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We consider the approximate solution of the coupled Schrödinger-KdV equation by using the extended optimal homotopy
asymptotic method (OHAM).We obtained the extended OHAM solution of the problem and compared with the exact, variational
iterationmethod (VIM) and homotopy perturbationmethod (HPM) solutions.The obtained solution shows that extended OHAM
is effective, simpler, easier, and explicit and gives a suitable way to control the convergence of the approximate solution.

1. Introduction

The nonlinear Schrödinger equations are of great interest
due to their numerous applications in physical phenomena.
The coupled Schrödinger-KdV equations are extensively used
to model nonlinear dynamics of one-dimensional Langmuir
and ion acoustic waves in the system of coordinates moving
at the speed of ion acoustic. This problem remains under
consideration from many years and has been investigated
by many researchers. Many authors have investigated the
nonlinear Schrödinger-KdV equation by various techniques
such as the following:Wang [1] used finite differencemethod,
Küçükarslan [2] usedHPM,Bai andZhang [3] used quadratic
B-Spline finite element method, Fan and Hon [4] used
extended tanh method, Kaya and El-Sayed [5] used adomian
decomposition method (ADM), Doosthoseini and Shahmo-
hamadi [6] used VIM, Alomari et al. [7] used homotopy
analysis method (HAM), Qing et al. [8] used element free
Galerkin method (EFG), and Golbabai and Safdari-Vaighani
[9] usedmeshlessmethod using RBF collocation scheme.The
perturbation methods like HPM required a small parameter
and are difficult to determine.

Recently,Marinca et al. introducedOHAM[10–14] for the
solution of nonlinear problems which made the perturbation
methods independent of the assumption of small parameters
and huge computational work.

The motivation of this paper is to extend the OHAM
formulation for a systemof three partial differential equations
and to apply the extended OHAM formulation to coupled
nonlinear Schrödinger-KdV equation. In [15–17] OHAM has
been proved to be valuable for obtaining an approximate
solution of ordinary/partial differential equations (O/PDEs).
Before, this system of nonlinear partial differential equations
(NPDEs) was not solved by OHAM. We have proved that
extended OHAM is useful and reliable for NPDEs, showing
its validity and great potential for the solution of transient
physical phenomenon in science and engineering.

In the succeeding section, the basic idea of extended
OHAM is formulated for the solution of system NPDEs. The
effectiveness and efficiency of OHAM are shown in Section 3.

2. Extended Mathematical
Formulation of OHAM

Consider a system of three partial differential equations:

A
1
(𝑓 (𝑥, 𝑡)) + 𝑠

1
(𝑥, 𝑡) = 0,

A
2
(𝑔 (𝑥, 𝑡)) + 𝑠

2
(𝑥, 𝑡) = 0,

A
3
(ℎ (𝑥, 𝑡)) + 𝑠

2
(𝑥, 𝑡) = 0,

𝑥 ∈ Ω
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B
1
(𝑓,
𝜕𝑓

𝜕𝑥
) = 0,

B
2
(𝑔,
𝜕𝑔

𝜕𝑥
) = 0,

B
3
(ℎ,
𝜕ℎ

𝜕𝑥
) = 0,

𝑥 ∈ Γ,

(1)

where A
1
,A
2
,A
3
are differential operators, 𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡),

ℎ(𝑥, 𝑡) are unknown functions, 𝑥 and 𝑡 denote spatial and
temporal independent variables, respectively, Γ is the bound-
ary of Ω, and 𝑠

1
(𝑥, 𝑡), 𝑠

2
(𝑥, 𝑡), 𝑠

3
(𝑥, 𝑡) are known analytic

functions.A
1
,A
2
,A
3
can be divided into two parts:

A
1
=L
1
+N
1
,

A
2
=L
2
+N
2
,

A
3
=L
3
+N
3
.

(2)

L
1
,L
2
,L
3
contain the linear parts while N

1
,N
2
,N
3
con-

tain the nonlinear parts of the system of partial differential
equations.

According to OHAM, we construct

𝛼 (𝑥, 𝑡; 𝑝) : Ω × [0, 1] 󳨀→ R,

𝛽 (𝑥, 𝑡; 𝑝) : 𝜓 × [0, 1] 󳨀→ R,

𝛾 (𝑥, 𝑡; 𝑝) : 𝜙 × [0, 1] 󳨀→ R,

(3)

satisfying the following homotopies:

𝐻(𝛼 (𝑥, 𝑡; 𝑝) , 𝑝)

= (1 − 𝑝) {L
1
(𝛼 (𝑥, 𝑡; 𝑝)) + 𝑠

1
(𝑥, 𝑡)}

− 𝐻
1
(𝑝) {A

1
(𝛼 (𝑥, 𝑡; 𝑝)) + 𝑠

1
(𝑥, 𝑡)} = 0,

𝐻 (𝛽 (𝑥, 𝑡; 𝑝) , 𝑝)

= (1 − 𝑝) {L
2
(𝛽 (𝑥, 𝑡; 𝑝)) + 𝑠

2
(𝑥, 𝑡)}

− 𝐻
2
(𝑝) {A

2
(𝛽 (𝑥, 𝑡; 𝑝)) + 𝑠

2
(𝑥, 𝑡)} = 0,

𝐻 (𝛾 (𝑥, 𝑡; 𝑝) , 𝑝)

= (1 − 𝑝) {L
3
(𝛾 (𝑥, 𝑡; 𝑝)) + 𝑠

3
(𝑥, 𝑡)}

− 𝐻
3
(𝑝) {A

3
(𝛾 (𝑥, 𝑡; 𝑝)) + 𝑠

3
(𝑥, 𝑡)} = 0,

(4)

where the auxiliary functions 𝐻
1
(𝑝),𝐻

2
(𝑝),𝐻

3
(𝑝) are

nonzero for 𝑝 ̸= 0 and 𝐻
1
(0) = 0,𝐻

2
(0) = 0,𝐻

3
(0) = 0.

