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We introduce and analyze a new hybrid extragradient-like viscosity iterative algorithm for finding a common solution of a
generalized mixed equilibrium problem, a finite family of variational inclusions for maximal monotone and inverse strongly
monotone mappings, and a fixed point problem of infinitely many nonexpansive mappings in a real Hilbert space. Under some
mild conditions, we prove the strong convergence of the sequence generated by the proposed algorithm to a common solution of
these three problems which also solves an optimization problem.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and
norm || - ||, C be a nonempty closed convex subset of H, and
P, be the metric projection of H onto C. Let S: C — Hbea
nonlinear mapping on C. We denote by Fix(S) the set of fixed
points of S and by R the set of all real numbers. A mapping
V is called strongly positive on H if there exists a constant
Y € (0,1] such that

(Vx, x) = yllx|>, Vx € H. Q)

A mapping S : C — H is called L-Lipschitz continuous if
there exists a constant L > 0 such that

lsx-syl<L|x-y|, vxyecC. @)

In particular, if L = 1 then S is called a nonexpansive
mapping; if L € [0, 1) then A is called a contraction.

Let A: C — H be anonlinear mapping on C. Recall that
the classical variational inequality problem (VIP) is to find a
point x € C such that

(Ax,y-x) >0, VyeC. 3)

The solution set of VIP (3) is denoted by VI(C, A). The VIP
(3) was first discussed by Lions [1] and has been extensively
studied since then. See, for example, [2-5].

In 1976, Korpelevi¢ [6] proposed an iterative algorithm
for solving the VIP (3) in Euclidean space R™:

Yn = PC (xn - TAxn)’
(4)

Xn+1 :PC (xn_TAyn)’ Vn =0,

with 7 > 0 as a given number, which is known as the
extragradient method. The literature on the VIP is vast
and Korpelevichs extragradient method has received great
attention given by many authors, see, for example, [7-23]
and the references therein. Let ¢ : C — R be a real-
valued function, A : H — H be a nonlinear mapping, and
® : CxC — R be a bifunction. In 2008, Peng and Yao
[14] introduced the following generalized mixed equilibrium
problem (GMEP) of finding x € C such that

O(x,y)+9(y)-p(x) +(Ax,y-x) 20, VyeC. (5

We denote the set of solutions of GMEP (5) by
GMEP(O, ¢, A). The GMEP (5) is very general in the
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sense that it includes, as special cases, optimization prob-
lems, variational inequalities, minimax problems, Nash
equilibrium problems in noncooperative games, and others.
The GMEP is further considered and studied; see, for
example, [13, 16, 24-28].

We present some special cases of GMEP (5) as follows.

If = 0, then GMEP (5) reduces to the generalized equi-
librium problem (GEP) which is to find x € C such that

O (x,y)+ (Ax,y-x) >0, VyeC. (6)

This problem was introduced and studied by S. Takahashi and
W. Takahashi [29]. The set of solutions of GEP is denoted by
GEP(®, A).

If A = 0, then GMEP (5) reduces to the mixed equilibrium
problem (MEP) which is to find x € C such that

O(xy)+9(y)-9x) 20, VyeC. )

It is considered and studied in [30, 31]. The set of solutions of
MEP is denoted by MEP(®, ¢).

If p = 0,A = 0, then GMEP (5) reduces to the
equilibrium problem (EP) which is to find x € C such that

O(x,y)=0, VyeC. (8)

This was considered and studied in [32, 33]. The set of
solutions of EP is denoted by EP(®). It is worth mentioning
that the EP is a unified model of several problems, namely,
variational inequality problems, optimization problems, sad-
dle point problems, complementarity problems, fixed point
problems, Nash equilibrium problems, and so forth.

For the bifunction ® : C x C — R and real-valued
function ¢ : C — R in the GMEP (5), as in [14], we assume
that ® is a bifunction satisfying conditions (H1)-(H4) and ¢ is
alower semicontinuous and convex function with restriction
(H5), where

(H1) O(x,x) = 0 forall x € C;
(H2) ® is monotone, that is; ®(x, y) + O(y, x) < 0 for any

x,y €GC;
(H3) © is upper-hemicontinuous, that is; for each x, y, z €
C)
lim sup® (tz+ (1 -1)x,y) <O (x,y); ©)
t—0*

(H4) ©(x,-) is convex and lower semicontinuous for each
x €GC;

(H5) for each x € H and r > 0, there exists a bounded
subset D, ¢ Cand y, € Csuchthatforanyz € C\D,,

O(z,y) +9 (1) —@(2) + % (y,-2zz-x)<0. (10)

A differentiable function K : H — R s called
(i) convex, if

K(y)—K(x)2<K'(x),y—x>, Vx,y€H, (1)

where K is the Frechet derivative of K at x;
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(i) strongly convex, if there exists a constant o > 0 such
that

K(3)-K@-(K' @), y-x) > J|x-y, vxyeH.
(12)

It is easy to see that if K : H — R is a differentiable
strongly convex function with constanto > 0,then K’ : H —
H is strongly monotone with constant o > 0.

Given a positive number r > 0, let S£®"”) :H — Cbethe
solution set of the auxiliary mixed equilibrium problem; that
is, for each x € H,

SO (x) = {ye C:0(y,2)+¢ () -9(y)
* % (K'(y)-K'(x),2-y) 20, (13)
VZGC}.

In particular, whenever K(x) = (1/2)I1xI% Vx € H, S£®"”) is
rewritten as T'®9.

Let ©,,0, : C x C — R be two bifunctions and
B,,B, : C — H be two nonlinear mappings. Consider

the following system of generalized equilibrium problems
(SGEP): find (x*, y*) € C x C such that

* * * 1 * * *
O, (x"x)+ By ,x—-x" )+ —(x" -y ,x—-x") 20,
“
Vx € C,
* * % 1 s s *
0, (y"y)+(Bx",y -y >+#—<y —xhy-y) 20,
)

Vy € C,
(14)

where y; > 0 and p, > 0 are two constants. It is introduced
and studied in [15], that the SGEP reduces to a system of
variational inequalities whenever ®, = ©®, = 0. It is worth
mentioning that the system of variational inequalities is a tool
to solve the Nash equilibrium problem for noncooperative
games.

In 2010, Ceng and Yao [15] transformed the SGEP into a
fixed point problem in the following way.

Proposition CY (see [15]). Let @,,0, : Cx C — R be two
bifunctions satisfying conditions (H1)-(H4) and let B; : C —
H be f3;-inverse-strongly monotone for i = 1,2. Let y; € (0,2f;)
fori=1,2. Then, (x", y") € CxC is a solution of SGEP if and
only if x* is a fixed point of the mapping G : C — C defined by
G= Tf:l (I—‘ulBl)T#@ZZ(I—‘uzBZ), where y* = TZ2 (I-p,By)x".
Here, one denotes the fixed point set of G by SGEP(G).

Let {T,},>, be an infinite family of nonexpansive map-
pings on H and {A,}’, be a sequence of nonnegative
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numbers in [0, 1]. For any n > 1, define a self-mapping W,
on H as follows:

Un,n+l =1

Un,n = AnT Un,n+1 + (1 - /\n) I

n

Un,n—l = )‘n—lTn—lUn,n + (1 - An—l) I’

Upi = MTiUppar + (1= A4) L, (15)

Upp-1 = Mot Tema U + (1-A) T

Up, = A,ToU, 5 + (1-A)1,

W,=U,, =MTU,,+(1-1,)L

Such a mapping W, is called the W-mapping generated by
T,T, 1 ...,Tyand A, A, ..., Ay

In 2011, for the case where C = H,let f : H —
H be a contraction, K : H — R be differentiable and
strongly convex, {a,}, {8,} < (0,1) and x,,u € H be given.
Yao et al. [25] proposed the hybrid iterative algorithm for
finding a common element of the set MEP(®, ¢) and the
fixed set (;2, Fix(T;) of an infinite family of nonexpansive
mappings {T;};°, on H as follows:

O (y2)+9(2) -9 ()

e (K'(3,) - K'(x,),2=y,) 20, ze€H,
r (16)

Xne1 = Oy (u + Yf (xn)) + ﬁnxn

+((l_ﬁn)1_“n(1+yv))wnyn’ Vn > 1.

They proved the strong convergence of the sequence gener-
ated by the hybrid iterative algorithm (16) to a point x* €
N:2, Fix(T;)NMEP(®, ¢) under some appropriate conditions.
This point x* also solves the following optimization problem:

1
1 £ (Vx,x) + =|lx —ul? - h(x),
xe%2, Fix(T, )NMEP(8,¢) 2 2

(OP0)

where h: H — Ris the potential function of yf.

Let f : H — H be a contraction and V be a strongly
positive bounded linear operator on H. Assume that ¢ :
H — Ris alower semicontinuous and convex functional,
that ©,0,,0, : H x H — R satisfy conditions (HI)-(H4),
and that A, B, B, : H — H are inverse-strongly monotone.

Very recently, Ceng et al. [16] introduced the following hybrid
extragradient-like iterative algorithm:

z, = Sin@’q’) (x, - r,Ax,),
Yn = TM@II (I-mBy) ng (I-mB,)z,
Xn+1 = Ky (M + Yf (xn)) + ﬁnxn
+ ((1 - ﬁn) I- &, (I + ‘LlV)) Wnyn’

for finding a common solution of GMEP (5), SGEP (14), and
the fixed point problem of an infinite family of nonexpansive
mappings {T;};o; on H, where {r,} c (0,00), {a,},{B,} ¢
(0, 1), and x,, u € H are given. The authors proved the strong
convergence of the sequence generated by the hybrid iterative
algorithm (17) to a point x™ € (22, Fix(T;)NGMEP(®, ¢, A)N
SGEP(G) under some suitable conditions. This point x™ also
solves the following optimization problem:

17)

Vn >0,

min i (Vx, x)
xe%2, Fix(T, )nGMEP(©,9,A)NSGEP(G) 2
(OP1)

+2 b= ul -~ (),

where h: H — Ris the potential function of yf.

