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A delayed Lotka-Volterra predator-prey system with time delayed feedback is studied by using the theory of functional differential
equation and Hassard’s method. By choosing appropriate control parameter, we investigate the existence of Hopf bifurcation. An
explicit algorithm is given to determine the directions and stabilities of the bifurcating periodic solutions.We find that these control
laws can be applied to control Hopf bifurcation and chaotic attractor. Finally, some numerical simulations are given to illustrate the
effectiveness of the results found.

1. Introduction

Lotka-Volterra system is one of the most classical and im-
portant systems in the field of mathematical biology. Since
the word of Volterra, there have been extensively detailed
investigations on Lotka-Volterra system including stability,
attractivity, persistence, periodic oscillation, bifurcation and
chaos (see [1–6] and the references therein). In particular,
the properties of periodic solutions arising from the Hopf
bifurcation are of great interest [7–10]. But the study on chaos
control of Lotka-Volterra system is scarce.

Reference [3] and the references therein proposed that,
for a two-species competition system with delays

𝑢̇

𝑖 (
𝑡) = 𝑢𝑖 (

𝑡)

[

[

𝑟

𝑖
+

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
)

]

]

, 𝑖 = 1, 2, (1)

when 𝜏
𝑖𝑗
is big enough, the chaotic behavior may occur.

For example, Yan and Zhang [9] investigated the following
delayed prey-predator system with a single delay:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑟1
− 𝑎

11
𝑥 (𝑡 − 𝜏) − 𝑎12

𝑦 (𝑡 − 𝜏)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟2
+ 𝑎

21
𝑥 (𝑡 − 𝜏) − 𝑎22

𝑦 (𝑡 − 𝜏)] ,

(2)

where 𝑟
1
, 𝑟
2
, 𝑎
11
, 𝑎
12
, 𝑎
21
, and 𝑎

22
are all positive constants.

The delay 𝜏 ≥ 0 denotes the gestation period of the predator.
Their results show that, taking 𝜏 as the bifurcation parameter,
when 𝜏 passes through a certain critical value, the positive
equilibrium loses its stability and Hopf bifurcation takes
place. Furthermore, when 𝜏 takes a sequence of critical values
containing the above critical value, the positive equilibrium
of system (2) will undergo a Hopf bifurcation. With the
further increase of the delay, the system will show the chaotic
phenomenon (see Figure 1).

In the sense of biology, chaotic behavior sometimes is
to the disadvantage of virtuous cycle and develop of the
ecosystem, so wewant to control this chaos phenomenon and
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Figure 1: Waveform plot and phase plot of system (2) with 𝜏 = 1.4.

create periodic orbits. So far,many researchers have proposed
chaos control schemes in recent years [11–16]. For example,
Song and Wei in [17] investigated the chaos phenomena of
Chen’s system using the method of delayed feedback control.
Their results show that, when the controlling parameter𝐾 to
be some value, taking the delay 𝜏 as the bifurcation parameter,
when 𝜏 passes through a certain critical value, the stability of
the equilibriumwill be changed fromunstable to stable, chaos
vanishes, and a periodic solution emerges.

To the end of controlling chaos in system (2), stimulating
by the works of above, we add some delayed feedback terms
to system (2), that is, the following delayed feedback control
system:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑟1
− 𝑎

11
𝑥 (𝑡 − 𝜏) − 𝑎12

𝑦 (𝑡 − 𝜏)]

+ 𝑘

1 (
𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟2
+ 𝑎

21
𝑥 (𝑡 − 𝜏) − 𝑎22

𝑦 (𝑡 − 𝜏)]

+ 𝑘

2
(𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏)) ,

(3)

where 𝑘
𝑖
(𝑖 = 1, 2) denote the capture coefficient when

𝑘

𝑖
< 0 (or release coefficient when 𝑘

𝑖
> 0). By choosing 𝜏

and 𝑘
𝑖
as bifurcation parameter, we get the conditions under

which Hopf bifurcation occurs. And then, we derive the
explicit algorithm for determining the direction of the Hopf
bifurcation and stability of the bifurcating periodic solutions.
At last we will give some example showing that when 𝑘

𝑖
is

fixed, with 𝜏 increasing, the stability of the positive equilib-
rium will be changed, chaos vanishes, a periodic solution
occurs.

This paper is organized as follows. In Section 2, we first
focus on the stability and Hopf bifurcation of the positive
equilibrium. In Section 3, we derive the direction and stability

of Hopf bifurcation by using normal form and central
manifold theory. Finally in Section 4, numerical simulations
are performed to support the stability results.

2. Stability and Hopf Bifurcation Analysis with
Delayed Feedback Control

In this section, by analyzing the characteristic equation of the
linearized system of system (3) at the positive equilibrium,
we investigate the stability of the positive equilibrium and
the existence of the local Hopf bifurcations occurring at
the positive equilibrium. To guarantee that system (3) has
always a positive equilibrium, throughout this section, we
assume that the coefficients of system (3) satisfy the following
condition:

(H1) 𝑎
21
𝑟

1
− 𝑎

11
𝑟

2
> 0.

Clearly, under the hypothesis (H1), system (3) has a
unique positive equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
), where

𝑥

∗
=

𝑎

22
𝑟

1
+ 𝑎

12
𝑟

2

𝑎

11
𝑎

22
+ 𝑎

12
𝑎

21

, 𝑦

∗
=

𝑎

21
𝑟

1
− 𝑎

11
𝑟

2

𝑎

11
𝑎

22
+ 𝑎

12
𝑎

21

. (4)

Let 𝑢
1
(𝑡) = 𝑥(𝑡) − 𝑥

∗, 𝑢
2
(𝑡) = 𝑦(𝑡) − 𝑦

∗; then system (3) can
be rewritten as the following equivalent system:

𝑢̇

1 (
𝑡) = (𝑢1 (

𝑡) + 𝑥

∗
) [−𝑎

11
𝑢

1 (
𝑡 − 𝜏) − 𝑎12

𝑢

2 (
𝑡 − 𝜏)]

+ 𝑘

1
(𝑢

1 (
𝑡) − 𝑢1 (

𝑡 − 𝜏)) ,

𝑢̇

2 (
𝑡) = (𝑢2 (

𝑡) + 𝑦

∗
) [𝑎

21
𝑢

1 (
𝑡 − 𝜏) − 𝑎22

𝑢

2 (
𝑡 − 𝜏)]

+ 𝑘

2
(𝑢

2 (
𝑡) − 𝑢2 (

𝑡 − 𝜏)) .