Equation (4) is called optimal homotopy equation. Clearly,
we have
𝑝 = 0 󳨐⇒ 𝐻(𝛼 (𝑥, 𝑡; 0) , 0) =L

1
(𝛼 (𝑥, 𝑡; 0)) + 𝑠

1
(𝑥, 𝑡) = 0,

𝑝 = 0 󳨐⇒ 𝐻(𝛽 (𝑥, 𝑡; 0) , 0) =L
2
(𝛽 (𝑥, 𝑡; 0)) + 𝑠

2
(𝑥, 𝑡) = 0,

𝑝 = 0 󳨐⇒ 𝐻(𝛾 (𝑥, 𝑡; 0) , 0) =L
3
(𝛾 (𝑥, 𝑡; 0)) + 𝑠

3
(𝑥, 𝑡) = 0,

𝑝 = 1 󳨐⇒ 𝐻(𝛼 (𝑥, 𝑡; 1) , 1)

= 𝐻
1
(1) {A

1
(𝛼 (𝑥, 𝑡; 𝑝)) + 𝑠

1
(𝑥, 𝑡)} = 0,

𝑝 = 1 󳨐⇒ 𝐻(𝛽 (𝑥, 𝑡; 1) , 1)

= 𝐻
2
(1) {A

2
(𝛽 (𝑥, 𝑡; 𝑝)) + 𝑠

2
(𝑥, 𝑡)} = 0,

𝑝 = 1 󳨐⇒ 𝐻(𝛾 (𝑥, 𝑡; 1) , 1)

= 𝐻
3
(1) {A

3
(𝛾 (𝑥, 𝑡; 𝑝)) + 𝑠

3
(𝑥, 𝑡)} = 0.

(5)

Obviously, when 𝑝 = 0 and 𝑝 = 1 we obtain

𝛼 (𝑥, 𝑡; 0) = 𝑓
0
(𝑥, 𝑡) , 𝛽 (𝑥, 𝑡; 0)

= 𝑔
0
(𝑥, 𝑡) , 𝛾 (𝑥, 𝑡; 0) = ℎ

0
(𝑥, 𝑡) ,

𝛼 (𝑥, 𝑡; 1) = 𝑓 (𝑥, 𝑡) , 𝛽 (𝑥, 𝑡; 1)

= 𝑔 (𝑥, 𝑡) , 𝛾 (𝑥, 𝑡; 1) = ℎ (𝑥, 𝑡) ,

(6)

respectively. When 𝑝 varies from 0 to 1, the
solution 𝛼(𝑥, 𝑡; 𝑝), 𝛽(𝑥, 𝑡; 𝑝), 𝛾(𝑥, 𝑡; 𝑝) approaches from
𝑓
0
(𝑥, 𝑡), 𝑔

0
(𝑥, 𝑡), ℎ

0
(𝑥, 𝑡) to 𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡), ℎ(𝑥, 𝑡), where

𝑓
0
(𝑥, 𝑡), 𝑔

0
(𝑥, 𝑡), ℎ

0
(𝑥, 𝑡) are obtained from (4) for 𝑝 = 0:

L
1
(𝑓
0
(𝑥, 𝑡)) + 𝑠

1
(𝑥, 𝑡) = 0, B

1
(𝑓
0
,
𝜕𝑓
0

𝜕𝑥
) = 0,

L
2
(𝑔
0
(𝑥, 𝑡)) + 𝑠

2
(𝑥, 𝑡) = 0, B

2
(𝑔
0
,
𝜕𝑔
0

𝜕𝑥
) = 0,

L
3
(ℎ
0
(𝑥, 𝑡)) + 𝑠

3
(𝑥, 𝑡) = 0, B

3
(ℎ
0
,
𝜕ℎ
0

𝜕𝑥
) = 0.

(7)

We choose auxiliary functions𝐻
1
(𝑝),𝐻

2
(𝑝),𝐻

3
(𝑝) in the

form
𝐻
1
(𝑝) = 𝑝𝐶

11
+ 𝑝2𝐶

12
+ 𝑝3𝐶

13
+ ⋅ ⋅ ⋅ + 𝑝𝑚𝐶

1𝑚
,

𝐻
2
(𝑝) = 𝑝𝐶

21
+ 𝑝2𝐶

22
+ 𝑝3𝐶

23
+ ⋅ ⋅ ⋅ + 𝑝𝑚𝐶

2𝑚
,

𝐻
3
(𝑝) = 𝑝𝐶

31
+ 𝑝2𝐶

32
+ 𝑝3𝐶

33
+ ⋅ ⋅ ⋅ + 𝑝𝑚𝐶

3𝑚
.