On the other hand, let B be a single-valued mapping of
C into H and R be a set-valued mapping with D(R) = C.
Consider the following variational inclusion: find a point x €
C such that

0 € Bx + Rx. (18)

We denote by I(B,R) the solution set of the variational
inclusion (18). In particular, if B = R = 0, then I(B,R) = C.
If B = 0, then problem (18) becomes the inclusion problem
introduced by Rockafellar [34]. It is known that problem (18)
provides a convenient framework for the unified study of
optimal solutions in many optimization related areas includ-
ing mathematical programming, complementarity problems,
variational inequalities, optimal control, mathematical eco-
nomics, equilibria and game theory, etc. Let a set-valued
mapping R : D(R) ¢ H — 2" be maximal monotone. We
define the resolvent operator Jz, : H — D(R) associated
with R and A as follows:

Jrp =+ AR)', VxeH, (19)

where A is a positive number.

In 1998, Huang [35] studied problem (18) in the case
where R is maximal monotone and B is strongly monotone
and Lipschitz continuous with D(R) = C = H. Subsequently,
Zeng et al. [36] further studied problem (18) in the case which
is more general than Huang’s [35]. Moreover, the authors
[36] obtained the same strong convergence conclusion as
in Huang’s result [35]. In addition, the authors also gave
the geometric convergence rate estimate for approximate
solutions. Also, various types of iterative algorithms for
solving variational inclusions have been further studied and



developed; for more details, refer to [21, 26, 37, 38] and the
references therein.

Motivated and inspired by the above facts, we, in this
paper, introduce and analyze a new iterative algorithm by
a hybrid extragradient-like viscosity method for finding a
common element of the set of solutions of a generalized
mixed equilibrium problem, the set of solutions of a finite
family of variational inclusions for maximal monotone and
inverse strong monotone mappings, and the set of fixed
points of a countable family of nonexpansive mappings in
a real Hilbert space. Under some appropriate conditions,
we prove the strong convergence of the sequence generated
by the proposed algorithm to a common solution of these
three problems. Such a solution also solves an optimiza-
tion problem. Several special cases are also discussed. The
results presented in this paper are the supplement, extension,
improvement, and generalization of the previously known
results in this area.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (., -)
and || - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x and x,, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use
w,(x,) to denote the weak w-limit set of the sequence {x,};
that is,

w, (x,) = {x €H:

x, — x for some subsequence {xnl} of {xn}}.

(20)
Recall that a mapping A : C — H is called
(i) monotone if
(Ax - Ay, x—y) 20, Vx,yeGC; (21)

(ii) #-strongly monotone if there exists a constant 77 > 0
such that

(Ax—Ay.x-y)zqlx -y, VryeG  (22)

(iii) ¢-inverse-strongly monotone if there exists a constant
{ > 0 such that

(Ax - Ay, x - y) = {|Ax - Ay, Vx,yeC. (23)

It is easy to see that the projection Pg is 1-ism. Inverse
strongly monotone (also referred to as cocoercive) operators
have been applied widely in solving practical problems in
various fields.

The metric (or nearest point) projection from H onto C is
the mapping P : H — C which assigns to each point x € H
the unique point Pox € C satistying the property

Jv-Pexl = inf e = 0.
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Some important properties of projections are gathered in
the following proposition.

Proposition 1. For given x € H and z € C:
)z=Pxe{(x-2,y-2)<0,VyeC
(i) z = Pox & lx —2l* < llx = yI* ~ Iy - 2I*, Vy € C;
(iii) (Pox — Poy,x — ) 2| Pox — Poyl®, Vy € H. (This

implies that P is nonexpansive and monotone.)

By using the technique of [31], we can readily obtain the
following elementary result.

Proposition 2 (see [16, Lemma 1 and Proposition 1]). Let C
be a nonempty closed convex subset of a real Hilbert space H
and let ¢ : C — R be a lower semicontinuous and convex
function. Let ® : Cx C — R be a bifunction satisfying the
conditions (H1)-(H4). Assume that

(i) K : H — R is strongly convex with constant ¢ > 0
and the function x v (y — x, K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H andr > 0, there exists a bounded subset
D, c Cand y, € Csuch that foranyz € C\ D,,

1
©(2y) +9(n) —9 (@) + - (K'(2) - K' (%), y, ) <0.
(25)
Then the following hold:

(a) for each x € H, S£®"")(x) +0;
(b) S$®’q’) is single-valued;

(c) S£®"”) is nonexpansive if K' is Lipschitz continuous
with constant v > 0 and

<K/ (1) =K' (x,) 1y = ”2>

> <K' (u)) =K' (uy),u; - u2>, Y (x;,x,) € HxH,

(26)
where u; = $© (x;) fori = 1,2;
(d) foralls,t >0and x € H
(K (899x) - K' (51°x), 59 x - 5% x)
st (27)
< — <K’ (S£®"P)x) -K' (x) ,SEG"”)x - S§®’¢)x> ;

s
(e) Fix(S'®?)) = MEP(, ¢);
(f) MEP(®, ¢) is closed and convex.

In particular, whenever ® : CxC — Risabifunction satisfy-
ing the conditions (H1)-(H4) and K(x) = (1/2)||x||2, Vx € H,
then, that is, for any x, y € H,

S0 - @9 < (5@ 5@y 5 (28)
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(Si@‘”) is firmly nonexpansive) and

SO E @ I5i77x = (29)

Vs,t >0, x € H.

In this case, S£®"”) is rewritten as Tr@"”). If, in addition, ¢ = 0,

then Tr(®"”) is rewritten as Tr® (see [15, Lemma 2.1] for more
details).

Remark 3. Suppose K : H — R is strongly convex with
constanto > 0andK' : H — H is Lipschitz continuous with
constant v > 0. Then K' : H — H is o-strongly monotone
and »-Lipschitz continuous with positive constants o, v > 0.
Utilizing Proposition 2(d) we obtain that for all s, > 0 and
x€H

2
UHSﬁ@’(”)x - S§®’¢)x"

<K’ (S§®,¢)x) -K (S§®,<p)x) ,S§®’q’)x _ S§®,¢)x>

IN

IN

S_;t <K’ (S£®,<p)x) - K ), S§®,qo)x _ S£®’¢)x>

Bty (5014) - o)

S§®’¢)x - Si®’¢)x"

< bt 500 o0 - 50,

(30)
which immediately implies that

s—t| v
"Si@"”)x - Sge’(”)x“ < ls=t v

Ty S£®"p)x - x” .3

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 4. Let X be a real inner product space. Then there
holds the following inequality:

e+ v <l +2(px+y), VoyeX. (32

Lemma 5. Let H be a real Hilbert space. Then the following
hold:

@) Ilx = yI* = IxI* = Iyl* = 2(x - y, y) forall x, y € H;

(b) Ax + uyll® = Al +pllyl* = Apllx = yI for all x, y €
Hand A, p € [0,1] with A+ pu=1;

(c) if {x,} is a sequence in H such that x,, — x, it follows
that

lim sup|x, — y|* = lim sup||x,, - x|* + x - y|°,
n— 00 n— 00
Vy € H.

We have the following crucial lemmas concerning the W-
mappings defined by (15).

Lemma 6 (see [39, Lemma 3.2]). Let {T,},°, be a sequence of
nonexpansive self-mappings on H such that (-, Fix(T,) # 0
and let {A,)} be a sequence in (0,b] for some b € (0, 1). Then,
foreveryx € Handk > 1 thelimitlim, _, U, x exists, where
U, is defined by (15).

Remark 7 (see [40, Remark 3.1]). It can be known from

Lemma 6 that if D is a nonempty bounded subset of H, then
for € > 0 there exists 1, > k such that for all n > n,

sup ||Un,kx - ka" <e. (34)
xeD

Remark 8 (see [40, Remark 3.2]). Utilizing Lemma 6, we
define a mapping W: H — H as follows:

Wx = nangOan = nlil%oUn,lx’ Vx € H. (35)

Such a W is called the W-mapping generated by T}, T5, . . . and

A, Ay, ... Since W, is nonexpansive, W : H — H is also
nonexpansive. Indeed, observe that for each x, y € H
[wae = wy| = Jim [Wx-Woy[<lx=y].  6)

If {x,} is a bounded sequence in H, then we put D = {x,, :
n > 1}. Hence, it is clear from Remark 3 that for an arbitrary
€ > 0 there exists N, > 1 such that for alln > N,

[W,x, - Wx,,|
(37)
=U,.1x, - Uyx,|| < sup U, x - Ux| < e
xeD
This implies that
Jim [[W,x, - Wx, || = 0. (38)

Lemma 9 (see [39, Lemma 3.3]). Let {T},°, be a sequence of
nonexpansive self-mappings on H such that (-, Fix(T,) # 0
and let {A,;} be a sequence in (0,b] for some b € (0, 1). Then,
Fix(W) = (2, Fix(T,,).

Lemma 10 (see [41, Theorem 10.4 (Demiclosedness Princi-
ple)]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C — C be nonexpansive. Then I — T
is demiclosed on C. That is, whenever {x,} is a sequence in C
weakly converging to some x € C and the sequence {(I - T)x,}
strongly converges to some y, it follows that (I - T)x = y. Here
I is the identity operator of H.

Lemmall. Let A : C — H be a monotone mapping. In the

context of the variational inequality problem the characteriza-

tion of the projection (see Proposition 1(i)) implies
ueVI(C,A) &= u=P-(u—-2AAu), VA>0. (39

The following lemma can be easily proven, and therefore,
we omit the proof.