(5)

Thus, the positive equilibrium 𝐸
∗
(𝑥

∗
, 𝑦

∗
) of system (3)

is transformed into the equilibrium (0, 0) of system (5).
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Linearizing system (5) at the equilibrium (0, 0) yields the
following linear system:

𝑢̇

1 (
𝑡) = −𝑎11

𝑥

∗
𝑢

1 (
𝑡 − 𝜏) − 𝑎12

𝑥

∗
𝑢

2 (
𝑡 − 𝜏)

+ 𝑘

1
(𝑢

1 (
𝑡) − 𝑢1 (

𝑡 − 𝜏)) ,

𝑢̇

2 (
𝑡) = 𝑎21

𝑦

∗
𝑢

1 (
𝑡 − 𝜏) − 𝑎22

𝑦

∗
𝑢

2 (
𝑡 − 𝜏)

+ 𝑘

2
(𝑢

2 (
𝑡) − 𝑢2 (

𝑡 − 𝜏)) .

(6)

The characteristic equation of system (6) is

𝜆

2
+ 𝑎

1
𝜆 + 𝑎

2
+ 𝑎

3
𝑒

−𝜆𝜏
+ 𝑎

4
𝜆𝑒

−𝜆𝜏
+ 𝑎

5
𝑒

−2𝜆𝜏
= 0,

(7)

where 𝑎
1
= −(𝑘

1
+ 𝑘

2
), 𝑎
2
= 𝑘

1
𝑘

2
, 𝑎
3
= −(𝑘

1
𝑎

22
𝑦

∗
+ 𝑘

2
𝑎

11
𝑥

∗
+

2𝑘

1
𝑘

2
), 𝑎
4
= 𝑎

11
𝑥

∗
+ 𝑎

22
𝑦

∗
+ 𝑘

1
+ 𝑘

2
, 𝑎
5
= 𝑎

11
𝑎

22
𝑥

∗
𝑦

∗
+

𝑎

12
𝑎

21
𝑥

∗
𝑦

∗
+ 𝑘

1
𝑎

22
𝑦

∗
+ 𝑘

2
𝑎

11
𝑥

∗
+ 𝑘

1
𝑘

2
. Multiplying 𝑒𝜆𝜏 by

both sides of (8), we have

(𝜆

2
+ 𝑎

1
𝜆 + 𝑎

2
) 𝑒

𝜆𝜏
+ 𝑎

3
+ 𝑎

4
𝜆 + 𝑎

5
𝑒

−𝜆𝜏
= 0. (8)

Thus, 𝑖𝜔 (𝜔 > 0) is a root of (8) if and only if 𝜔 satisfies the
following equation:

(−𝜔

2
+ 𝑎

1
𝑖𝜔 + 𝑎

2
) (cos𝜔𝜏 + 𝑖 sin𝜔𝜏) + 𝑎3 + 𝑎4𝑖𝜔

+ 𝑎

5 (
cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0.

(9)

Separating the real and imaginary parts, we have

(𝜔

2
− 𝑎

2
− 𝑎

5
) cos𝜔𝜏 + 𝑎

1
𝜔 sin𝜔𝜏 = 𝑎

3
,

(𝜔

2
− 𝑎

2
+ 𝑎

5
) sin𝜔𝜏 − 𝑎

1
𝜔 cos𝜔𝜏 = 𝑎

4
𝜔.

(10)

It follows that

sin𝜔𝜏 =
𝑑

3
𝜔

3
+ 𝑑

4
𝜔

𝜔

4
+ 𝑑

1
𝜔

2
+ 𝑑

2

,

cos𝜔𝜏 =
𝑑

5
𝜔

2
+ 𝑑

6

𝜔

4
+ 𝑑

1
𝜔

2
+ 𝑑

2

,

(11)

where 𝑑
1
= 𝑎

2

1
− 2𝑎

2
, 𝑑
2
= 𝑎

2

2
− 𝑎

2

5
, 𝑑
3
= 𝑎

4
, 𝑑
4
= 𝑎

1
𝑎

3
− 𝑎

2
𝑎

4
−

𝑎

4
𝑎

5
, 𝑑
5
= 𝑎

3
−𝑎

1
𝑎

4
, 𝑑
6
= 𝑎

3
𝑎

5
−𝑎

2
𝑎

3
. From sin2𝜔𝜏+cos2𝜔𝜏 =

1, we have

𝜔

8
+ 𝑒

1
𝜔

6
+ 𝑒

2
𝜔

4
+ 𝑒

3
𝜔

2
+ 𝑒

4
= 0, (12)

where 𝑒
1
= 2𝑑

1
−𝑑

2

3
, 𝑒
2
= 2𝑑

2
+𝑑

2

1
−𝑑

2

5
−2𝑑

3
𝑑

4
, 𝑒
3
= 2𝑑

1
𝑑

2
−

2𝑑

5
𝑑

6
− 𝑑

2

4
, 𝑒
4
= 𝑑

2

2
− 𝑑

2

6
.

Denote 𝑧 = 𝜔2; (12) becomes

𝑧

4
+ 𝑒

1
𝑧

3
+ 𝑒

2
𝑧

2
+ 𝑒

3
𝑧 + 𝑒

4
= 0. (13)

Let

𝐺 (𝑧) = 𝑧

4
+ 𝑒

1
𝑧

3
+ 𝑒

2
𝑧

2
+ 𝑒

3
𝑧 + 𝑒

4
. (14)

Since lim
𝑧→∞

𝐺(𝑧) = +∞, we conclude that if 𝑒
4
< 0, then

(13) has at least one positive root. If all the parameters of
system (5) are given, it is easy to get the roots of (13) by using
a computer. Suppose the following.

(H2) Equation (13) has at least one positive real root. With-
out loss of generality, we assume that (14) has four
positive roots, defined by 𝑧

1
, 𝑧
2
, 𝑧
3
, 𝑧
4
, respectively.