(8)

To get the approximate solutions, we expand
𝛼(𝑥, 𝑡; 𝑝, 𝐶

1𝑖
), 𝛽(𝑥, 𝑡; 𝑝, 𝐶

2𝑖
), 𝛾(𝑥, 𝑡; 𝑝, 𝐶

3𝑖
) by Taylor’s series

about 𝑝 in the following manner:

𝛼 (𝑥, 𝑡; 𝑝, 𝐶
1𝑖
) = 𝑓

0
(𝑥, 𝑡) + ∑

𝑘≥1

𝑓
𝑘
(𝑥, 𝑡; 𝐶

1𝑖
) 𝑝𝑘,

𝛽 (𝑥, 𝑡; 𝑝, 𝐶
2𝑖
) = 𝑔

0
(𝑥, 𝑡) + ∑

𝑙≥1

𝑔
𝑙
(𝑥, 𝑡; 𝐶

2𝑖
) 𝑝𝑘,

𝛾 (𝑥, 𝑡; 𝑝, 𝐶
3𝑖
) = ℎ

0
(𝑥, 𝑡) + ∑

𝑛≥1

ℎ
𝑛
(𝑥, 𝑡; 𝐶

3𝑖
) 𝑝𝑘,

(9)



International Journal of Differential Equations 3

where 𝑘 = 𝑙 = 𝑛 = 𝑖 = 1, 2, 3, 4, . . .. Now substituting (8)-
(9) into (4) and equating the coefficient of like powers of 𝑝,
we obtain zeroth order system, given by (7) and the first and
second order systems given by (10)-(11), respectively, and the
general governing equations for 𝑢

𝑘
(𝑥, 𝑡) are given by (12):

L
1
(𝑓
1
(𝑥, 𝑡)) −L

1
(𝑓
0
(𝑥, 𝑡))

= 𝐶
11
(L
1
(𝑓
0
(𝑥, 𝑡)) +N

1
(𝑓
0
(𝑥, 𝑡))) ,

B
1
(𝑓
1
,
𝜕𝑓
1

𝜕𝑥
) = 0

L
2
(𝑔
1
(𝑥, 𝑡)) −L

2
(𝑔
0
(𝑥, 𝑡))

= 𝐶
21
(L
2
(𝑔
0
(𝑥, 𝑡)) +N

2
(𝑔
0
(𝑥, 𝑡))) ,

B
2
(𝑔
1
,
𝜕𝑔
1

𝜕𝑥
) = 0

L
3
(ℎ
1
(𝑥, 𝑡)) −L

3
(ℎ
0
(𝑥, 𝑡))

= 𝐶
31
(L
3
(ℎ
0
(𝑥, 𝑡)) +N

3
(ℎ
0
(𝑥, 𝑡))) ,

B
3
(ℎ
1
,
𝜕ℎ
1

𝜕𝑥
) = 0

(10)

L
1
(𝑓
2
(𝑥, 𝑡)) −L

1
(𝑓
1
(𝑥, 𝑡))

= 𝐶
11
(L
1
(𝑓
1
(𝑥, 𝑡)) +N

1
(𝑓
0
(𝑥, 𝑡) , 𝑓

1
(𝑥, 𝑡)))

+ 𝐶
12
(L
1
(𝑓
0
(𝑥, 𝑡)) +N

1
(𝑓
0
(𝑥, 𝑡))) ,

B
1
(𝑓
2
,
𝜕𝑓
2

𝜕𝑥
) = 0,

L
2
(𝑔
2
(𝑥, 𝑡)) −L

2
(𝑔
1
(𝑥, 𝑡))

= 𝐶
21
(L
2
(𝑔
1
(𝑥, 𝑡)) +N

2
(𝑔
0
(𝑥, 𝑡) , 𝑔

1
(𝑥, 𝑡)))

+ 𝐶
22
(L
2
(𝑔
0
(𝑥, 𝑡)) +N

2
(𝑔
0
(𝑥, 𝑡))) ,

B
2
(𝑔
2
,
𝜕𝑔
2

𝜕𝑥
) = 0,

L
3
(ℎ
2
(𝑥, 𝑡)) −L

3
(ℎ
1
(𝑥, 𝑡))

= 𝐶
31
(L
3
(ℎ
1
(𝑥, 𝑡)) +N

3
(ℎ
0
(𝑥, 𝑡) , ℎ

1
(𝑥, 𝑡)))

+ 𝐶
32
(L
3
(ℎ
0
(𝑥, 𝑡)) +N

3
(ℎ
0
(𝑥, 𝑡))) ,

B
3
(ℎ
2
,
𝜕ℎ
2

𝜕𝑥
) = 0,

(11)

L
1
(𝑓
3
(𝑥, 𝑡)) −L

1
(𝑓
2
(𝑥, 𝑡))

= 𝐶
11
(L
1
(𝑓
2
(𝑥, 𝑡))

+N
1
(𝑓
0
(𝑥, 𝑡) , 𝑓

1
(𝑥, 𝑡) , 𝑓

2
(𝑥, 𝑡)))

+ 𝐶
12
(L
1
(𝑓
1
(𝑥, 𝑡)) +N

1
(𝑓
0
(𝑥, 𝑡) , 𝑓

1
(𝑥, 𝑡)))

+ 𝐶
13
(L
1
(𝑓
0
(𝑥, 𝑡)) +N

1
(𝑓
0
(𝑥, 𝑡)))

B
1
(𝑓
3
,
𝜕𝑓
3

𝜕𝑥
) = 0,

L
2
(𝑔
3
(𝑥, 𝑡)) −L

2
(𝑔
2
(𝑥, 𝑡))

= 𝐶
21
(L
2
(𝑔
2
(𝑥, 𝑡))

+N
2
(𝑔
0
(𝑥, 𝑡) , 𝑔

1
(𝑥, 𝑡) , 𝑔

2
(𝑥, 𝑡)))

+ 𝐶
22
(L
2
(𝑔
1
(𝑥, 𝑡)) +N

2
(𝑔
0
(𝑥, 𝑡) , 𝑔

1
(𝑥, 𝑡)))

+ 𝐶
23
(L
2
(𝑔
0
(𝑥, 𝑡)) +N

2
(𝑔
0
(𝑥, 𝑡))) ,

B
2
(𝑔
3
,
𝜕𝑔
3

𝜕𝑥
) = 0,

L
3
(ℎ
3
(𝑥, 𝑡)) −L

3
(ℎ
2
(𝑥, 𝑡))