Lemma 12. Let f : H — H be an I-Lipschitzian mapping
with constantl > 0 and F : H — H be a k-Lipschitzian and



n-strongly monotone operator with positive constants x,n > 0.
Then for 0 < yl < un,

((uF = yf) x = (uF = yf) yox = ) = (un = D) |x - y|,

Vx,y € H.
(40)

That is, uF —yf is strongly monotone with constant pun—vl.

Let C be a nonempty closed convex subset of a real Hilbert
space H. We introduce some notations. Let A be a number in
(0, 1]andlet y > 0. Associating with a nonexpansive mapping

T:C — C,we define the mapping T* : C — H by
T'x := Tx - \uF (Tx), Vx €C, (41)

where F : H — H is an operator such that, for some
positive constants , 77 > 0, F is x-Lipschitzian and #-strongly
monotone on H; that is, F satisfies the conditions:

|Fx = Byl < x|l = ],

(Fx—Fy,x - y) 2 yx - y|*
forallx,y € H.

Lemma 13 (see [42, Lemma 3.1]). T* is a contraction provided
0O<u< (211/1c2); that is,

HT’\x - TAy|| <(1-An)|x-y|, VxyeC, (43)

where T = 1 — 1 — u(2n — ux?) € (0, 1].

Recall that a set-valued mapping T : D(T) ¢ H — 2" is
called monotone if for all x, y € D(T), f € Tx,and g € Ty

imply
(f-gx-y)=z0 (44)

A set-valued mapping T is called maximal monotone if T is
monotone and (I+AT)D(T) = H foreach A > 0, where I is the
identity mapping of H. We denote by G(T') the graph of T'. It is
known that a monotone mapping T' is maximal if and only if,
for (x, f) e HxH, {f —g,x—y) = 0forevery (y, g) € G(T)
implies that f € Tx. Next we provide an example to illustrate
the concept of maximal monotone mapping.

Let A: C — H be a monotone, k-Lipschitz-continuous
mapping and let Nv be the normal cone to C at v € C; that
is,

Nev={weH:{(v-u,w) >0, Yu € C}. (45)
Define

Ty — Av+ Ngv, %f veC, (46)
o, if ve¢cC.

Then, T is maximal monotone and 0 € Tvif and only if v €
VI(C, A); see [34].

Assume that R : D(R) ¢ H — 2™ is a maximal mon-
otone mapping. Let A > 0. In terms of Huang [35] (see also
[36]), there holds the following property for the resolvent

operator Jp ) : H — D(R).
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Lemmal4. ]y, is single-valued and firmly nonexpansive; that
is,

(Jpax = Jraysx = y) = ”]R,/\x - ]R,/\;V"z’ Vx,y € H.
(47)

Consequently, ], , is nonexpansive and monotone.

Lemma 15 (see [21]). Let R be a maximal monotone mapping
with D(R) = C. Then for any given A > 0, u € C is a solution
of problem (17) if and only ifu € C satisfies

u=Jg, Wu—ABu). (48)

Lemma 16 (see [36]). Let R be a maximal monotone mapping
with D(R) = C and let B: C — H be a strongly monotone,
continuous, and single-valued mapping. Then for each z € H,
the equation z € (B+AR)x has a unique solution x, for A > 0.

Lemma 17 (see [21]). Let R be a maximal monotone mapping
with D(R) = C and B : C — H be a monotone, continuous,
and single-valued mapping. Then (I+ A(R+ B))C = H for each
A > 0. In this case, R + B is maximal monotone.

Lemma 18 (see [30]). Let C be a nonempty closed convex
subset of a real Hilbert space H, and g : C — R U +00 be
a proper lower semicontinuous differentiable convex function.
If x* is a solution the minimization problem

g(x") =inf g (x), (49)
then,
<g'(x),x—x*>20, Vx e C. (50)
In particular, if x* solves (OP), then
(u+(yf-(I+pV))x",x—x") <0. (51)

Lemma 19 (see [43]). Let {s,} be a sequence of nonnegative
real numbers satisfying

Sy < (L—a,) s, + o, B, + 9, Yn1, (52)

where {a,}, {B,}, and {y,} are three real sequences satisfying
the conditions:

(1) {an} C [0’ 1]’ 2221 ‘Xn = 005
(i) limsup, _, B, < 0;
(iii) y, 2 0 (Vn > 1), 32, 9, < 0.

Then lim s, =0.

n—00%n

3. Main Results

We introduce and analyze a new iterative algorithm by hybrid
extragradient-like viscosity method for finding a common
element of the set of solutions of a generalized mixed
equilibrium problem, the set of solutions of a finite family
of variational inclusions for maximal monotone and inverse
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strong monotone mappings, and the set of fixed points
of a countable family of nonexpansive mappings in a real
Hilbert space. Under appropriate conditions imposed on the
parameter sequences we will prove a strong convergence of
the proposed algorithm.

Theorem 20. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ® be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — Rbea
lower semicontinuous and convex functional. LetR; : C — 2F
be a maximal monotone mapping and let A : H — H
and B; : C — H be (-inverse strongly monotone and ;-
inverse strongly monotone, respectively, wherei € {1,2,..., N}.
Let {T,};2, be a sequence of nonexpansive self-mappings on
H and {A,} be a sequence in (0,b] for some b € (0,1). Let
F : H — H be a k-Lipschitzian and n-strongly monotone
operator with positive constants x,n7 > 0. Let 0 < u <

@n/x*) andt = 1 - \|1-uQn— ). Let f : H — H
be an I-Lipschitzian mapping with 0 < yl < 1. Let W,
be the W-mapping defined by (15) and V be a y-strongly
positive bounded linear operator with yl < (1 + p)y. Assume
that Q := (2, Fix(T,) N GMEP(®,¢, A) N (\X, I(B,, R;) is
nonempty. Suppose {«,}, {B,}, and {c,} are three sequences in
(0,1). Assume that

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that for any y ¢ D,,

O(y.z,) +9(z) —(y)

. (53)
—(K'(y)-K'(x),z,-y) <0;
+—(K' () - K'(x),2,- )
(i) lim,, _, 0, = lim,_ («,/0,) = 0, limsup, _,
(Opyr/t,) <00, Y02 0, = 00 and
0< lianiO%f B, <limsupfB, < 1; (54)

(iv) y; € (0,21;), i € {1,2,...,N}, and {r,} c [0,2{] sat-
isfies

0 <lim infr, < liI;lHSOL:;p r, < 2 (55)

(V) Zfzzl(|ﬁn+l - ﬁn' + |Gn+1 - Unl + |rn+1 - rn|) < 0.

Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by

U, = Sf',,@’@ (I - rnA) Xn>
Zy = TRy (I - pnBy) TRy s (I - pin-1Bn-1)
e ]Rl,,ul (I - AulBl) Uy
Y = 0t (4 9f (x,)) + By (56)
+ ((1 - ﬁn) I-a, (I + ﬂV)) Wz,

Xne1 = O-an (yn) + (I - O-n"lF) Wnyn’

Vn>1,
converges strongly to x* € Q provided Sf&q’) is firmly nonex-

pansive, where x™ = Po(I — (uF — yf))x" is a unique solution
of the VIP:

((yf —uF)x",y—-x") <0, VyeQ. (57)

Proof . Since lim,, , &, = 0and 0 < liminf, | B, <

limsup, , B, < 1, we may assume, without loss of
generality, that &, < (1 - 5,)(1 + y||V||)_1. Since V' is a y-
strongly positive bounded linear operator on H, we know that

VI =sup{{Vu,u) : u € H, |lul| = 1}. (58)
Observe that

<((1 - ﬁn)l -, (I + AMV)) u, u> =1- ﬁn L 2 <Vu>u>
21- ﬁn -0, XU "V”

> 0;
(59)

thatis, (1 - 8,)I — «,(I + uV) is positive. It follows that

I =BT = e, (1+uv))]
=sup {(((1=B,) I —a, (I+ V) w,u) - u € H, |u] = 1}
=sup{l - B, —a, —o,u (Vu,u) :u € H, |u| = 1}

< 1—/3,1—06”—06"[4?.
(60)

Put

A= TR, (I - u;B;) TR, i (I - pi1Biy)
(61)

TR (I -mB)

foralli € {1,2,...,N} and A° = I, where I is the identity
mapping on H. Then we have that z, = ANu,,.



We divide the rest of the proof into several steps.

Step 1. We show that {x,} is bounded. Indeed, take p € Q
arbitrarily. Since p = § ®"")( p—r,Ap), Ais {-inverse strongly

monotone and 0 < r,, < 2, we have, for any n > 1,

.~ ol

= |91 - r,)x, - SO - 1, )p|
< |(1-r,4)
= (x, - p)

=, = I~ 2r, (x,

Xn — (I - rnA) p"2

Ty (Axn - Ap)||2

< = I ~ 2.8 Ax, ~ Ap| + rylAx, - Ap’

=l = oI + 7 (r, — 20) | Ax,, — Ap|

< e, - ol

Since p = Jp (I -

strongly monotone, where y; € (0,2#;), i € {1,2,...