Then (12) has four positive roots

𝜔

1
= √𝑧1

, 𝜔

2
= √𝑧2

, 𝜔

3
= √𝑧3

, 𝜔

4
= √𝑧4

.

(15)

From (11), we have

cos𝜔
𝑘
𝜏 =

𝑑

5
𝜔

2

𝑘
+ 𝑑

6

𝜔

4

𝑘
+ 𝑑

1
𝜔

2

𝑘
+ 𝑑

2

. (16)

If we denote

𝜏

(𝑗)

𝑘
=

1

𝜔

𝑘

{arccos(
𝑑

5
𝜔

2

𝑘
+ 𝑑

6

𝜔

4

𝑘
+ 𝑑

1
𝜔

2

𝑘
+ 𝑑

2

) + 2𝑗𝜋} ,

𝑗 = 0, 1, 2, . . . ,

(17)

where 𝑘 = 1, . . . , 4; 𝑗 = 0, 1, . . ., then ±𝑖𝜔
𝑘
is a pair of purely

imaginary roots of (8) with 𝜏 = 𝜏(𝑗)
𝑘
.

Define

𝜏

0
= 𝜏

(0)

𝑘0
= min
𝑘=1,...,4

{𝜏

(0)

𝑘
} , 𝜔

0
= 𝜔

𝑘0
. (18)

Let 𝜆(𝜏) = 𝛼(𝜏) + 𝑖𝜔(𝜏) be the root of (8) near 𝜏 = 𝜏(𝑗)
𝑘

satisfying 𝛼(𝜏(𝑗)
𝑘
) = 0, 𝜔(𝜏(𝑗)

𝑘
) = 𝜔

𝑘
. Substituting 𝜆(𝜏) into

(8) and taking the derivative with respect to 𝜏, we have

(2𝜆 + 𝑎

1
) 𝑒

𝜆𝜏 𝑑𝜆

𝑑𝜏

+ (𝜆

2
+ 𝑎

1
𝜆 + 𝑎

2
) 𝑒

𝜆𝜏
(𝜆 + 𝜏

𝑑𝜆

𝑑𝜏

)

+ 𝑎

4

𝑑𝜆

𝑑𝜏

− 𝑎

5
𝑒

−𝜆𝜏
(𝜆 + 𝜏

𝑑𝜆

𝑑𝜏

) = 0.

(19)

It follows that

𝑑𝜆

𝑑𝜏

=

𝑎

5
𝜆𝑒

−𝜆𝜏
− (𝜆

2
+ 𝑎

1
𝜆 + 𝑎

2
) 𝜆𝑒

𝜆𝜏

(2𝜆 + 𝑎

1
) 𝑒

𝜆𝜏
+ (𝜆

2
+ 𝑎

1
𝜆 + 𝑎

2
) 𝜏𝑒

𝜆𝜏
− 𝑎

5
𝜏𝑒

−𝜆𝜏
+ 𝑎

4

.

(20)

Then

[

𝑑𝜆

𝑑𝜏

]

−1

=

(2𝜆 + 𝑎

1
) 𝑒

𝜆𝜏
+ 𝑎

4

𝑎

5
𝜆𝑒

−𝜆𝜏
− (𝜆

2
+ 𝑎

1
𝜆 + 𝑎

2
) 𝜆𝑒

𝜆𝜏
−

𝜏

𝜆

.
(21)
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Through tedious calculating, we can get

[

𝑑𝜆

𝑑𝜏

]

−1

𝜏=𝜏
(𝑗)

𝑘

=

𝐸 + 𝑖𝐹

𝐶 + 𝑖𝐷

−

𝜏

(𝑗)

𝑘

𝑖𝜔

𝑘

,
(22)

where

𝐶 = 𝑎

5
𝜔

𝑘
sin𝜔
𝑘
𝜏

(𝑗)

𝑘
− (𝜔

2

𝑘
− 𝑎

2
) 𝜔

𝑘
sin𝜔
𝑘
𝜏

(𝑗)

𝑘

+ 𝑎

1
𝜔

2

𝑘
cos𝜔
𝑘
𝜏

(𝑗)

𝑘
, 𝐷

= 𝑎

5
𝜔

𝑘
cos𝜔
𝑘
𝜏

(𝑗)

𝑘
+ (𝜔

2

𝑘
− 𝑎

2
) 𝜔

𝑘
cos𝜔
𝑘
𝜏

(𝑗)

𝑘

+ 𝑎

1
𝜔

2

𝑘
sin𝜔
𝑘
𝜏

(𝑗)

𝑘
, 𝐸

= 𝑎

1
cos𝜔
𝑘
𝜏

(𝑗)

𝑘
− 2𝜔

𝑘
sin𝜔
𝑘
𝜏

(𝑗)

𝑘
+ 𝑎

4
, 𝐹

= 𝑎

1
sin𝜔
𝑘
𝜏

(𝑗)

𝑘
+ 2𝜔

𝑘
cos𝜔
𝑘
𝜏

(𝑗)

𝑘
.

(23)

Denote 𝑄 = 𝐶2 + 𝐷2; then 𝑄 > 0, and we have

𝑄Re [𝑑𝜆
𝑑𝜏

]

−1

𝜏=𝜏
(𝑗)

𝑘

= 𝐸𝐶 + 𝐷𝐹, (24)

and note that

sign{Re [𝑑𝜆
𝑑𝜏

]

𝜏=𝜏
(𝑗)

𝑘

}

= sign{Re [𝑑𝜆
𝑑𝜏

]

−1

𝜏=𝜏
(𝑗)

𝑘

} = sign{𝑄Re [𝑑𝜆
𝑑𝜏

]

−1

𝜏=𝜏
(𝑗)

𝑘

} .

(25)

In order to get themain results, it is necessary tomake the
following assumption.

(H3) 𝐸𝐶 + 𝐷𝐹 ̸= 0. Then, if (H3) holds, the transversality
conditions Re [𝑑𝜆/𝑑𝜏]

𝜏=𝜏0
̸= 0 hold.

Note that when 𝜏 = 0, (8) becomes

𝜆

2
+ (𝑎

1
+ 𝑎

4
) 𝜆 + 𝑎

2
+ 𝑎

3
+ 𝑎

5
= 0. (26)

From [9], we know that all the roots of (26) have negative
real parts; hence, the positive equilibrium 𝐸

∗
is locally

asymptotically stable for 𝜏 = 0. Then, we can employ a result
of Ruan and Wei [18] to analyze (8). For the convenience of
the reader, we state it as follows.