= 𝐶
31
(L
3
(ℎ
2
(𝑥, 𝑡))

+N
3
(ℎ
0
(𝑥, 𝑡) , ℎ

1
(𝑥, 𝑡) , ℎ

2
(𝑥, 𝑡)))

+ 𝐶
32
(L
3
(ℎ
1
(𝑥, 𝑡)) +N

3
(ℎ
0
(𝑥, 𝑡) , ℎ

1
(𝑥, 𝑡)))

+ 𝐶
33
(L
3
(ℎ
0
(𝑥, 𝑡)) +N

3
(ℎ
0
(𝑥, 𝑡))) ,

B
3
(ℎ
3
,
𝜕ℎ
3

𝜕𝑥
) = 0,

(12)
L
1
(𝑓
𝑘
(𝑥, 𝑡)) −L

1
(𝑓
𝑘−1
(𝑥, 𝑡))

=
𝑘

∑
𝑖=1

𝐶
1𝑖
[L
1
(𝑓
𝑘−𝑖
(𝑥, 𝑡))

+N
1
(𝑓
0
(𝑥, 𝑡) , 𝑓

1
(𝑥, 𝑡) , . . . , 𝑓

𝑘−𝑖
(𝑥, 𝑡))] ,

𝑘 = 2, 3, . . . ,

B
1
(𝑓
𝑘
,
𝜕𝑓
𝑘

𝜕𝑥
) = 0,

L
2
(𝑔
𝑘
(𝑥, 𝑡)) −L

2
(𝑔
𝑘−1
(𝑥, 𝑡))

=
𝑘

∑
𝑖=1

𝐶
2𝑖
[L
2
(𝑔
𝑘−𝑖
(𝑥, 𝑡))

+N
2
(𝑔
0
(𝑥, 𝑡) , 𝑔

1
(𝑥, 𝑡) , . . . , 𝑔

𝑘−𝑖
(𝑥, 𝑡))] ,

𝑘 = 2, 3, . . . ,

B
2
(𝑔
𝑘
,
𝜕𝑔
𝑘

𝜕𝑥
) = 0,

L
3
(ℎ
𝑘
(𝑥, 𝑡)) −L

3
(ℎ
𝑘−1
(𝑥, 𝑡))

=
𝑘

∑
𝑖=1

𝐶
3𝑖
[L
3
(ℎ
𝑘−𝑖
(𝑥, 𝑡))

+N
3
(ℎ
0
(𝑥, 𝑡) , ℎ

1
(𝑥, 𝑡) , . . . , ℎ

𝑘−𝑖
(𝑥, 𝑡))] ,

𝑘 = 2, 3, . . . ,

B
3
(ℎ
𝑘
,
𝜕ℎ
𝑘

𝜕𝑥
) = 0.

(13)



4 International Journal of Differential Equations

It has been observed that the convergence of the series (9)
depends upon the auxiliary constants 𝐶

11
, 𝐶
12
, 𝐶
13
, . . . 𝐶

21
,

𝐶
22
, 𝐶
23
, . . . 𝐶

31
, 𝐶
32
, 𝐶
33
, . . .. If it is convergent at 𝑝 = 1, one

has

𝛼∗ (𝑥, 𝑡; 𝐶
1𝑖
) = 𝑓
0
(𝑥, 𝑡) + ∑

𝑘≥1

𝑓
𝑘
(𝑥, 𝑡; 𝐶

1𝑖
) ,

𝛽∗ (𝑥, 𝑡; 𝐶
2𝑖
) = 𝑔
0
(𝑥, 𝑡) + ∑

𝑙≥1

𝑔
𝑙
(𝑥, 𝑡; 𝐶

2𝑖
) ,

𝑖 = 1, 2, . . . 𝑚

𝛾∗ (𝑥, 𝑡; 𝐶
3𝑖
) = ℎ
0
(𝑥, 𝑡) + ∑

𝑛≥1

ℎ
𝑛
(𝑥, 𝑡; 𝐶

3𝑖
) .

(14)

Substituting (14) into (1.1), the following expression for
residuals results:

𝑅
1
(𝑥, 𝑡; 𝐶

1𝑖
) = L

1
(𝛼∗ (𝑥, 𝑡; 𝐶

1𝑖
))

+ 𝑠
1
(𝑥, 𝑡) +N

1
(𝛼∗ (𝑥, 𝑡; 𝐶

1𝑖
)) ,

𝑅
2
(𝑥, 𝑡; 𝐶

2𝑖
) = L

2
(𝛽∗ (𝑥, 𝑡; 𝐶

2𝑖
))

+ 𝑠
2
(𝑥, 𝑡) +N

2
(𝛽∗ (𝑥, 𝑡; 𝐶

2𝑖
)) ,

𝑅
3
(𝑥, 𝑡; 𝐶

3𝑖
) = L

3
(𝛾∗ (𝑥, 𝑡; 𝐶

3𝑖
))

+ 𝑠
3
(𝑥, 𝑡) +N

3
(𝛾∗ (𝑥, 𝑡; 𝐶

3𝑖
)) .

(15)

If 𝑅
1
(𝑥, 𝑡; 𝐶

1𝑖
) = 0 , 𝑅

2
(𝑥, 𝑡; 𝐶

2𝑖
) = 0 , 𝑅

3
(𝑥, 𝑡; 𝐶

3𝑖
) = 0

then 𝛼∗(𝑥, 𝑡; 𝐶
1𝑖
), 𝛽∗(𝑥, 𝑡; 𝐶

2𝑖
), and 𝛾∗(𝑥, 𝑡; 𝐶

3𝑖
) will be the

exact solutions of the problem. Generally it does not happen,
especially in nonlinear problems.