Lemma 14 we deduce that for each 11> 1
E
= [Ty goy (T = 1 Br) AN
< (1 =t Br) A, = (1= iBy) A
= [ (AN, = AN p) =y (ByA™!
< ANy AN |+ e (e — 21
x [ByANu, - ByAN T p[’

< -

< 0, 2]

= [, - oI

Combining (62) and (63), we have
2 = pll < [l - 2l -
SetV =1+ uV. Then from (56) and (64), we obtain
Iy -l

= Jlow (e + vf (x,)) + By + (1= B) T = @, V) W,

- p’Axn - AP> + rZ”A‘xn - AP"2

(62)

uB;)p, N'p = p, and B, is #;-inverse
, N}, by

12
", - Ty (L = inBy) AN 1P"

U, = BNAN_IP)“Z

(63)

(64)

7|

S(l_ﬁn_o‘n_

<(l-a,-

<o,y | f ()

<oy, - pl +

Abstract and Applied Analysis

= "(Xnu +a, (Yf (xn) - ‘_/p) + ﬂn (xn - p)

+((1=B) -, V) (W2, - p)|
a,147) |z, = pll + B, |, - Pl
-Vp|

+a, lull + o,

S(l_ﬂn_(xn_(xn!’l?)"xn_p“+ﬁn||xn_p"

+a, lull + o,

-V
“nﬂ?) ”xn - p” +o, "M”
+a, (yIf (=) = £ )+ |vf () - Vp|)

< (1 &y ‘xn[’l?) ”‘xn - p” T el

+a, (v, = pll + |vf () - Vpl)
<[1-((1+@)7-y) ] |x, - pl

+a, ([vf (p)
=[1- (1 +w)7-y) ] |x, - pl

lvf (p) - Vp| + lul
(L+wy-yl

—Vp| + lull)

+((1+u)y -yl e,

(65)

Therefore, by Lemma 13 we have

%1 = £
= llanyf (yn) + (I -
= [y (f () = £ (p)) + (T -

a,4F) Wy, = p

o, uF) W,
~(I - 0,uF)W,p + 0, (yf (p) - uFp)|
- f(p)l

+ (I = 0,uF) W,y,, = (I = 0,uF) W, p|
+0,[vf (p) - ukp|

(1= 0,7) |7 - pll
+0,[vf (p) - ukp|

= (1 _On(T_yl))llyn_p|| + 0y HYf(p)_MFp“
<(1-0,(r-11))

(1= ((+@)y -y e,) x, - pl

lvf (p) - Vp| + lul
(L+u)y-yl

+((1+ @)y -y,

+ 0, |lvf (p) - ubpl
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[vf () = Vo] + ull)
(1+wy-yl |

su—%u—w»mw%v Al

+0, [vf (p) - uFp]
[vf () - Vo] + i)

=u—%u—w»mwhmrpw

(1+wy-yl |
Ilyf ) - uFp||
+ 0, T ))l T—)/l
[vf (o) = Vol + 1l [yf () - mww
< max 4 |(x, — P> >
{l - PE AL W)
(66)
By induction, we get
Ix,, = pl
lvf (0) = Vo) + 1l |lyf (p) - uFp|
< max ||x0 || > :
(1+u)y-yl Tyl
(67)

n

{u,hs Az Whs ()L {f ()} (Wx, ), and (W, 2, ).

Step 2. We show that | x,,,
Indeed, define

Yn = /';nxn + (1 - ﬁn) Wy,

Then from the definition of w,,, we obtain

Therefore, {x,} is bounded and so are the sequences

-x,/| = 0asn — oo.

Vn > 1. (68)

Wyy) — Wy

_ Ynr1 — ﬁn+1xn+1 _ Yn — ﬂnxn
1- :8n+1 1- ﬁn
Xni1 (” + Yf (xn+1)) + ((1 - ﬁn+1) I- “n+lv) Wn+lzn+1
1- ﬁnJrl
%y (M + yf (xn)) + ((1 - ﬁn) I- (XHV) ann
1- l;n

= 1_n—g:l+1 (u +yf (xn+1))

(04
- 1 (u + yf (xn)) +W, n+1%n+1 ~ ann
- Bn
+ % ‘_/ann - el VW n+1%n+1
1- /3n /3n+1

(xn
=l [u +Yf (xn+1) VW, +1zn+1]

1- ﬁnJrl

«,
1_ﬁn
+W, n+1Zn4l ~ W,

n

[VWz —u-yf(x )]

+1%n +W+1z ann'
(69)

It follows that

||wn+1 - wn"
< 7 (el + 19 )]+ [V Woir 201 |)

+

=g (VW] + lu+ Iof el

“ +lzn+1 n+1z " + " +lz ann" (70)

S;?f—0w+mvuMM|uv iz

+

- (||anz,,|| + llull + [|yf (x,)])

[ Wonizn = Woza|| + 200 = 2l

From (15), since W,,, T,,, and U,,; are all nonexpansive, we
have

” n+1%n ann" = ||/\1T1Un+1,2Zn - /\lTlUn,ZZn"
<A || n+1,2%n Un,ZZn“
=\ ||/\2T2Un+1,3zn - /\2T2Un,3zn"

<A, || n+1,3%n Un,szn“

g/\ /\ ” n+1,n+1%n Un,n+lzn"

SMﬁA,.,
i=1

(71)
” nt1Vn — Wnyn" = ||/\1T1Un+l,2yn - AlTlUn,Zyn"
< A ” n+l Zyn n,Zyn”
=\ ||/\2T2Un+1,3yn - AZTZUnﬁyn"
< /\ /\ “ n+l Syn n,Syn”
< /\ /\ “ n+1 n+1yn - Un,n+1yn||
n
<M[ [A;
i=1
(72)
where M is a constant such that
Sup " n+l, n+1%n " + ” nn+lzn”} < M’
(73)
Sup " n+l n+1yn” + " nn+1yn||} < M.

On the other hand, we estimate |z,,, — z,|. Taking into

consideration that 0 < liminf,_, f, < limsup, _, B3, <1
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and 0 < liminf, , 7, < limsup,_, 7,

assume, without loss of generality, that {r,} C [c,

< 2(, we may

d] < (0,20)

and {f3,} < [e, f] € (0,1). Utilizing Remark 3 and Lemma 14,

we have

"zn+l - Zn||2

= ”]RN’MN (I - AMNBN) AN_lun.H
TRy, (I = inBn) AN_lu,,”Z
= ”(I — unBy) AN

A - A

iy (ByAN 14,y = ByAN )|

< ”AN_lunH - AN_I“nHZ + iy (pn = 211)
x [ByAN T, — ByAN |

N-1 N-1_ |2
< ANy - AN,

Up1 (I MNBN) ANilun“Z

Tnt1 ) Axn "

< ”Aouwr1

= ||un+1 - unllz’

”(I - rn+1A) Xp+1 — (I - rnA) xn"

= ||xn+1 —Xp = Tunl (Axn+1 - Axn) + (rn -

< ”xn+1 ~Xn T Tun1 (Axn+1 - Axn)” + |rn+1 - rnl "Axn"

< ”xn+1 - xn" + |rn+1 - rnl “Axn" 4

||un+1 — Uy ”

- rn+1A) Xn+1 ~ Sr(‘?’?) (I

- rn+1A) Xn+1 — Si?jp) (I - rnA) Xn

+8209 (I - 1,A) x,, = S0P (I

< S (1= 7 4) o = S0P (1= 18) x|

n+l
+ |09 (1 - 1,4) x, - SO (1 -7,4) x|
< ”(I - rn+1A) Xns1 — (I - rnA) xn“

+ Si,,@,:lq)) (I - rnA) Xn — Si,,@’(p) (I “'n

< ||xn+1 - xn" + |rn+1 - rnl ”Axn"

-r,A)x, — Sif)"m (1

(74)

Abstract and Applied Analysis

< ”xn+1 - xn" + |rn+1 - rnl "Axn"

+ |rn+1 - 7’n| v
Tpi1 o
- rnA) Xn — (I - rnA) xn"
< s = 2]l + [rss = 72l
x ( x|
i S(G‘P)( I-r,A)x,-(I-r,A)x ")
co Tns1

= ”xn+1 - xn" + |rn+1 - rnl Ml’
(75)

where sup,., {[Ax, Il + (v/co)ISEP(T - r,A)x, - (I - 1,A)
x,ll} < M, for some M, > 0.

Note that

Y1 = Vn = ﬁn (xn+1 - xn) + (ﬁﬂ+1 - ﬁn) (xn+1 - wn+1)
+ (1 - ﬁn) (wn+1 - wn) >
=0,y (f (yn+1) - f (yn)) + (on+1 - Gn)
X (Yf (yn+1) - .uFWn+1yn+l)

+ (I - gn”F) Wn+1yn+1 - (I - Un[’lF) w,
(76)

Hence, from (70), (71), (74), and (75) it follows that

||yn+1 - yn"
= ﬁn “xnﬂ - xn” + |ﬁn+1 - ﬁn' "xn+1 - wn+1"
+ (1 - ﬁn) ||wn+1 - wn"

< ﬁn “xm—l - xn” + |/3n+1 - ﬁn' "xn+1 - wn+1"

F (=B | 2 (ull + [pf ()]
1= B
)

# o (VW] + i + o Ge))

+ "V n+12n+1

Wiz =Wzl + 2 -2 |
< ﬁn ||xn+1 - xn” + |/3n+1 - ﬁn' "xn+1 - wn+1"

+(1-B,) "[;;1 (Nl + vf ()l
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+ “VWnHZnH ")

%y

1_ﬁn

+

(VW] + uall + lpf Ge)l)

n
+MH)Li + |21 — 24|

i=1

< ﬁn “xn+1 - xn" + |/3n+1 - ﬂn| ||xn+1 - wn+1"

(1= ) | 2 (ul + Jyf ()]

1- ﬁnJrl

+ '|VWn+lzn+1 ||)

+ 1?—"/3” ([vw,z,

+ llull + [lyf ()]

n
+MHA,- + |y — u
i=1
< ﬁn ”xn+1 - xn" + |ﬁn+1 - ﬁnl ||xn+1 - wn+1"

(0= )| 725 (o o)
)

+ "‘_/Wn+lzn+1
([VWoz| + el + £ (1)