Lemma 1. Consider the exponential polynomial

𝑃 (𝜆, 𝑒

−𝜆𝜏1
, . . . , 𝑒

−𝜆𝜏𝑚
)

= 𝜆

𝑛
+ 𝑝

(0)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(0)

𝑛−1
𝜆 + 𝑝

(0)

𝑛

+ [𝑝

(1)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(1)

𝑛−1
𝜆 + 𝑝

(1)

𝑛
] 𝑒

−𝜆𝜏1

+ ⋅ ⋅ ⋅ + [𝑝

(𝑚)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(𝑚)

𝑛−1
𝜆 + 𝑝

(𝑚)

𝑛
] 𝑒

−𝜆𝜏𝑚
,

(27)

where 𝜏
𝑖
⩾ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏
1
, 𝜏

2
, . . . , 𝜏

𝑚
) vary, the sumof the

order of the zeroes of 𝑃(𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right
half plane can change only if a zero appears on or crosses the
imaginary axis.

From Lemma 1 and the above assumption, we can obtain
the following theorem.

Theorem 2. Suppose that (𝐻2) and (𝐻3) hold; then the
following results hold true.

(i) The positive equilibrium 𝐸
∗
(𝑥

∗
, 𝑦

∗
) of system (3) is

asymptotically stable for 𝜏 ∈ [0, 𝜏
0
);

(ii) system (3) exhibits Hopf bifurcation at the positive
equilibrium for 𝜏 = 𝜏

0
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we obtain the conditions under which a
family periodic solutions bifurcate form the steady state at
the critical value of 𝜏. As pointed out by Hale and Verduyn
Lunel [19] andHassard et al. [20], it is interesting to determine
the direction, stability, and period of these periodic solutions
bifurcating from the steady state. Following the ideal of [20],
we derive the explicit formulae for determining the properties
of the Hopf bifurcation at the critical value of 𝜏 using the
normal form and the center manifold theory.

For the sake of simplicity of notation, we denote the
critical values 𝜏(𝑘)

𝑗
as 𝜏
𝑘
, and when 𝜏 = 𝜏

𝑘
, we denote the

pair of purely imaginary roots of (8) as ±𝑖𝜔
𝑘
. Let 𝜇 = 𝜏 − 𝜏

𝑘
;

then 𝜇 = 0 is the Hopf bifurcation value of system (5).
In the following, we consider the equivalent system (6). Let
𝑡 = 𝜏𝑡; then the system (5) can be rewritten as a functional
differential equation in C([−1, 0],R2):

𝑥̇ (𝑡) = 𝐿𝜇
(𝑥

𝑡
) + 𝑓 (𝜇, 𝑥

𝑡
) , (28)

where 𝑥 = (𝑢
1
, 𝑢

2
)

𝑇, For 𝜙 = (𝜙
1
, 𝜙

2
)

𝑇
∈ C([−1, 0],R2),

𝐿

𝜇
(𝜙) = (𝜏

𝑘
+ 𝜇) [

𝑘

1
0

0 𝑘

2

][

𝜙

1 (
0)

𝜙

2 (
0)

]

+ (𝜏

𝑘
+ 𝜇) [

−𝑎

11
𝑥

∗
− 𝑘

1
−𝑎

12
𝑥

∗

𝑎

21
𝑦

∗
−𝑎

22
𝑦

∗
− 𝑘

2

] [

𝜙

1 (
−1)

𝜙

2 (
−1)

] ,

(29)

𝑓 (𝜇, 𝜙) = (𝜏

𝑘
+ 𝜇) [

−𝑎

11
𝜙

1 (
0) 𝜙1 (

−1) − 𝑎12
𝜙

1 (
0) 𝜙2 (

−1)

𝑎

21
𝜙

2 (
0) 𝜙1 (

−1) − 𝑎22
𝜙

2 (
0) 𝜙2 (

−1)

] .

(30)

Obviously, 𝐿(𝜇) is a continuous linear function mapping
C([−1, 0],R2) into R2. By the Riesz representation theorem,
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there exists a 2 × 2 matrix function 𝜂(𝜃, 𝜇) (−1 ⩽ 𝜃 ⩽ 0),
whose elements are of bounded variation such that

𝐿

𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 0) 𝜙 (𝜃) , for 𝜙 ∈ C ([−1, 0] ,R2) . (31)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏

𝑘
+ 𝜇) [

𝑘

1
0

0 𝑘

2

] 𝛿 (𝜃)

− (𝜏

𝑘
+ 𝜇) [

−𝑎

11
𝑥

∗
− 𝑘

1
−𝑎

12
𝑥

∗

𝑎

21
𝑦

∗
−𝑎

22
𝑦

∗
− 𝑘

2

] 𝛿 (𝜃 + 1) ,

(32)

where 𝛿 denotes Dirac-delta function. For 𝜙 ∈ C([−1, 0],R2),
define

𝐴 (𝜇) 𝜙 =

{

{

{

{

{

{

{

{

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(33)

Then when 𝜃 = 0, the system

𝑥̇

𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡 (34)

is equivalent to the system (29), where 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃), 𝜃 ∈

[−1, 0]. For 𝜓 ∈ C1([0, 1], (R2)∗), define

𝐴

∗
𝜓 (𝑠) =

{

{

{

{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑𝜂

𝑇
(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(35)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩

= 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(36)

where 𝜂(𝜃) = 𝜂(𝜃, 0), and let 𝐴 = 𝐴(0); then 𝐴 and
𝐴

∗ are adjoint operators. By the discussion in Section 2, we
know that ±𝑖𝜔

𝑘
𝜏

𝑘
are eigenvalues of 𝐴. Thus, they are also

eigenvalues of 𝐴∗. We first need to compute the eigenvector
of𝐴 and𝐴∗ corresponding to 𝑖𝜔

𝑘
𝜏

𝑘
and −𝑖𝜔

𝑘
𝜏

𝑘
, respectively.