For the computation of auxiliary constants, 𝐶
1𝑖
, 𝐶
2𝑖
, 𝐶
3𝑖
,

𝑖 = 1, 2, . . . , 𝑚, there are different methods like Galerkin’s
method, Ritz method, least squares method, and collocation
method.One can apply themethod of least squares as follows:

𝐽
1
(𝐶
1𝑖
) = ∫
𝑡

0

∫
Ω

𝑅2
1
(𝑥, 𝑡; 𝐶

1𝑖
) 𝑑𝑥 𝑑𝑡,

𝐽
2
(𝐶
2𝑖
) = ∫
𝑡

0

∫
𝜓

𝑅2
2
(𝑥, 𝑡; 𝐶

2𝑖
) 𝑑𝑥 𝑑𝑡,

𝐽
3
(𝐶
3𝑖
) = ∫
𝑡

0

∫
𝜙

𝑅2
3
(𝑥, 𝑡; 𝐶

3𝑖
) 𝑑𝑥 𝑑𝑡,

(16)

𝜕𝐽
1

𝜕𝐶
11

=
𝜕𝐽
1

𝜕𝐶
12

= ⋅ ⋅ ⋅
𝜕𝐽
1

𝜕𝐶
1𝑚

=
𝜕𝐽
2

𝜕𝐶
21

=
𝜕𝐽
2

𝜕𝐶
22

= ⋅ ⋅ ⋅
𝜕𝐽
2

𝜕𝐶
2𝑚

=
𝜕𝐽
3

𝜕𝐶
31

=
𝜕𝐽
3

𝜕𝐶
32

= ⋅ ⋅ ⋅ =
𝜕𝐽
3

𝜕𝐶
3𝑚

= 0.

(17)

The 𝑚th order approximate solution can be obtained by
these constants so-obtained.Themore general auxiliary func-
tions 𝐻

1
(𝑝),𝐻

2
(𝑝),𝐻

3
(𝑝) are useful for convergence, which

depends upon constants 𝐶
11
, 𝐶
12
, 𝐶
21
, 𝐶
22
, 𝐶
31
, 𝐶
32
, . . ., can

be optimally identified by (17), and is useful in error mini-
mization.

3. Application of Extended OHAM to Coupled
Schrödinger-KdV Equation

To demonstrate the effectiveness of the extended OHAM for
coupled Schrödinger- KdV equation taken from [6], we have

𝜕𝛽 (𝑥, 𝑡)

𝜕𝑡
−
𝜕2𝜂 (𝑥, 𝑡)

𝜕𝑥2
− 𝜂 (𝑥, 𝑡) 𝜇 (𝑥, 𝑡) = 0, (18)

𝜕𝜂 (𝑥, 𝑡)

𝜕𝑡
+
𝜕2𝛽 (𝑥, 𝑡)

𝜕𝑥2
+ 𝛽 (𝑥, 𝑡) 𝜇 (𝑥, 𝑡) = 0,

𝜕𝜇 (𝑥, 𝑡)

𝜕𝑡
+ 6𝜇 (𝑥, 𝑡)

𝜕𝜇 (𝑥, 𝑡)

𝜕𝑥
+
𝜕3𝜇 (𝑥, 𝑡)

𝜕𝑥3

− 2𝛽 (𝑥, 𝑡)
𝜕𝜇 (𝑥, 𝑡)

𝜕𝑥
− 2𝜂 (𝑥, 𝑡)

𝜕𝜂 (𝑥, 𝑡)

𝜕𝑥
= 0,

(19)

with boundary conditions

𝛽 (𝑥, 0) = cos (𝑥) ,

𝜂 (𝑥, 0) = sin (𝑥) ,

𝜇 (𝑥, 0) =
3

4
.

(20)

The exact solution of (19) for −3 ≤ 𝑥 ≤ 3 and 0 ≤ 𝑡 ≤ 1 is
given by

𝛽 (𝑥, 𝑡) = cos(𝑥 + 𝑡
4
) ,

𝜂 (𝑥, 𝑡) = sin(𝑥 + 𝑡
4
) ,

𝜇 (𝑥, 𝑡) =
3

4
.

(21)

Applying the extended OHAM technique discussed in
Section 2,

(1 − 𝑝)
𝜕𝛽 (𝑥, 𝑡)

𝜕𝑡

− 𝐻
1
(𝑝) [

𝜕𝛽 (𝑥, 𝑡)

𝜕𝑡
−
𝜕2𝜂 (𝑥, 𝑡)

𝜕𝑥2
− 𝜂 (𝑥, 𝑡) 𝜇 (𝑥, 𝑡)] = 0,

(1 − 𝑝)
𝜕𝜂 (𝑥, 𝑡)

𝜕𝑡

− 𝐻
2
(𝑝) [

𝜕𝜂 (𝑥, 𝑡)

𝜕𝑡
+
𝜕2𝛽 (𝑥, 𝑡)

𝜕𝑥2
+ 𝛽 (𝑥, 𝑡) 𝜇 (𝑥, 𝑡)] = 0,

(1 − 𝑝)
𝜕𝜇 (𝑥, 𝑡)

𝜕𝑡

− 𝐻
3
(𝑝) [

𝜕𝜇 (𝑥, 𝑡)

𝜕𝑡
+ 6𝜇 (𝑥, 𝑡)

𝜕𝜇 (𝑥, 𝑡)

𝜕𝑥
+
𝜕3𝜇 (𝑥, 𝑡)

𝜕𝑥3

−2𝛽 (𝑥, 𝑡)
𝜕𝜇 (𝑥, 𝑡)

𝜕𝑥
− 2𝜂 (𝑥, 𝑡)

𝜕𝜂 (𝑥, 𝑡)

𝜕𝑥
]

= 0.
(22)
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Table 1: Absolute error of OHAM solution 𝛽(𝑥, 𝑡) corresponding to the exact solution.