X

1_ﬁn

+

+ MH/\i + ”an - xn"

i=1
+ |rn+1 - rn| Ml]
< ||xn+l - xn” + |ﬁn+1 - ﬁn'MZ

n
+ My (@ + ) + le_[/\i |y = 1| Mo,
i=1
(77)
where sup,, {(1/(1 = N))(IVW,z,Il + llul + llyf (x,)I) + l1x, -

w, |+ M, +M} < M, for some M, > 0. So, utilizing Lemma 13
we obtain from (72) and (77) that

%2 = %]
<O If Gner) = £ )l + 10001 = 00

X [vf Fn1) = BEW,i1 Y|

+ (I = 0, F) W Ypr = (I = 0,1 F) W,
< 0V |Yer = Yl + 100 = 03

< vf (Gnr) = BEW,ii1 Y|

+ (1 - anT) ||Wn+1yn+1 - Wnyn“

< O'n)/l ”yn+l - yn” + |0n+1 - Un'
< vf D) = UEW,i1 Y |
+ (1 - UnT) ("Wn+1yn+1 - Wn+1yn||

+ ||Wn+1yn - Wnyn“)

<

<

<

<

< O-nyl ”yn+1 - yn“ + |on+1 - Gnl

X "Yf (yn+1) - ‘uFWn-f-lyrH-l“

+(1—an‘r)<

st = 1+ Mm)

i=1

(1 — 0y (T - VZ)) ||yn+1 - yn" + |0n+1 - an|

X "’/f (yn+1) - ‘uFWn-f-lyrH-l“ + MHAI
i=1

(1-0,(z-7D)

X |: "xn+1 - xn"

+ |ﬁn+1 - IBnI M2 + M2 ((Xn+1 + (xn)

+ Mzﬁ)ti
i=1

+ |rn+1 - rn| MZ] + |Un+1 - anl

X "’/f (yn+1) - ‘uFWn+1yn+1“ + MH/\1

(1 — 0y (T - }/l)) "xnﬂ - xn“

n
+ |ﬁn+1 - ﬁn| M + M; (0, + ) + M31—[/\i

+ |rn+1 - 1’”|M3 + |Gn+1 - 0n| M3

+ Msﬁ)ti
i=1

(1 — 0y (T - Yl)) "xn+1 - xn“

+ (lﬁn-fl - ﬁnl + |rn+1 - rn| + |0n+1 - Gnl)MS

n
+ ZMSHA,- + M; (a,, +aty,)

i=1

(1 — 0y (T - }/l)) "xn+1 - xn“

+ (lﬁn+l - ﬁn| + |rn+1 - 7’n| + |Un+1 - anl)M3

+1),

+2M3b"

+0,(t-vl)

M,

T—yl

[04

n+1

%(a
On

n

i=1

i=1

1

(78)
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where sup,.,{llyf(y,) — uFW,y,ll + M, + M} < M, for
some M; > 0. Applying Lemma 19 to (78), we deduce from
conditions (iii) and (v) that

Jim ., -

xn“ =0. (79)

Step 3. | x,—y, | = Oasn — oo.Indeed, utilizing Lemmas
4 and 5(b) we obtain from (56) and (64) that

Iy - oI’
= flor, ((u + 9 () -
By (%, = p) + (1= B,) Wz, - )|

< 1B, (= p) + (1= B.) Wiz, - p)I

+ 20, <(u +9f (%)) = (T + W)W,z 3, = p)
= Bullxu = £l + (1= B) Wz, - o

= By (1= B) s - Wz’

+2a, (e +yf (x,)) = (I + @V) Wz, | [ - 2
< Bullxa = oI + (1= B |z - 2l

=B (1= Ba) |l

+2a, (1 +yf (x,)) = (I + pV) Wz, | [ - p
< Bullxu = oI + (1= B) I — 2l

=B (1= B) |xn = Wl

+2a, (1 + yf (x,) = (I + @V) Wz, | [ - p
= %, - I = B, (1= B) .

+ 20, | (u+ pf (x,)) = (I + V) Wz Iy~ pl -

(I+pV)W,z,)

(80)

— ann"2

- annnz

Utilizing Lemmas 4 and 13, we conclude from (56) and (80)
that

%1 - 2l
= "an}l (f (yn) - f(P)) + (I - O'muF) Wnyn
- (I - gnMF) Wnp + 0y (Yf (P) - [”Fp)llz

<lowy (f () = £ (P)) + (I = 0, uF) W, y,
(I - 0,uF)W,p|’
+20, (yf (p) = HFp, X1 = P)
< [oar!Iyn - Pl + (1= 0,7) |3 - IV

+20, (yf (p) = UFp, X1 — P)

Abstract and Applied Analysis

Iy ol
= uFp| %1 - P

=(1-0,(r-190))
+20, Ilyf p)

< lyw = oI + 20, Ivf (p) = #Fp] %01 -

< %, - ol = B, (1= B I,
+ 20, || (u+ pf (x,)) = (I + V) Wz [y = pl

+20, [vf (p) = uFp| s = Pl

- annllz

(81)
which leads to

e (1= f)|x, = Wz, |’
< B (1-B,) %,
< %y = pI* = Iuer = 2I°
+2a, [[(u +yf (x,) = (I + V) Wz, 13 - pl
+20, [lyf (p) - uFp|l |1 - £l

< [, = Xt | (12 = 2l + %01 = 2I)
+2a, (e +yf (x,) = (I + @) Wz | 13, - 2

+ 2Gn ||Yf (P) - [’le" "xn+1 - P" .

- ann"2

(82)

Since lim, _, . llx, — x4 = 0, lim,_, &, = 0, and
lim o, =

2 000 0, we deduce from the boundedness of
{x,} {y.} {f(x,)} and {W,z,} that

Jim|lx, - Wz, = (83)
Note that
(AN
= Jlo, ((u +yf (x,)) = (I + V) W,z,)
+(1-8,) (W,z, ||
<, [|(u+yf (x,) = (I +uV) Wz, | (84)

+ (1 - ﬁn) "ann - xn"
< a, [ (u+yf (x,)) -
+ ||ann - xn" .

(I+uV) W,z

So, it follows from (83) and lim «, = 0 that

n— 00

nango ”xn - yn” =0. (85)
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Step 4. |x,, —u,ll = 0, llu,—z,| — Oand |z, -Wz,| — 0
asn — 00. Indeed, for p € Q, we find that

. - ol
= 5107 (1= r,4) %, =2 (1, 4)
£ “(I - rnA) Xn — (I - rnA) P“Z (86)
= “xn —p-1 (Axn - Ap)”2

< = oI + 1 (r = 20) | Ax, - Ap]”.
From (56), (63), and (86), we obtain

Iy, - 2l
= Jlot, (1 + pf (x,)) = (L + uV)W,2,)
+B (%0 = p) + (1= B,) Wz, = p) |

< B (xu = p) + (1= B,) Wiz, = )

+ 20, ((u+yf (x,)) = (I +uV) W,z,, v, = p)
< Bollx, - ol + (1= B,) Wz, - oI’

+ 20, (43S (x,) = (T + V) Wz | - 2l
< Bullxw = ol + (1= B) 2 - £l

+ 20, [[(u + yf (x,)) = (L+@V) Wz, | |13, - Pl
< Bullxu = plI* + (1= B) [ - 2l

+2a, [[(u + v (x,) = (I + @V) Wz | [ - 2
< Bulw = ol + (1-5,)

x [l = oI + 1, (r, = 20) | Ax,, — Ap|]

+ 2, [[(u + pf (x,)) = (I +uV) Wz,

x|y, - ol
=[x = 21" + (1= B,) 7, (r = 20) | A, — Ap]

+2a, [[(u + f (x,)) = (T + 6V) Wz | 1y, - 2l

2

(87)
which immediately implies that
(1= f)e @ - [Ax, - Ap||
< (1 - ﬁn) £ (2( - rn) "Axn - Ap"2
2 2
<l = ol - - )

+ 20, [|(u + pf (x,)) = (L+uV) Wz | |13 - ll
< "xn - yn" ("xn - p” * "yn - P")
+2a, [[(u + v (x,)) = (I + @V) Wz, | v - 2l -

13
From lim, _, . &, = 0 and lim, _, . llx, — »,ll = 0, we have
Jim_ || Ax, - Ap| = 0. (89)

Furthermore, from the firm nonexpansivity of Sig"”), we have

s, - oI

SO (1 -1, 4) x, - S (1 - 1,4) p||

< (I = 1,) %, ~ (1~ 1, ) pott, - p)
= 2 1M =) %, = (1=, ) I+ ~
(1 - r,4) x,, - (I - 1,4) p = (0, - )]
< 2ol + - oI
= 4, - 1, (A, - AP
o (R Y PN &

+2r, (Ax, — Ap,x,, — ) — rﬁ"Axn - Ap||2] ,
(90)

which implies that

A e Ll L

+ 27’,1 ”Axn - Ap" "xn - un" .