Suppose that 𝑞(𝜃) = (1, 𝛼)𝑇𝑒𝑖𝜔𝑘𝜏𝑘𝜃 is the eigenvector of 𝐴
corresponding to 𝑖𝜔

𝑘
𝜏

𝑘
. Then 𝐴𝑞(𝜃) = 𝑖𝜔

𝑘
𝜏

𝑘
𝑞(𝜃). It follows

from the definition of 𝐴, 𝐿
𝜇
𝜙, and 𝜂(𝜃, 𝜇) that

𝜏

𝑘
[

[

𝑖𝜔

𝑘
− 𝑘

1
+ (𝑎

11
𝑥

∗
+ 𝑘

1
) 𝑒

−𝑖𝜔𝑘𝜏𝑘
𝑎

12
𝑥

∗
𝑒

−𝑖𝜔𝑘𝜏𝑘

−𝑎

21
𝑦

∗
𝑒

−𝑖𝜔𝑘𝜏𝑘
𝑖𝜔

𝑘
− 𝑘

2
+ (𝑎

22
𝑦

∗
+ 𝑘

2
) 𝑒

−𝑖𝜔𝑘𝜏𝑘

]

]

𝑞 (0) = [

0

0

] . (37)

Thus, we can easily obtain 𝛼 = −𝑎
21
𝑦

∗
𝑒

−𝑖𝜔𝑘𝜏𝑘
/(𝑖𝜔

𝑘
− 𝑘

2
+

(𝑎

22
𝑦

∗
+ 𝑘

2
)𝑒

−𝑖𝜔𝑘𝜏𝑘
), 𝑞(0) = (1, 𝛼)𝑇.

Similarly, let 𝑞∗(𝑠) = 𝐷(1, 𝛼∗)𝑒𝑖𝜔𝑘𝜏𝑘𝑠 be the eigenvector of
𝐴

∗ corresponding to −𝑖𝜔
𝑘
𝜏

𝑘
. By the definition of 𝐴∗, we can

compute 𝛼∗ = 𝑎
12
𝑥

∗
𝑒

𝑖𝜔𝑘𝜏𝑘
/(𝑖𝜔

𝑘
+ 𝑘

2
− (𝑎

22
𝑦

∗
+ 𝑘

2
)𝑒

𝑖𝜔𝑘𝜏𝑘
).

In order to assure ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, we need to determine
the value of𝐷. From (36), we have

⟨𝑞

∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐷 (1, 𝛼

∗
) (1, 𝛼)

𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝛼

∗
) 𝑒

−𝑖𝜔𝑘𝜏𝑘(𝜉−𝜃)
𝑑𝜂 (𝜃) (1, 𝛼)

𝑇
𝑒

𝑖𝜔𝑘𝜏𝑘𝜉
𝑑𝜉

= 𝐷 {1 + 𝛼𝛼

∗
+ 𝜏

𝑘
(−𝑎

11
𝑥

∗
− 𝑘

1
+ 𝑎

21
𝑦

∗
𝛼

∗
− 𝑎

12
𝑥

∗
𝛼

− (𝑎

22
𝑦

∗
+ 𝑘

2
) 𝛼𝛼

∗
) 𝑒

−𝑖𝜔𝑘𝜏𝑘
} .

(38)

Thus, we can choose

𝐷 = {1 + 𝛼𝛼

∗
+ 𝜏

𝑘
(−𝑎

11
𝑥

∗
− 𝑘

1
+ 𝑎

21
𝑦

∗
𝛼

∗
− 𝑎

12
𝑥

∗
𝛼

− (𝑎

22
𝑦

∗
+ 𝑘

2
) 𝛼𝛼

∗
) 𝑒

−𝑖𝜔𝑘𝜏𝑘
}

−1

,

(39)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.

In the following, we first compute the coordinates to
describe the center manifold 𝐶

0
at 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑥

𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑥𝑡 (

𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .
(40)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊

20 (
𝜃)

𝑧

2

2

+𝑊

11 (
𝜃) 𝑧𝑧 +𝑊02 (

𝜃)

𝑧

2

2

+𝑊

30 (
𝜃)

𝑧

3

6

+ ⋅ ⋅ ⋅ ,

(41)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in

the direction of 𝑞 and 𝑞. Note that𝑊 is real if 𝑥
𝑡
is real. We

consider only real solutions. For the solution 𝑥
𝑡
∈ 𝐶

0
, since

𝜇 = 0, we have

𝑧̇ = 𝑖𝜔

𝑘
𝜏

𝑘
𝑧 + ⟨𝑞

∗
(𝜃) , 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

+2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩
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= 𝑖𝜔

𝑘
𝜏

𝑘
𝑧 + 𝑞

∗
(0) 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 0)

+2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜔

𝑘
𝜏

𝑘
𝑧 + 𝑞

∗
(0) 𝑓0 (

𝑧, 𝑧) = 𝑖𝜔𝑘
𝜏

𝑘
𝑧 + 𝑔 (𝑧, 𝑧) ,

(42)

where

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝑓0 (

𝑧, 𝑧)

= 𝑔

20 (
𝜃)

𝑧

2

2

+ 𝑔

11 (
𝜃) 𝑧𝑧 + 𝑔02 (

𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(43)

From (40) and (41), we have

𝑥

𝑡 (
𝜃) = (𝑥1𝑡 (

𝜃) , 𝑥2𝑡 (
𝜃))

𝑇
= 𝑊(𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧 𝑞 (𝜃) .

(44)

In addition, 𝑞(𝜃) = (1, 𝛼)𝑇𝑒𝑖𝜔𝑘𝜏𝑘𝜃; then

𝑥

1𝑡 (
0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ 𝑂 (|(𝑧, 𝑧)|

3
) ,

𝑥

2𝑡 (
0) = 𝛼𝑧 + 𝛼 𝑧 +𝑊

(2)

20
(0)

𝑧

2

2

+𝑊

(2)

11
(0) 𝑧𝑧

+𝑊

(2)

02
(0)

𝑧

2

2

+ 𝑂 (|(𝑧, 𝑧)|

3
) ,

𝑥

1𝑡 (
−1) = 𝑧𝑒

−𝑖𝜔𝑘𝜏𝑘
+ 𝑧𝑒

𝑖𝜔𝑘𝜏𝑘
+𝑊

(1)

20
(−1)

𝑧

2

2

+𝑊

(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧

2

2

+ 𝑂 (|(𝑧, 𝑧)|

3
) ,

𝑥

2𝑡 (
−1) = 𝛼𝑧𝑒

−𝑖𝜔𝑘𝜏𝑘
+ 𝛼 𝑧𝑒

𝑖𝜔𝑘𝜏𝑘
+𝑊

(2)

20
(−1)

𝑧

2

2

+𝑊

(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧

2

2

+ 𝑂 (|(𝑧, 𝑧)|

3
) .