𝑥 𝑡 = 0.5 𝑡 = 0.2 𝑡 = 0.1 𝑡 = 0.01 𝑡 = 0.001

−3 4.37771 × 10−3 8.5962 × 10−4 3.51139 × 10−4 6.29194 × 10−5 6.57034 × 10−6

−2 1.83163 × 10−2 8.0058 × 10−3 4.12582 × 10−3 4.24051 × 10−4 4.25219 × 10−5

−1 2.41704 × 10−2 8.5651 × 10−3 4.10724 × 10−3 3.95312 × 10−4 3.93790 × 10−5

0 7.80233 × 10−3 1.2497 × 10−3 3.12484 × 10−4 3.12500 × 10−6 3.12500 × 10−8

1 1.57391 × 10−2 7.2147 × 10−3 3.76957 × 10−3 3.91935 × 10−4 3.93452 × 10−5

2 2.48101 × 10−2 9.0460 × 10−3 4.38590 × 10−3 4.26652 × 10−4 4.25479 × 10−5

3 1.10708 × 10−3 2.5600 × 10−3 9.69852 × 10−4 6.91069 × 10−5 6.63222 × 10−6

Table 2: Absolute error of OHAM solution 𝜂(𝑥, 𝑡) corresponding to the exact solution.

𝑥 𝑡 = 0.5 𝑡 = 0.2 𝑡 = 0.1 𝑡 = 0.01 𝑡 = 0.001

−3 1.33126 × 10−4 1.6026 × 10−4 2.83128 × 10−5 1.39272 × 10−6 1.79217 × 10−7

−2 7.19141 × 10−3 1.12962 × 10−3 2.77505 × 10−4 2.07074 × 10−6 4.87727 × 10−8

−1 6.4398 × 10−3 1.06041 × 10−3 2.71500 × 10−4 3.63037 × 10−6 1.26513 × 10−7

0 2.32524 × 10−4 1.62664 × 10−5 1.59445 × 10−5 1.85225 × 10−6 1.85483 × 10−7

1 6.69107 × 10−3 1.04283 × 10−3 2.54331 × 10−4 1.62882 × 10−6 7.39210 × 10−8

2 6.99788 × 10−3 1.14315 × 10−3 2.90776 × 10−4 3.61236 × 10−6 1.05604 × 10−7

3 8.70868 × 10−4 1.92467 × 10−4 5.98826 × 10−5 2.27472 × 10−6 1.88037 × 10−7
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Figure 1: 3D, OHAM solution of 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 2: 3D, exact solution of 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 3: 3D, OHAM solution of 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 4: 3D, exact solution of 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.
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Table 3: Comparison of 𝜇(𝑥, 𝑡) solutions obtained by OHAM to the
exact solution.

𝑥 OHAM solution Exact solution
−3 3/4 3/4
−2 3/4 3/4
−1 3/4 3/4
0 3/4 3/4
1 3/4 3/4
2 3/4 3/4
3 3/4 3/4
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1.0

Figure 5: 3D, OHAM solution of 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.

We consider

𝛽 = 𝛽
0
+ 𝑝𝛽
1
+ 𝑝2𝛽

2
, 𝜂 = 𝜂

0
+ 𝑝𝜂
1
+ 𝑝2𝜂

2
,

𝜇 = 𝜇
0
+ 𝑝𝜇
1
+ 𝑝2𝜇

2
,

𝐻
1
(𝑝) = 𝑝𝐶

11
+ 𝑝2𝐶

12
,

𝐻
2
(𝑝) = 𝑝𝐶

21
+ 𝑝2𝐶

22
, 𝐻

3
(𝑝) = 𝑝𝐶

31
+ 𝑝2𝐶

32
.

(23)

Zeroth Order System. Consider

𝜕𝛽
0

𝜕𝑡
= 0,

𝜕𝜂
0

𝜕𝑡
= 0,

𝜕𝜇
0

𝜕𝑡
= 0, (24)

with initial conditions

𝛽
0
(𝑥, 0) = cos (𝑥) ,

𝜂
0
(𝑥, 0) = sin (𝑥) ,

𝜇
0
(𝑥, 0) =

3

4
.

(25)

Its solution is

𝛽
0
(𝑥, 𝑡) = cos (𝑥) ,

𝜂
0
(𝑥, 𝑡) = sin (𝑥) ,

𝜇
0
(𝑥, 𝑡) =

3

4
.

(26)
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Figure 6: 3D, exact solution of 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 7: 3D, residual of 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.

First Order System. Consider

𝜕𝛽
1
(𝑥, 𝑡)

𝜕𝑡
= (1 + 𝐶

11
)
𝜕𝛽
0

𝜕𝑡
− 𝐶
11
𝜂
0
𝜇
0
− 𝐶
11

𝜕2𝜂
0

𝜕𝑥2
,

𝜕𝜂
1
(𝑥, 𝑡)

𝜕𝑡
= (1 + 𝐶

21
)
𝜕𝜂
0

𝜕𝑡
+ 𝐶
21
𝛽
0
𝜇
0
+ 𝐶
21

𝜕2𝛽
0

𝜕𝑥2
,

𝜕𝜇
1
(𝑥, 𝑡)

𝜕𝑡
= (1 + 𝐶

31
)
𝜕𝜇
0

𝜕𝑡

− 2𝐶
31
(𝛽
0

𝜕𝛽
0

𝜕𝑥
+ 𝜂
0

𝜕𝜂
0

𝜕𝑥
− 3𝜇
0

𝜕𝜇
0

𝜕𝑥
)

+ 𝐶
31

𝜕3𝜇
0

𝜕𝑥3

(27)

with

𝛽
1
(𝑥, 0) = 0, 𝜂

1
(𝑥, 0) = 0, 𝜇

1
(𝑥, 0) = 0. (28)
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Figure 8: 3D, residual of 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 9: 3D, residual of 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.

