877, and adaptive gain.
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