(o1

From (87) and (91), we have

Ly - 2l
< Bullxw = ol + (1= B) 1 —
+2a, [[(u+ pf (x,)) = (T + uV) Wz |3, - pl
< Blx, - ol
+(1=B,) [l - 2l
s = wa|* + 2r, A, = Ap| 1, = ]
+ 20, [|(u+ pf (x,)) = (I + V) Wz [y~ pl
< Jxu=pl* = (1= Bo) I = ]
+2r, | Ax, = Ap| |x,, = |

+ 20, ||+ pf (%) = (T + V) Woz | 1y, - Pl
(92)
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It follows that
(1= £) e~
< (1=B) % = wl
<|lxu= ol = I3 - pI’
+ 2, || Ax,, = Ap|| %, = w
+2a, [ (u+yf (%) = (T + uV) Wz, | |3, - 2l
< [l = gall (1 = 21l + 1 = 2ll)
+2d || Ax, = Ap] [}, —

+ 20‘71 “(u + yf (xn)) -

So, from (85), (89), and lim «, = 0, we obtain

n— 00

Jimx, — ]| = 0.
Next we show that lim,, , _[|A;,A'u, — A, p]
N. Observe that
A, ~ |
= Vi (1= B A7 s, = T, (1= i)
< ”(I - uB) A 'u, - (I - y;B)) P"2
<A, = o+ s (s~ 20)
x|[BiA ™ u, - Bp|
< [ty — oI + s (s — 20) | BN 10, — Bp||
< |lx, = oI + o4 (s - 21) "BiAi_lun - BiP"z-
Combining (87) and (95), we have
Iy, - oI’
< Bullxa = ol + (1= B) |z = pI
+2a, [[(u + yf (x,)) = (I + V) Wz, | [ - p
< Bl - I + (1= B) A, - o
+ 20, [[(u + yf (x,)) = (L+ V) Woz| |17 - Pl
< Bl = ol + (1~ B)

X [||xn - P"2 + p; (= 2m;) ||BiAi_1un - BiP||2]
+ 20, (e + pf (x,)) = (I + V) Wz 1, - p
= B) i (p; = 217;)

- 5
x |BA u, - Bip|

+ 2(Xn ”(u + Yf (xn)) -

=[x, - pl + 1

(T+ V) Wz 17 = -

(94)

(I + AMV) ann” ”yn - P" >

Abstract and Applied Analysis

which leads to

(1= ) 2 = 41) B, = Bp
<(1-B) i (2 — ) BN, — Bip|
(93) < Jx, = pI* = lyn - 2l 97)
+ 2, (e + pf () = (I + V) Wz | = p
=l +lyu -2

xn)) - (I + .‘"V) ann” ”yn - P" .

< "xn - yn" ("xn

+ 20, [|(u + yf (

oo = 0, we

Since y; € (0,21;), i = 1,2,..., N and lim
obtain from (85) that

=0,i=12,...,

lim |BA™'w, - Bip| =0, Vie{l,2,...,N}. (98)

By Lemmas 5(a) and (14), we obtain

©5)  |Au,-p[
= e (1 :B) A0~ T, (1~ i) p||
< (1~ B) A, — (1 - B,) p, A, — p)
_ %( (- wB) Ay — (1 - B ||
# &, = pl = (1 - B A,
- (1-uB) p- (N, p)")
< 3 (I, ol + e, - o
A, - A, - g (B AT, - Bp)[7)
OO <3 (ol - f
A - A, -y (B, - Bp)[)

< 2 (b= oI+ [, - o

|y = K, - g (B, - B[,
(99)
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which implies
IS
< |xu - ol
A", - Alw, - gy (BAT - Bip)||
== ol = A", = A
- i2|BAw, - Bip|
+ 24 (N"'u, - A'u,, BA™'u, — B;p)
P (e
+2u | Ay, = A'u, ||| BA M, - Bip)|-

Combining (87) and (100), we have

Iy, - 2l
< Ballxw = oI + (1= B) Iz - £l
+ 20, [|(u + pf (x,)) = (T+uV) Wz | |13 - 2l
< Bullxa - oI + (1= B.)
+ 200, [|(u + yf (x,)) = (T+ V) Wz, | |13 - 2l
< Bllxa - ol +(1-B,)

< [l = oI = A", — Al

; 2
ANu, —p"

+2u; "AHun - AiunH HBiAHun - Bip“ ]
+ 2“71 "(u + Yf (xn)) - (I + HV) ann" "yn - p“
S “xn - P"2 - (1 - /311) "Ai_lun - Aiun"2
+2u; “Ai_lun - Aiun

+ 200, [[(u+yf (x,) = T+ V) Wz, | |y, - p

BAu, - BiP"

| b

which yields

(1= ) A" w, - A,

<(1-8,) "AHun - Aiun“2

s “xn - p"2 - "yn - p”Z
+24; “Ai_lun - Aiun
+ 20, [(u+ pf (x,)) = (T+ V) Wz, |

x|l = pl

BA™'u, - Byp|

(100)

(101)

15
< “xn ~Vn (“xn - P" + "yn - P“) + 2‘1/{,»“
x |A" w, - Al || BA u,-Bip)|
+ 206” "(u + yf (xn)) - (I + HV) ann"
x|y = pl-
(102)

From (85), (98), and lim,,_, . e,, = 0, we get

lim ||A"‘1u,,—Aiun|j =0, Vie{l,2,...,N}. (103)

o
From (103) we get
—
- e, - %
< [ A%, = Al | + A, - A%, (104)
oo AN, - AN, |
— 0 asn— oo

By (94) and (104), we have

"xn - zn” < "xn - un" + “”n - Zn”

(105)
— 0 asn— 00,
together with (85), yields
"yn - zn” < "yn - xn" + "xn - Zn”
(106)
— 0 asn— oo.
Note that
Izn = Wzl < |3m = zall + %0 = Wz, - (107)
Hence from (83) and (106) we have
nhj%o “Zn - ann" =0. (108)
Also, observe that
”Zn - Wzn" £ “Zn - ann" + "ann - Wzn” . (109)

From (108), Remark 8, and the boundedness of {z,} we
immediately get

lim |z, - Wz,| = 0. (110)

n— 00

Step 5. We show that lim sup,, _, .. ((yf — uF)x", x,, —x*) <0,
where x* € Q is a unique solution of the VIP:

((pf —uF)x*,y-x") <0, VyeQ. an)
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Indeed, it is clear that uF — yf : H — H is (ux + yl)-
Lipschitzian. Note that

[47’[21’
&= 2 1-\1-p(2n - px?)

1—p(2n—px?) 2 1 - pn a12)
1 —2[41’]+[42K2 =1 —2‘ui1+y2;72

=i’z

= K21
It is clear that

((WF =yf) x = (uF = yf) y»x = ) = (un =) |x - y|’

Vx,y € H.
(113)

Hence by Lemma 12 we deduce from 0 < yl < 7 < ux that
uF — yf is (un — yl)-strongly monotone. In the meantime, it
is easy to see that uF — yf is (ux + pl)-Lipschitzian with the
constant px + yl > 0. Thus, there exists a unique solution x*
in Q to the VIP (111). Equivalently, P,(I — (uF — yf)) has a
unique fixed point x* € Qs thatis, x* = P (I - (uF — yf))x".

First, we observe that there exists a subsequence {xni} of
{x,,} such that

lim sup ((3f — 4F)°,, ")
(114)
= lim <(yf - uF)x", x, — x*>.

Since {x,,} is bounded, there exists a subsequence {x,, } of
; i,

{x,,} which converges weakly to some w. Without loss of
generality, we may assume that x, — w. From (94) and
(103)-(105), we have that u, — w, Amuni — wandz, —
w, where m € {1,2,...,N}. By (110) we have that Wz, —
z, - 0asn — oo. Then, by Lemmal0 we obtain
w € Fix(W) = (2, Fix(T,) (due to Lemma 9). Next, we
prove that w ¢ ﬂzzl I(B,,,R,,). As a matter of fact, since
B,, is n,,-inverse strongly monotone, B,, is a monotone and
Lipschitz continuous mapping. It follows from Lemma 17 that
R,, + B,, is maximal monotone. Let (v,g) € G(R,, + B,,);
that is, g — B,,v € R,v. Again, since A"u, = Jp , (I -
U B )N u, n> 1, me {1,2,..., N}, we have

A", — B A, € (T4 p,R,) Ay (115)

that is,

1 _ _
. (A" ', - A", — B, A" "u,) € R, A"u,.  (116)
m
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In terms of the monotonicity of R,,,, we get

<v - A"u,,g- B,,v

117)
1 _ _
R (Am lun _ Amun _ [/lmBmAm 1”n)> >0,
Um
and hence
(v—-A"u, g)
> <v -AN"u,, B, v
1 _ _
+— (Am lun - A"u, - u,,B,, A" 1un)>
Um
- <v ~ A"u,,B,v - B, A"u, + B,,A"™u, (118)

- 1 -
~B, A" 'y, + — (A", - Amun)>

Hm
> (v—A"u,,B,,A"u, - B,,A" ", )
1 o
+ <v - N"u,, — (Am u, - Amun)> .
Hom

In particular,

<v - Amuni, g> > <v - Amuni, BmAmuni - BmAm_lun)

+ <v -A"u,, L (A" 'u, — Amunv)> .
P ; ,
(119)

Since |[A"u, — A" 'u, | — 0 (due to (103)) and || B, A"u, —
B,,A" 'u, ||— 0 (due to the Lipschitz continuity of B,,),
we conclude from A™u, — wandy, € (0,24,), m €
{1,2,..., N} that

Jim <v - Amuni,g> =(v-w,g) =0. (120)

It follows from the maximal monotonicity of B,, + R,, that
0 € (R, + B,)w; thatis, w € I(B,,R,,). Therefore, w €

Mt (B, R,
Next, we show that w € GMEP(®, ¢, A). In fact, from

z, = Sﬁn@"”)(l - 1,A)x,, we know that

O (uy, y) + ¢ (¥) — 9 (u,) + (Ax,, y —u,)

(121)
L <K'(un)—K’(xn),y—un> >0, VyeC.
rn
From (H2) it follows that
¢ (y) =@ (u,) + (Ax,, y — )
1 ! !
2K _K Ly
# (K ()~ K () y—w) o (122)

>0 (y,u,), VyeC.
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Replacing n by n;, we have

¢ (y) - (u,)+(Ax,,y-u,)