(45)

By the definition of 𝑓(𝜇, 𝑥
𝑡
), we have

𝑔 (𝑧, 𝑧)

= 𝐷𝜏

𝑘
(1, 𝛼

∗
) [

−𝑎

11
𝑥

1𝑡 (
0) 𝑥1𝑡 (

−1) − 𝑎12
𝑥

1𝑡 (
0) 𝑥2𝑡 (

−1)

𝑎

21
𝑥

2𝑡 (
0) 𝑥1𝑡 (

−1) − 𝑎22
𝑥

2𝑡 (
0) 𝑥2𝑡 (

−1)

] .

(46)

Substituting𝑥
1𝑡
(0),𝑥
2𝑡
(0),𝑥
1𝑡
(−1), and𝑥

2𝑡
(−1) into the above

equation and comparing the coefficients with (43), we get

𝑔

20
= 2𝐷𝜏

𝑘
(−𝑎

11
− 𝑎

12
𝛼 + 𝑎

21
𝛼𝛼

∗
− 𝑎

22
𝛼

2
𝛼

∗
) 𝑒

−𝑖𝜔𝑘𝜏𝑘
,

𝑔

11
= 2𝐷𝜏

𝑘
[(−𝑎

11
− 𝑎

12
𝛼 + 𝑎

21
𝛼𝛼

∗
− 𝑎

22
𝛼𝛼𝛼

∗
) 𝑒

𝑖𝜔𝑘𝜏𝑘

− (𝑎

11
+ 𝑎

12
𝛼 − 𝑎

21
𝛼𝛼

∗
+ 𝑎

22
𝛼𝛼𝛼

∗
) 𝑒

−𝑖𝜔𝑘𝜏𝑘
] ,

𝑔

02
= 2𝐷𝜏

𝑘
(−𝑎

11
− 𝑎

12
𝛼 + 𝑎

21
𝛼𝛼

∗
− 𝑎

22
𝛼

2
𝛼

∗
) 𝑒

𝑖𝜔𝑘𝜏𝑘
,

𝑔

21
= 𝐷𝜏

𝑘
[−𝑎

11
(2𝑊

(1)

11
(−1) + 𝑊

(1)

20
(−1)

+𝑊

(1)

20
(0) 𝑒

𝑖𝜔𝑘𝜏𝑘
+ 2𝑊

(1)

11
(0) 𝑒

−𝑖𝜔𝑘𝜏𝑘
)

− 𝑎

12
(2𝑊

(2)

11
(−1) + 𝑊

(2)

20
(−1)

+ 𝛼𝑊

(1)

20
(0) 𝑒

𝑖𝜔𝑘𝜏𝑘
+ 2𝛼𝑊

(1)

11
(0) 𝑒

−𝑖𝜔𝑘𝜏𝑘
)

+ 𝑎

21
𝛼

∗
(2𝛼𝑊

(1)

11
(−1) + 𝛼𝑊

(1)

20
(−1)

+ 𝑊

(2)

20
(0) 𝑒

𝑖𝜔𝑘𝜏𝑘
+ 2𝑊

(2)

11
(0) 𝑒

−𝑖𝜔𝑘𝜏𝑘
)

− 𝑎

22
𝛼

∗
(2𝛼𝑊

(2)

11
(−1) + 𝛼𝑊

(2)

20
(−1)

+𝛼𝑊

(2)

20
(0) 𝑒

𝑖𝜔𝑘𝜏𝑘
+2𝛼𝑊

(2)

11
(0) 𝑒

−𝑖𝜔𝑘𝜏𝑘
)] .

(47)

In order to assure the value of 𝑔
21
, we need to compute

𝑊

20
(𝜃) and𝑊

11
(𝜃). From (34) and (40), we have

̇

𝑊 = 𝑥̇

𝑡
− 𝑧̇𝑞 −

̇

𝑧 𝑞

= {

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓0𝑞 (𝜃)} , 𝜃 ∈ [0, 1)

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓0𝑞 (𝜃)} + 𝑓0, 𝜃 = 0

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(48)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (
𝜃)

𝑧

2

2

+ 𝐻

11 (
𝜃) 𝑧𝑧 + 𝐻02 (

𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(49)

Notice that near the origin on the centermanifold𝐶
0
, we have

̇

𝑊 = 𝑊

𝑧
𝑧̇ + 𝑊

𝑧
̇

𝑧; (50)

thus, we have

(𝐴 − 2𝑖𝜔

𝑘
𝜏

𝑘
𝐼)𝑊

20 (
𝜃) = −𝐻20 (

𝜃) ,

𝐴𝑊

11 (
𝜃) = −𝐻11 (

𝜃) .

(51)
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From (48), for 𝜃 ∈ [−1, 0), we have

𝐻(𝑧, 𝑧, 𝜃)

= −𝑞

∗
(0) 𝑓0

𝑞 (𝜃) − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃) = −𝑔𝑞 (𝜃) − 𝑔 𝑞 (𝜃) .

(52)

Comparing the coefficients with (48) gives that

𝐻

20 (
𝜃) = −𝑔20

𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻

11 (
𝜃) = −𝑔11

𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(53)

From (51), (53), and the definition of 𝐴, we can get

̇

𝑊

20 (
𝜃) = 2𝑖𝜔𝑘

𝜏

𝑘
𝑊

20 (
𝜃) + 𝑔20

𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (54)

Notice that 𝑞(𝜃) = 𝑞(0)𝑒𝑖𝜔𝑘𝜏𝑘𝜃; we have

𝑊

20 (
𝜃) =

𝑖𝑔

20

𝜔

𝑘
𝜏

𝑘

𝑞 (0) 𝑒

𝑖𝜔𝑘𝜏𝑘𝜃
+

𝑖𝑔

02

3𝜔

𝑘
𝜏

𝑘

𝑞 (0) 𝑒

−𝑖𝜔𝑘𝜏𝑘𝜃
+ 𝐸

1
𝑒

2𝑖𝜔𝑘𝜏𝑘𝜃
,

(55)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸

(2)

1
) ∈ R2 is a constant vector. In the same

way, we can also obtain

𝑊

11 (
𝜃) = −

𝑖𝑔

11

𝜔

𝑘
𝜏

𝑘

𝑞 (0) 𝑒

𝑖𝜔𝑘𝜏𝑘𝜃
+

𝑖𝑔

11

𝜔

𝑘
𝜏

𝑘

𝑞 (0) 𝑒

−𝑖𝜔𝑘𝜏𝑘𝜃
+ 𝐸

2
, (56)

where 𝐸
2
= (𝐸

(1)

2
, 𝐸

(2)

2
) ∈ R2 is also a constant vector.