Its solution is

𝛽
1
(𝑥, 𝑡, 𝐶

11
) =
𝐶
11

4
𝑡 sin𝑥,

𝜂
1
(𝑥, 𝑡, 𝐶

21
) = −

𝐶
21

4
𝑡 cos𝑥,

𝜇
1
(𝑥, 𝑡, 𝐶

31
) = 0.

(29)

Second Order System. Consider

𝜕𝛽
2
(𝑥, 𝑡)

𝜕𝑡
= [(1 + 𝐶

11
)
𝜕𝛽
1

𝜕𝑡
− 𝐶
11
(𝜂
1
𝜇
0
+ 𝜂
0
𝜇
1
)

+𝐶
12
(𝛽
0
− 𝜂
0
𝜇
0
) − 𝐶
12

𝜕2𝜂
0

𝜕𝑥2
− 𝐶
11

𝜕2𝜂
1

𝜕𝑥2
] ,

𝜕𝜂
2
(𝑥, 𝑡)

𝜕𝑡
= [(1 + 𝐶

21
)
𝜕𝜂
0

𝜕𝑡
+ 𝐶
21
(𝛽
1
𝜇
0
+ 𝛽
0
𝜇
1
)

+𝐶
22
(𝜂
0
+ 𝛽
0
𝜇
0
) + 𝐶
21

𝜕2𝛽
1

𝜕𝑥2
+ 𝐶
22

𝜕2𝜇
0

𝜕𝑥2
] ,
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Figure 10: 2D, OHAM solution of 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 11: 2D, exact solution of 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.

𝜕𝜇
2
(𝑥, 𝑡)

𝜕𝑡
= [(1 + 𝐶

31
)
𝜕𝜇
1

𝜕𝑡
− 2𝐶
31

× (𝛽
1

𝜕𝛽
0

𝜕𝑥
+ 𝛽
0

𝜕𝛽
1

𝜕𝑥
+ 𝜂
1

𝜕𝜂
0

𝜕𝑥
+ 𝜂
0

𝜕𝜂
1

𝜕𝑥

−3𝜇
1

𝜕𝜇
0

𝜕𝑥
− 3𝜇
0

𝜕𝜇
1

𝜕𝑥
)

− 2𝐶
32
(𝛽
0

𝜕𝛽
0

𝜕𝑥
+ 𝜂
0

𝜕𝜂
0

𝜕𝑥
− 3𝜇
0

𝜕𝜇
0

𝜕𝑥
)

+𝐶
31

𝜕𝜇
0

𝜕𝑥
+ 𝐶
32

𝜕3𝜇
0

𝜕𝑥3
+ 𝐶
31

𝜕3𝜇
1

𝜕𝑥3
]

(30)

with

𝛽
2
(𝑥, 0) = 0, 𝜂

2
(𝑥, 0) = 0, 𝜇

2
(𝑥, 0) = 0. (31)

The solution of second order system is

𝛽
2
(𝑥, 𝑡, 𝐶

11
, 𝐶
12
) =
1

32
(8𝐶
11
𝑡 sin𝑥 + 8𝐶2

11
𝑡 sin𝑥

+8𝐶
12
𝑡 sin𝑥 − 𝑡2𝐶

11
𝐶
21
cos𝑥) ,
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Figure 12: 2D, OHAM solution of 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 13: 2D, exact solution of 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.

𝜂
2
(𝑥, 𝑡, 𝐶

21
, 𝐶
22
) = −

1

32
(8𝐶
21
cos𝑥 + 8𝐶2

21
𝑡 cos𝑥

+𝐶
11
𝐶
21
𝑡2 sin𝑥 + 𝐶

22
𝑡 cos𝑥) ,

𝜇
2
(𝑥, 𝑡, 𝐶

31
) =
1

4
(𝐶
21
𝐶
31
𝑡2 cos (2𝑥) − 𝐶

11
𝐶
31
𝑡2 cos (2𝑥)) .

(32)

Adding (26), (29), and (32), we obtain

𝛽 (𝑥, 𝑡, 𝐶
11
, 𝐶
21
)

= cos (𝑥) + 1
4
𝐶
11
𝑡 sin (𝑥)

+
1

32
(8𝐶
11
𝑡 sin𝑥 + 8𝐶2

11
𝑡 sin𝑥

+8𝐶
12
𝑡 sin𝑥 − 𝑡2𝐶

11
𝐶
21
cos𝑥) ,
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Figure 14: 2D, OHAM solution of 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 15: 2D, exact solution of 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.

𝜂 (𝑥, 𝑡, 𝐶
21
, 𝐶
22
)

= sin (𝑥) − 1
4
𝐶
21
𝑡 sin (𝑥)

−
1

32
(8𝐶
21
cos𝑥 + 8𝐶2

21
𝑡 cos𝑥

+𝐶
11
𝐶
21
𝑡2 sin𝑥 + 𝐶

22
𝑡 cos𝑥) ,

𝜇 (𝑥, 𝑡, 𝐶
31
) =
3

4
+
1

4
(𝐶
21
𝐶
31
𝑡2 cos (2𝑥)

−𝐶
11
𝐶
31
𝑡2 cos (2𝑥)) .