! _ !
+<K (u,,i)r K (xn,.)’y_uni>

2@()/,

Putu, =ty + (1 -t)wforallt € (0,1] and y € C. Then, from
(123) we have

<ut Uy, Aut>

> <ut - ”n,-’A”t> —o(u)+¢ (“n,-) - <ut - ”n,-’Axn,.>

) <K’ (u,) - K’ (xni)’ut —uni> +0 (upu,)

(123)

uni), Vy e C.

rn,-

> <ut — U, Au, — A”n,.> + <ut —u,,Au, - Axni>

4 (ut) To (uni)
! _ !
_<K (T/ln)rn‘K (xni)’ut un>+®(ut’u )
(124)
Since [lu, — x, | — Oasi — oo, we deduce from the

Lipschitz continuity of A and K " that ||A”n,. - Ax,, | — o
and IIK'(uni) - K'(xni)ll — 0asi — oo. Further, from the
monotonicity of A, we have (u, —u,, Au, — Au, ) > 0. So,
from (H4), the weakly lower semicontinuity of ¢, ((K ’(”n,-) -
K'(xni))/rni) — 0and u, — w, we have

as i — 00.
(125)

(u, —w, Auy) > -9 () + ¢ (W) + O (u, w),

From (H1), (H4), and (125) we also have
0=0 (u,u,) + () - (u)
<t0 (uy, y) + (1 -1) O (u, w) +te (y)
+(1-1) ¢ (w) — ¢ (u)
=t[0(upy) + 9 (y) — ¢ ()]
+(1-0) [0 (upw) + ¢ (W) - @ ()]
<t[0(upy) + @ (y) — ¢ (u)] + 1= 1) (u, - w, Auy)

=t[0®(uny) +o () @ ()] + (1 -t)t (y —w, Auy),
(126)

¢ (w) -

and hence
0<0 (u,y) +¢(y) =9 (u) + 1= 1) (y—w, Au) . (127)
Lettingt — 0, we have, for each y € C,

0<0(wy)+9(y)-pw)+(Aw,y—w).  (128)
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This implies that w € GMEP(@ (p, A). Therefore, w €
Mo, Fix(T,) N GMEP(®, ¢, A) ﬂﬂll (B;,R;) = Q. This
shows that w,(x,) ¢ Q. Consequently, from (111) and (114)
we have

lim sup {(yf — uF) x*, x,, — x*)
e (129)
=((vf —wF)x",w-x") 0.
Step 6. Finally, we show that x, — x"

Po(I - (uF —yf))x".
Indeed, in terms of Lemma 4 we have

€ Q, where x* =

Iy = %I
= o (u+ 9f () = V") + B, (3~ x7)
(=BT -a,V) Wz, =)
< B, Gt = x) + (1= B T = V) Wiz, = )
+ 20, <u+yf(xn>—vx*,y,,_x*>

< ["((1 _ﬁn)l_ “n‘_/) (ann - x*)

4B, e, — x| ] + 20, W)=V 1y -]
< [(1= B, = o (1+ ) P) [Wiz = 7| + B [, = |1
+2a, () = V| [y = 2]
<[(1- B -0 (1+ @) ) 20 = [+ By s = X[
+2a, () = V| [y = 2
< [(1= B, = ot (14 ) ) 0 = 7| + B e = (1)
+2a, () = V| [y = 2

= (1=a, (1+ @) 7) [, - x|
=V - %7

x,) = V| |3, = 27
(130)

+ 20, ||u+yf(x )

< |x, - x*|° + 24, Hu +yf (

Utilizing Lemmas 4 and 13, we conclude from (130) that

1 = %7
=llowy (f (7,) = £ (=) + (I - o, uF) W,y
- (I - O'ml/LF) Wn'x* + 0, (Yf('x*) - MFx*)HZ
< lowy (f (5a) = f (x7)) + (I - 0,uF) W,

- (I - an#F) WnX* “2

+20, (pf (x7) = pFx", Xy = x7)
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< [ouy [If ) = £ (x7)]
+ (I = 0, uF) W, y, = (I = o,uF) W, |||

20, (4f (") = HEX", 2y — )
[0 Iy = "] + (1= 0,7) [, = %"’
+20, (yf (x") = pFx", X,y = x7)
= (=0, (x=yD)) |y, - "I

+20, (pf (x7) = pFx", %,y = x7)
<(1-o0,(r-v0)

x [flon = 217 + 200, [lu+ f () = V™| Iy = ]

+20, (4f (") = HEX", 2y = )
<(1-0,(r=yD) Jx, - x|’

+ 200, "u + Yf (xn) _‘_/x*" "yn _x*"

IA

+20, (pf (x7) = uFx", x4y — X7)

= (1-0,(r=91) |, ~ x|

2
_ ) -
to, (T=yl) - — i
« 7%
[ s () -V
X |y = x|+ (pf (x7) = uFx", x40 — x7) ] '

(131)
Note that 0 < yl < 7. Hence, }°, 0, = 0o leads to ),
o,(t = yl) = co. In addition, since lim,_, 0, = 0 and

lim, , («,/0,) = 0, we get from (129)

lim sup
n—oo T — ]/l

o, — .
[U— |+ vf () = V' | |, — %7
' (132)
Hyf (x7) = uFx", X,y — x*>] <0.

Applying Lemma 19 to (131), we have that x, — x" asn —
00. This completes the proof. O

Corollary 21. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ® be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — Rbea
lower semicontinuous and convex functional. LetR; : C — 2H
be a maximal monotone mapping and let A : H — H
and B; : C — H be (-inverse strongly monotone and ;-
inverse strongly monotone, respectively, wherei € {1,2,..., N}.
Let {T,}°, be a sequence of nonexpansive self-mappings on
H and {)A,} be a sequence in (0,b] for some b < (0,1).
Let V' be a y-strongly positive bounded linear operator. Given

Abstract and Applied Analysis

u € Handpy > 0, let Fx = ((1/wI + V)x — (1/pwu.
Suppose 0 < pu((1/p) + IVID* < 2((1/pw) +y) and T =
L=\ p(/) + ) - W) + VD). Let f: H — H
be an I-Lipschitzian mapping with 0 < yl < min{r, (1 + p)y}.
Let W,, be the W-mapping defined by (15). Assume that Q :=
N, Fix(T,) N GMEP(®, ¢, A) N (Y, I(B;, R;) is nonempty.
Let {a,}, {B,}, and {0,} be three sequences in (0,1). Assume

that the conditions (i)-(v) of Theorem 20 hold. If % is firmly
nonexpansive, then for a given arbitrary x, € H, the sequence
{x,} generated iteratively by

u, = Sif)"") (I-r,A)x,,
Zy = IRy (I - unBy) TRy v (I - pn-1By-1)
TR (I - By)u,
Yo = 0 (u S (%)) + Bux, (133)
+((1=B) I =0, (T +uV))W,z,,
Xpar = 0, W+ yf () + (=0, (I +UV)) W,y
Vn>1,

converges strongly to x* € Q, which solves the following opti-
mization problem:

in® Lo up -
r&1£2<Vx,x>+2||x ul” - h(x), (OP2)

where h : H — R is the potential function of yf.

Proof. Given u € H and p > 0, let Fx = ((1/w)I +
V)x — (1/wu. Then F : H — H is a x-Lipschitzian
and #-strongly monotone operator with positive constants
k = (/u) + IVl and 4 = (1/p) + y. Suppose 0 < u <
@n) = QW + NI/ + VD) and T = 1 -

\/1 —u((1/p) +y) — u((1/p) + IVID?). In this case, it is easy
from (56) to see that

Xn+1 = Gan (yn) + (I - O‘n!’lF) Wnyn

= n)}f (yn) + (I —Op (I + HV)) Wnyn +o,u
=0y (u + Yf (yn)) + (I — Oy (I + [AV)) Wnyn'

Then, for 0 < yl < min{r,(1 + w)y}, all conditions of
Theorem 20 are satisfied. Therefore, utilizing Theorem 20 we
infer that {x,} converges strongly to x* € Q, where x* =
Po(I - (uF — yf))x™ is a unique solution of the VIP:

((yf —uF)x",y-x") <0,

Utilizing Lemma 18, we know that x* solves the following
optimization problem:
(op2)

where h: H — Ris the potential function of yf. O

(134)

Vy e Q. (135)

in# LT
1)5161512 (Vx, x) + 2||x ul|l”—h(x),
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Corollary 22. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let ® be a bifunction from C x C
to R satisfying (HI)-(H4) and ¢ : C — R be a lower
semicontinuous and convex functional. Let R, : C — 27
be a maximal monotone mapping and let A : H — H
and B; : C — H be (-inverse strongly monotone and
n;-inverse strongly monotone, respectively, for i = 1,2. Let
{T,}72, be a sequence of nonexpansive self-mappings on H
and {A,} be a sequence in (0,b] for some b € (0,1). Let
F : H — H be a x-Lipschitzian and n-strongly monotone
operator with positive constants i,n > 0. Let 0 < u < (217/«%)
\1-u@n—p?). Let f : H — H be an
I-Lipschitzian mapping with 0 < yl < 7. Let W, be the
W-mapping defined by (15) and V be a y-strongly positive
bounded linear operator with yI < (1 + p)y. Assume that
Q =2, Fix(T,,) N GMEP(®, ¢, A) N I(B,, R,) N I(B}, R,) is
nonempty. Let {a,,}, {B,}, and {o,} be three sequences in (0, 1).
Assume that the conditions (i)-(v) of Theorem 20 hold. If S£®"”)
is firmly nonexpansive, then for a given arbitrary x, € H, the
sequence {x,} generated iteratively by

andt = 1 -

u, = Sin@"”) (I-r,A)x,
Zy = ]Rz,,u.2 (I - #232) ]Rl,yl (I - AMIBI) Uy
Yn = &, (u + Vf (xn)) + ﬁnxn

+ ((1 - ﬁn) I- Xn (I + MV)) ann’

Vn>1,

(136)

Xp+1 = O-an (yn) + (I - O-n."lF) Wnyn’

converges strongly to x* € Q, where x* = Po(I — (uF —yf))x"
is a unique solution of the VIP:

(137)

((yf —uF)x*,y-x"y <0, VyeQ.