In what follows, we will compute 𝐸
1
and 𝐸

2
. From the

definition of 𝐴 and (51), we have

∫

0

−1

𝑑𝜂 (𝜃)𝑊20 (
𝜃) = 2𝑖𝜔𝑘

𝜏

𝑘
𝑊

20 (
0) − 𝐻20 (

0) ,
(57)

∫

0

−1

𝑑𝜂 (𝜃)𝑊11 (
𝜃) = −𝐻11 (

0) .
(58)

From (48) and (49), we have

𝐻

20 (
0) = −𝑔20

𝑞 (0) − 𝑔

02
𝑞 (0)

+ 2𝜏

𝑘
[

−𝑎

11
𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

12
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘

𝑎

21
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

22
𝛼

2
𝑒

−𝑖𝜔𝑘𝜏𝑘
] ,

(59)

𝐻

11 (
0) = −𝑔11

𝑞 (0) − 𝑔

11
𝑞 (0)

+ 2𝜏

𝑘
[

[

−𝑎

11
Re {𝑒−𝑖𝜔𝑘𝜏𝑘} − 𝑎

12
Re {𝛼𝑒−𝑖𝜔𝑘𝜏𝑘}

𝑎

21
Re {𝛼𝑒𝑖𝜔𝑘𝜏𝑘} − 𝑎

22
Re {𝛼𝛼𝑒−𝑖𝜔𝑘𝜏𝑘}

]

]

.

(60)

Substituting (55) and (59) into (57) and noticing that

[𝑖𝜔

𝑘
𝜏

𝑘
𝐼 − ∫

0

−1

𝑒

𝑖𝜔𝑘𝜏𝑘𝜃
𝑑𝜂 (𝜃)] 𝑞 (0) = 0,

[−𝑖𝜔

𝑘
𝜏

𝑘
𝐼 − ∫

0

−1

𝑒

−𝑖𝜔𝑘𝜏𝑘𝜃
𝑑𝜂 (𝜃)] 𝑞 (0) = 0,

(61)

we obtain

[2𝑖𝜔

𝑘
𝜏

𝑘
𝐼 − ∫

0

−1

𝑒

2𝑖𝜔𝑘𝜏𝑘𝜃
𝑑𝜂 (𝜃)] 𝐸1

= 2𝜏

𝑘
[

−𝑎

11
𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

12
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘

𝑎

21
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

22
𝛼

2
𝑒

−𝑖𝜔𝑘𝜏𝑘
] ,

(62)

which leads to

𝐵𝐸

1
= 2 [

−𝑎

11
𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

12
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘

𝑎

21
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

22
𝛼

2
𝑒

−𝑖𝜔𝑘𝜏𝑘
] , (63)

where

𝐵 = [

2𝑖𝜔

𝑘
− 𝑘

1
+ (𝑎

11
+ 𝑘

1
) 𝑥

∗
𝑒

−2𝑖𝜔𝑘𝜏𝑘
𝑎

12
𝑥

∗
𝑒

−2𝑖𝜔𝑘𝜏𝑘

−𝑎

21
𝑦

∗
𝑒

−2𝑖𝜔𝑘𝜏𝑘
2𝑖𝜔

𝑘
− 𝑘

2
+ (𝑎

22
𝑦

∗
+ 𝑘

2
) 𝑒

−2𝑖𝜔𝑘𝜏𝑘
] . (64)

It follows that

𝐸

1
= 2𝐵

−1
[

−𝑎

11
𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

12
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘

𝑎

21
𝛼𝑒

−𝑖𝜔𝑘𝜏𝑘
− 𝑎

22
𝛼

2
𝑒

−𝑖𝜔𝑘𝜏𝑘
] . (65)

Similarly, substituting (56) and (60) into (58), we can get
the formula of 𝐸

2
, where

𝐸

2
= 2[

𝑎

11
𝑥

∗
𝑎

12
𝑥

∗

−𝑎

21
𝑦

∗
𝑎

22
𝑦

∗]

−1

× [

−𝑎

11
Re {𝑒−𝑖𝜔𝑘𝜏𝑘} − 𝑎

12
Re {𝛼𝑒−𝑖𝜔𝑘𝜏𝑘}

𝑎

21
Re {𝛼𝑒𝑖𝜔𝑘𝜏𝑘} − 𝑎

22
Re {𝛼𝛼𝑒−𝑖𝜔𝑘𝜏𝑘}

] .

(66)

Thus, we can determine𝑊
20
(𝜃) and𝑊

11
(𝜃). Furthermore,

we can determine each 𝑔
𝑖𝑗
. Therefore, each 𝑔

𝑖𝑗
is determined
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Figure 2: The bifurcation diagram of 𝑦: (a) 𝑘
1
= 𝑘

2
= 0; (b) 𝑘

1
= −0.2, 𝑘

2
= 0.5.
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Figure 3: Waveform plot and phase plot of system (3) with 𝜏 = 0.9: (a) 𝑘
1
= 𝑘

2
= 0; (b) 𝑘

1
= −0.2, 𝑘

2
= −0.5.
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Figure 4: Waveform plot and phase plot of system (3) with 𝜏 = 1.4: (a) 𝑘
1
= 𝑘

2
= 0; (b) 𝑘

1
= −0.2, 𝑘

2
= −0.5.

by the parameters and delay in (5).Thus, we can compute the
following values:

𝑐

1 (
0) =

𝑖

2𝜔

𝑘
𝜏

𝑘

(𝑔

20
𝑔

11
− 2

󵄨

󵄨

󵄨

󵄨

𝑔

11

󵄨

󵄨

󵄨

󵄨

2
−

1

3

󵄨

󵄨

󵄨

󵄨

𝑔

02

󵄨

󵄨

󵄨

󵄨

2
) +

1

2

𝑔

21
,

𝜇

2
= −

Re {𝑐
1 (
0)}

Re {𝜆󸀠 (0)}
,

𝑇

2
= −

Im {𝑐
1 (
0)} + 𝜇2

Im {𝜆󸀠 (0)}
𝜔

𝑘
𝜏

𝑘

,

𝛽

2
= 2Re {𝑐

1 (
0)} ,

(67)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

𝑘
; that

is, 𝜇
2
determines the directions of the Hopf bifurcation: if

𝜇

2
> 0 (< 0), then the Hopf bifurcation is supercritical (sub-

critical) and the bifurcation exists for 𝜏 > 𝜏
0
(< 𝜏

0
); 𝛽
2

determines the stability of the bifurcation periodic solutions:
the bifurcating periodic solutions are stable (unstable) if 𝛽

2
<

0 (> 0); and 𝑇
2
determines the period of the bifurcating

periodic solutions: the period increases (decrease) if 𝑇
2
>

0 (< 0).

4. Numerical Simulations

In this section, we present numerical results to verify the
analytical predictions obtained in the previous sections and
use the delayed-feedback controller to control the Hopf
bifurcation and chaos of system (3).

For the convenience of the calculation, we take the
parameters of system (3) as 𝑟

1
= 𝑟

2
= 1, 𝑎

11
= 1, 𝑎

12
= 1,
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Figure 5: Waveform plot and phase plot of system (3) with 𝜏 = 1.5: (a) 𝑘
1
= 𝑘

2
= 0; (b) 𝑘

1
= −0.2, 𝑘

2
= −0.5.

𝑎

21
= 2, 𝑎

22
= 1. Then system (3) has a positive equilibrium

𝐸

∗
= (2/3, 1/3).
From [9], when 𝑘

1
= 𝑘

2
= 0 or 𝜏 = 0, system (3)

becomes system (2), which has a bifurcation point 𝜏
0
=

0.8072, and when 𝜏 ∈ [0, 0.8072), 𝐸
∗
is asymptotically stable

and is unstable when 𝜏 > 0.8072, and with the increase of
the delay 𝜏, chaos occurs via 𝑡 periodic-doubling bifurcation
(Figure 2(a)), when 𝜏 = 1.4, 𝑘

1
= 𝑘

2
= 0, system (3) becomes

a chaotic one like illustrated by Figure 1.
Under the delayed-feedback control, if we choose 𝑘

1
=

−0.2, 𝑘
2
= −0.5, from the algorithm of Section 2, we can

compute that 𝜏
0
≈ 1.4294 and Re [𝑑𝜆/𝑑𝜏]

𝜏=𝜏0
= 0.1017 >

0; hence from Theorem 2, when 𝜏 ∈ [0, 1.4294), 𝐸
∗
is

asymptotically stable and is unstable when 𝜏 > 1.4294,
and when 𝜏 passes through the critical point 𝜏

0
, a family of

periodic orbits will bifurcate from 𝐸
∗
. Furthermore, from the

algorithm of Section 3, we can compute that 𝑔
20
= 1.4704 +

2.4314𝑖, 𝑔
11
= 6.1433 + 8.6345𝑖, 𝑔

02
= 9.4686 + 15.7816𝑖,

𝑔

21
= −24.6452 + 243.1853𝑖; hence, based on the formula of

the end of Section 3, we have 𝑐
1
(0) = −27.0460 − 64.6042𝑖.

It is easy to see that 𝜇
2
> 0, 𝛽

2
< 0. This means that the

Hopf bifurcation is supercritical and the bifurcating periodic
solutions are stable (Figure 5(b)).

By comparing the two bifurcation plots of Figure 2(a) and
Figure 2(b), we observe that the bifurcation occurrence is
postponed as the system is being controlled. Figure 3 shows
that when 𝜏 = 0.9, if 𝑘

1
= 𝑘

2
= 0, 𝐸

∗
is unstable, and there

are periodic orbits bifurcating from 𝐸
∗
(Figure 3(a)); if we

take 𝑘
1
= −0.2, 𝑘

2
= −0.5, 𝐸

∗
becomes stable (Figure 3(b)).

Figure 4 shows that when 𝜏 = 1.4, if 𝑘
1
= 𝑘

2
= 0, 𝐸

∗

is unstable, and system (3) becomes chaotic (Figure 4(a));
if we take 𝑘

1
= −0.2, 𝑘

2
= −0.5, then 𝐸

∗
becomes stable
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and chaos vanishes (Figure 4(b)). Figure 5 shows that when
𝜏 = 1.5, if 𝑘

1
= 𝑘

2
= 0, 𝐸

∗
is unstable, and system (3) still

exhibits chaotic behavior (Figure 5(a)); if we take 𝑘
1
= −0.2,

𝑘

2
= −0.5, then 𝐸

∗
becomes unstable and stable periodic

orbits bifurcate from 𝐸
∗
(Figure 5(b)).

5. Conclusion

In this paper, we have studied a delayed Lotka-Volterra
predator-prey system with time delayed feedback by using
the theory of functional differential equation and Hassard’s
method. By analyzing the corresponding characteristic equa-
tions, the local stability of the positive equilibrium of system
(3) was discussed.

We have obtained the estimated length of gestation
delay which would not affect the stable coexistence of both
prey and predator species at their equilibrium values. The
existence of Hopf bifurcation for system (3) at the positive
equilibrium was also established. From theoretical analysis it
was shown that the larger values of gestation time delay cause
fluctuation in individual population density and hence the
system becomes unstable.

As the estimated length of delay to preserve stability
and the critical length of time delay for Hopf-bifurcation
are dependent upon the system parameters, it is possible
to impose some control, which will prevent the possible
abnormal oscillation in population density. Our results show
that if we choose some appropriate parameters, the oscillation
can be controlled to a stable equilibrium or a stable periodic
orbit; that is to say, we can achieve the ecological equilibrium
by adjusting the capture (or release) level.
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