(33)

For the calculation of the constants𝐶
11
,𝐶
12
,𝐶
21
,𝐶
22
, and

𝐶
31
using (33) in (19) and applying the method of least square

mentioned in (16)-(17) by taking, we get

𝐶
11
= −3.041182429907255 × 10−14,

𝐶
12
= −1.1871110474593864

𝐶
21
= −3.041182429907255 × 10−14,

𝐶
22
= −0.999258572471839,

C
31
= −8.101774168020832 × 10−15.

(34)
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Figure 16: 2D, residual of 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 17: 2D, residual of 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.

𝛽 (𝑥, 𝑡) = [ cos (𝑥) − 7.602956074768137 × 10−15𝑡 sin (𝑥)

+
1

32
(−9.248790571976596 × 10−28𝑡2 cos (𝑥)

−9.496888379675335𝑡 sin (𝑥) ) ] ,

𝜂 (𝑥, 𝑡) = [7.602956074768137 × 10−15𝑡 cos (𝑥) + sin (𝑥)

+
1

32
(7.994064457977714𝑡 cos (𝑥)

−9.248790571976596 × 10−28𝑡2 sin (𝑥)) ] ,

𝜇 (𝑥, 𝑡) = [
3

4
] .

(35)
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Figure 18: 2D, residual of 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 19: 2D, comparison of ordered solutions for 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 20: 2D, comparison of ordered solutions for 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 21: 2D, comparison of ordered solutions for 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 22: 2D, comparison of OHAM, VIM, HPM, and exact
solutions for 𝛽(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 23: 2D, comparison of OHAM, VIM, HPM, and exact
solutions for 𝜂(𝑥, 𝑡) at 𝑡 = 0.1.
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Figure 24: 2D, comparison of OHAM, VIM, HPM, and exact
solutions for 𝜇(𝑥, 𝑡) at 𝑡 = 0.1.

The solution obtained by variational iteration method [6]
is as follows:

𝛽 (𝑥, 𝑡) = cos (𝑥) − 1
4
𝑡 sin (𝑥) − 1

32
𝑡2 cos (𝑥) ,

𝜂 (𝑥, 𝑡) = sin (𝑥) + 1
4
𝑡 cos (𝑥) − 1

32
𝑡2 sin (𝑥) ,

𝜇 (𝑥, 𝑡) =
3

4
.

(36)

The solution obtained by homotopy perturbationmethod
[2] is as follows:

𝛽 (𝑥, 𝑡) = cos (𝑥) − 1
4
𝑡 sin (𝑥)

−
1

32
𝑡2 cos (𝑥) + 1

384
𝑡3 sin (𝑥) ,

𝜂 (𝑥, 𝑡) = sin (𝑥) + 1
4
𝑡 cos (𝑥)

−
1

32
𝑡2 sin (𝑥) − 1

384
𝑡3 cos (𝑥) ,

𝜇 (𝑥, 𝑡) =
3

4
.

(37)

4. Results and Discussions

The extended mathematical theory presented in Section 2
gives highly accurate solutions for the BVP presented in
Section 3. We have used Mathematica 7 for most of our
computational work. In Tables 1 and 2, the absolute errors of
extended OHAM results corresponding to the exact solution
of the problem given in (19) are given for 𝛽(𝑥, 𝑡), 𝜂(𝑥, 𝑡)
at 𝑡 = 0.5, 0.2, 0.1, 0.01, 0.001. In Table 3, the extended
OHAM results are compared with exact solution for 𝜇(𝑥, 𝑡).
In Figures 1, 2, 3, 4, 5, and 6, 3D plots of the results obtained
by extended OHAM and exact solutions are plotted for
𝛽(𝑥, 𝑡), 𝜂(𝑥, 𝑡), 𝜇(𝑥, 𝑡) at fixed value of 𝑡 = 0.1. While the 3D
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plots of the residuals at 𝑡 = 0.1 are given in Figures 7, 8, and 9,
Figures 10, 11, 12, 13, 14, and 15 show the 2D plots of extended
OHAM and exact solutions for 𝛽(𝑥, 𝑡), 𝜂(𝑥, 𝑡), 𝜇(𝑥, 𝑡) at 𝑡 =
0.1. The 2D residual plots are given in Figures 16, 17, and 18
at 𝑡 = 0.1. In Figures 19, 20, and 21 the 2D plots of ordered
solutions are given at 𝑡 = 0.1 for 𝛽(𝑥, 𝑡), 𝜂(𝑥, 𝑡), 𝜇(𝑥, 𝑡).
The extended OHAM solutions are compared with VIM
and HPM solution in 2D, Figures 22, 23, and 24. Here
we observed from Figures 19–21 that the extended OHAM
solution converges rapidly with the increase in the order of
approximation and produced better results. FromFigures 22–
24 it is evident that the extended OHAM results are nearly
identical to the exact, VIM, and HPM solutions. Here the
results are very consistent with the decreasing time as evident
from Tables 1-2.

5. Conclusion

In this paper, we have seen the effectiveness of extended
OHAM to coupled Schrödinger-KdV equation. By applying
the basic idea of extended OHAM to coupled Schrödinger-
KdV equation, we found it simpler in applicability and more
convenient to control convergence and that it involved less
computational overhead. Therefore, extended OHAM shows
its validity and great potential for the solution of nonlinear
system of PDEs problems in science and engineering.
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[11] N. Herişanu and V.Marinca, “Explicit analytical approximation
to large-amplitude non-linear oscillations of a uniform can-
tilever beam carrying an intermediate lumped mass and rotary
inertia,”Meccanica, vol. 45, no. 6, pp. 847–855, 2010.
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