Corollary 23. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ® be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — Rbea
lower semicontinuous and convex functional. LetR; : C — 2H
be a maximal monotone mapping and let B; : C — H be n;-
inverse strongly monotone, respectively, wherei € {1,2,..., N}.
Let {T};2, be a sequence of nonexpansive self-mappings on H
and {A,} be a sequence in (0,b] for some b € (0,1). Let F :
H — H be ax-Lipschitzian and n-strongly monotone operator
with positive constants k,1 > 0. Let 0 < u < (2n/x* ) and
7 =1-1/1 - u(2y — px?). Let f : H — H be anl-Lipschitzian
mapping with 0 < yl < 1. Let W,, be the W-mapping defined
by (15) and V be a y-strongly positive bounded linear operator
with yl < (1 + p)y. Assume that Q = ()2, Fix(T,) n
MEP(®,¢) N ﬂf\_jl I(B;, R;) is nonempty. Let {,}, {3,}, and
{o,,} be three sequences in (0, 1). Assume that the conditions
(i)-(v) of Theorem 20 hold, where {r,} is a bounded sequence
such that 0 < liminf, , r, < limsup,_ , 1, < 2( for some
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(>0.If S£®’q’) is firmly nonexpansive, then for a given arbitrary
x, € H, the sequence {x,} generated iteratively by

O (uy y) + 9 (¥) — 9 (u,)

1 ! !
L W)=k (x),y-u) >0, ¥yeC,
+rn< () =K (x,), y —u,) 2 ye

Zy = TRy (I - unBy) TRy vines (I - pn-1By-1)
TR (I = #By) u,
Yo = 0 (u S (%)) + Boxs
+((1=B) I =, (I +uV))W,z,,

Vn > 1,

(138)

Xn+1 = Unyf (yn) + (I - UnHF) Wnyn’

converges strongly to x* € Q, where x* = Po(I — (uF — yf))x"
is a unique solution of the VIP:

((yf —uF)x",y-x") <0,

Proof. In Theorem 20, foralln > 1, u, = Sﬁf’"”)(l —-r,A)x, is
equivalent to

O (U y) + @ (y) — 9 (u,) + (Ax,, y —u,)

Vy e Q. (139)

(140)
L1 <k'(un)—k'(xn),y—un> >0, VyeC.
rﬂ
Put A = 0. Then it follows that
O (upy) +o () — (1)
(141)
L <k'(un) — K (xn),y—un> >0, VyeC.
rn

Observe that for all { € (0, 00)

(Ax - Ay, x - y) 2 {|Ax - Ay|", Vx,yeH. (142)

So, whenever 0 < liminf, , r, < limsup, 7, < 2¢

for some { € (0,00), we obtain the desired result by using
Theorem 20. 0

LetT : H — H be a k-strictly pseudocontractive map-
ping. For recent convergence result for strictly pseudocon-
tractive mappings, we refer to [44]. Putting A = I — T, we
know that for all x, y € H

IT=A) x—T-A)y| <|x—y| +K|Ax - Ay|". (143)
Note that
la-a)x-a- a4y’
=[x~y + | Ax - Ay - 2(Ax~ Ay, x - ).
(144)

Hence, we have forall x, y € H

1-
(Ax-Ay,x-y) > 5 k Ax - Ay|’. (145)
Consequently, if T : H — H is a k-strictly pseudocontrac-
tive mapping, then the mapping A = I -T'is (1 —k)/2-inverse

strongly monotone.
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Corollary 24. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ® be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — Rbea
lower semicontinuous and convex functional. LetR; : C — 2H
be a maximal monotone mapping and let T : H — H and
B, : C — H be a k-strictly pseudocontractive mapping and
an w;-inverse strongly monotone mapping, respectively, where
i € {1,2,...,N}. Let {T,,},, be a sequence of nonexpansive
self-mappings on H and {),)} be a sequence in (0, b] for some
be(0,1). Let F: H — H be a x-Lipschitzian and n-strongly
monotone operator with positive constants x,n > 0. Let 0 <

< @u)andt = 1 -1 —puQy—px?). Let f : H —
H be an I-Lipschitzian mapping with 0 < yl < 1. Let W,, be
the W-mapping defined by (15) and V' be a y-strongly positive
bounded linear operator with yl < (1 + u)y. Assume that Q :=
N2, Fix(T,) N GMEP(®, ¢, A) N (X, I(B,, R;) is nonempty,
where A = I —T. Let {a,)}, {B,}, and {0,} be three sequences
in (0, 1). Assume that the conditions (i)-(v) of Theorem 20 hold
where( = ((1-k)/2). IfS£®"P) is firmly nonexpansive, then for a
given arbitrary x, € H, the sequence {x,} generated iteratively
by

u, =877 (1=r,) %, +7,Tx,),
Zn = ]RN,MN (I- HNBN) IRN,I,MN,I (I - P‘N—lBN—1)
TR (I - By)u,
Yo = 0 (u+ S (%)) + Box,
+((1=B) I -, (I +uV))W,z,,
(I = 0, F) W,y

converges strongly to x* € Q, where x* = Po(I — (uF — yf))x"
is a unique solution of the VIP:

((pf —uF)x",y —x") <0,

Proof. Since T is a k-strictly pseudocontractive mapping, the
mapping A = I — T is (1 — k)/2-inverse strongly monotone.
In this case, put { = (1 — k)/2. Moreover, we obtain that

(146)

Xp+1 = Uan (yn) + Vn>1,

VyeQ.  (147)

u, = Sin@’(") (I-r,A)x,

=899 (x, -1, (I-T) x,) (148)
= S£®,(P) ((1 - rn) X, + rnTxn) .
So, from Theorem 20, we obtain the desired result. O

Corollary 25. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ® be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — Rbea
lower semicontinuous and convex functional. LetR; : C — 2
be a maximal monotone mapping and let A : H — H and
B, : C — H be {-inverse strongly monotone and n;-inverse
strongly monotone, respectively, where i € {1,2,...,N}. Let
F : H — H be a x-Lipschitzian and n-strongly monotone
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operator with positive constants k,1n > 0. Let 0 < u < 2n/x* )

and v = 1 — |1 —pu(2n—ux?). Let f : H — H be an

I-Lipschitzian mapping with 0 < yl < 1. Let V be a y-
strongly positive bounded linear operator with yl < (1 + u)y.
Assume that Q) :== GMEP(O, ¢, A)ﬂﬂfil I(B;, R;) is nonempty.
Let {a,)}, {B,}, and {o,} be three sequences in (0,1). Assume
that conditions (i)-(v) of Theorem 20 hold. Given x, € H
arbitrarily, let the sequence {x,} be generated iteratively by

u, = Sin@’q’) (I-r,A)x,,

Zn = TRy (I = nBN) TRy g, (T = tin-1Bret)
“Tryg, (I =ty By) thy
Yu = 0 (ut+f (x,)) + B,
+((1=B) I - e, (I+pV))z,

Vn>1.

(149)

Xn+1 = O'n)/f (yn) + (I - O-m"lF) Yo

If S£®"”) is firmly nonexpansive, then {x,} converges strongly to
x" € Q, where x* = Po(I — (uF — yf))x" is a unique solution
of the VIP:

(150)

((yf —uF)x*,y-x*) <0, VyeQ.

Proof. PutT,x = x for all integers# > 1 and all x € H. Then,
the desired result follows from Theorem 20. O

Corollary 26. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let N be an integer. Let R; : C —
2" be a maximal monotone mapping and let B; : C — H
be n;-inverse strongly monotone, where i € {1,2,...,N}. Let
{T,}2, be a sequence of nonexpansive self-mappings on H and
{A,.} be a sequence in (0,b] for someb € (0,1). Let F: H —
H be a k-Lipschitzian and n-strongly monotone operator with
positive constants k,n > 0. Let 0 < u < (2n/x* ) and T =
1 — /1 -u@ny—ux?). Let f : H — H be an I-Lipschitzian
mapping with 0 < yl < 1. Let W, be the W -mapping defined by
(15) and 'V be a'y-strongly positive bounded linear operator with
YL < (1+u)y. Assume that Q := (2, Fix(T,)nY, I(B;, R;) is
nonempty. Let {«, }, {f,}, and {0,} be three sequences in (0, 1).
Assume that,

() lim,_, 0, = lim,_, (a,/0,) = 0, limsup,
(01 /) < 00, Y02 0, = 00 and

0 < liminfp, < ligsipﬁn <L (151)

(ii) p; € (0,21;), i € {1,2,...,N};

(iii) zzzl(lﬁm—l - ﬁn' + |0n+1 - Unl) < 0.
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For a given arbitrary x, € H, let the sequence {x,,} be generated
iteratively by
Zy = IRy (I - unBy) TRy iy s (I - pn-1By-1)
TR (I - mBy)x,
Y = 0 (4 f (x,)) + By
+ (1= B) I =0, (I+uV)) W,z

Vn>1.

(152)

Xn+1 = anyf (yn) + (I - an/’lF) Wnyn’

Then the sequence {x,} converges strongly to x* € Q, where
x* = Po(I — (uF — yf))x" is a unique solution of the VIP:

((yf —uF)x",y-x") <0,

Proof. Put O(x,y) = 0, ¢(x) = Oforall x,y € C, Ax =0
forall x € Handr, = 1. Take K(x) = (1/2) || x|? forall x €

H. Then we get u,, = x,, in Theorem 20 and the conclusion
follows. O

Vy e Q. (153)
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